Пути рационального использования природного сырья

Обогащение сырьевых материалов методами флотации и выщелачивания. Отходы химической, деревообрабатывающей и гидролизной промышленности, способы их утилизации. Очистка газообразных выбросов, сточных вод. Понятие технологического процесса, его параметры.

Рубрика Экология и охрана природы
Вид курс лекций
Язык русский
Дата добавления 27.02.2013
Размер файла 116,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сухой способ производства цемента отличается тем, что сырьевые материалы влажностью менее 10 % после предварительного дробления сразу измельчаются в шаровых мельницах. Полученные порошкообразные компоненты тщательно смешиваются в смесителях и после корректирования и усреднения до заданного химического состава смесь подается во вращающуюся печь на обжиг.

Каждый из способов производства цемента имеет свои достоинства и недостатки. Так, при мокром способе в присутствии воды облегчается измельчение материалов, проще достигается однородность смеси, надежнее и удобнее транспортировка шлама, лучше санитарно-гигиенические условия труда. Но при этом расход теплоты на обжиг смеси на 30...40 % больше, чем при сухом способе, необходима большая рабочая вместимость печи, так'как в ней происходит испарение воды из шлама.

Основным преимуществом сухого способа производства цемента является снижение расхода теплоты на обжиг клинкера (до 3,4...5 МДж/кг по сравнению с 5,8...6,7 МДж/кг при мокром способе). Однако усложняется процесс корректировки состава шихты, усложняется оборудование, повышается расход электроэнергии и т. п. При этом необходимо решать вопросы охраны окружающей среды. В целом по технико-экономическим показателям сухой способ значительно превосходит мокрый: капитальные затраты на сооружение завода на 5...10 % меньше, чем завода той же мощности, работающего по мокрому способу; за счет экономии топлива снижаются на 2,5...5 % годовые эксплуатационные затраты.

18. Классификация, основные свойства и назначение минеральных вяжущих материалов

Строительными минеральными вяжущими веществами называются порошкообразные материалы, которые при смешивании с водой образуют пластичную удобообрабатываемую массу, способную под влиянием физико-химических процессов самопроизвольно затвердевать и превращаться в прочное камневидное тело.

Это свойство вяжущих веществ широко используют при приготовлении строительных растворов, в производстве безобжиговых искусственных каменных материалов и изделий, бетонов и железо-

бетонов, при возведении гидротехнических сооружений, в дорожном строительстве.Основным показателем свойств вяжущих веществ является их механическая прочность после затвердевания.

Минеральные вяжущие вещества по способности затвердевать и сохранять прочность на воздухе или в воде подразделяют на воздушные и гидравлические.

Воздушные вяжущие вещества после смешивания с водой твердеют, прочность получающегося камня сохраняется или повышается только на воздухе. Поэтому такие вяжущие применяют при возведении надземных сооружений, не подвергающихся действию воды.

Гидравлические вяжущие вещества обладают этими свойствами не только на воздухе, но и в воде, их применяют в надземных, подземных, гидротехнических и других сооружениях.

К воздушным вяжущим веществам относятся: воздушная известь, гипсовые и магнезиальные вяжущие, кислотоупорные цементы, жидкое стекло -- силикат натрия или калия (в виде водного раствора), к гидравлическим -- портландцемент и его разновидности, глиноземистый цемент, пуццолановые и шлаковые цементы, гидравлическая известь и романцемент.

Основными характеристиками вяжущих веществ являются нормальная густота теста, скорость схватывания и механическая прочность после затвердения, тонкость помола

Св-ва: 1) мин.в-ва легко затвердевают.,2) легко превращаються в твердое камневидное тело.

19. Технико-экономические показатели производства цемента

Себестоимость цемента оказывает реш. влияние на стоимость бетона, т.к. расход цемента достиг. 300-450 кг., а его стоимость составляет 75 процентов затрат на матер. Себестоимость цемента зависит от вида исходного сырья, топлива, ТП и объема производства. Удельный вес затр. при производстве цемента составляет около 25% его себестоимости. Цем. промышлн. хар-ся сравн.высокой энергоемкостью. Расход топлива 300-350 кг/т. Примерно 40% от общего количества потр.цементн.пром.электроэнергии расх.при помоле цемента. Удельн.капитал.вложение в среднем в 1.5-2 раза выше, чем при производстве других вяжущих минеральных материалов. Экон.эффект.повышается за счет : 1) внедрение сухого способа производства, 2) интенсиф.и совершенств. ПТ, 3) комбин.пр-во, 4) выпуск высокомар.цемента

20. Гипсовые вяжущие материалы, их производство и назначение

Гипсовые вяжущие вещества -- это воздушные вяжущие, получаемые в результате тепловой обработки сырья и его помола и состоящие в основном из полуводного гипса или ангидрита.

Сырьем для производства гипсовых вяжущих служат природный гипсовый камень (CaSO4-2H2O) и природный ангидрит (CaSO4), а также отходы химической промышленности, содержащие сернокислый кальций,-- фосфогипс (при- переработке природных фосфатов в суперфосфат), борогипс и др.

В зависимости от температуры тепловой обработки гипсовые вяжущие вещества подразделяют на две группы: низкообжиговые и высокообжиговые. Низкообжиговые гипсовые вяжущие вещества получают тепловой обработкой двуводного гипса CaSO4-2H2O при низких температурах (110...160 °С) с частичной его дегидратацией и переводом в пол^'водный гипс CaSO4-0,5H2O. Высокообжиговые (ангидритовые) гипсовые вяжущие изготавливают путем обжига гипсового камня при высокой температуре (600...900 °С) с полной потерей им химически связанной воды и образованием безводного сульфата кальция -- ангидрита. К низкообжиговым относится строительный, формовочный и высокопрочный гипс, к высокообжиговым -- ангидритовый цемент и эстрих-гипс. Можно получить ангидритовое вяжущее и без обжига (по способу П.П. Будникова) -- помолом природного ангидрита с активаторами твердения (известью, обожженным доломитом и т. п.).

Строительный гипс состоит преимущественно из полуводного гипса и представляет собой тонкоизмельченный продукт термической обработки гипсового камня при температуре 110... 160 °С. При этом двуводный гипс дегидратируется по реакции: CaSO4-2H2O = = CaSO4-0,5H2O+1,5H2O. Основные стадии технологического процесса производства строительного гипса: дробление, помол, тепловая обработка (дегидратация) гипсового камня. Имеется несколько технологических схем производства строительного гипса: в одних помол гипсового камня предшествует обжигу, в других он производится после обжига, в третьих помол и обжиг совмещаются в одном аппарате (обжиг гипса во взвешенном состоянии). Тепловая обработка гипсового камня может производиться в варочных котлах, сушильных барабанах, шахтных или других мельницах. Наиболее распространена схема производства строительного гипса с применением варочных котлов.

В зависимости от степени помола различают вяжущие грубого, среднего и тонкого помола.

Марка гипсовых вяжущих характеризует прочность при сжатии образцов-балочек в возрасте 2 ч после затворения вяжущего водой.

В процессе твердения при смешивании порошка гипса с водой полуводный гипс начинает растворяться и гидратироваться, превращаясь снова в двуводный гипс по реакции: CaSO4'0,5H2O + + l,5H2O = CaSO4-2H2O. Образовавшийся CaSO4-2H2O выпадает из раствора в виде дисперсных (коллоидных) частиц. При превращении коллоидных частиц в кристаллы тесто загустевает (схватывается). В дальнейшем кристаллы CaSO4-2H2O срастаются, образуя прочный гипсовый камень.

Применяется строительный гипс для производства гипсовых и гипсобетонных строительных изделий и материалов для внутренних элементов зданий и сооружений (перегородочных плит, панелей, сухой штукатурки, для декоративных и отделочных материалов).

Указанные изделия характеризуются небольшой плотностью, несгораемостью и рядом других ценных свойств, но при увлажнении прочность их снижается.

Наряду с гипсовыми вяжущими общестроительного назначения выпускают вяжущие для фарфоро-фаянсовой, керамической, машиностроительной и медицинской отраслей промышленности, обладающие специфическими свойствами. Хранят гипс в закрытых сухих помещениях или ларях, транспортируют в контейнерах или крытых вагонах.

21. Строительная известь. Производство, свойства, назначение

Ст. известью называется вяжущее вещество, получаемое в рез-те умеренного обжига и последующего помола кальциево-магниевых карбонатных горных пород известняка, мела, доломита с содержанием не более 6% глинистых примесей. Технол. Процесс производства состоит из 4 стадий: дробление, сортировка; обжиг; помол или гашение. Известь получают за счет разложения известянка:CaCO3=CaO + CO2; MgCO3=MgO+CO2. Полученная при обжиге карбонатных пород негашеная комовая известь затем поступает на помол или гашение. В зависимости от вида обработки известь делиться на негашеную(комовую и молотую) и гашеную- гидратную (пушенку и тесто). В зависимости от содержания оксида магния строительная воздушная известь разделяется на кальциевую или маломагнезиальную( с содержанием MgO не более 5%), Магнезиальную(5…20% MgO) и доломитовую или высокомагнезиальную (20…40% MgO). В зависимости от пластичности получаемого продукта различают: жирную и тощую известь.

Тощая известь гасится медленно идает менее пластичное тесто. По температуре при гашении различают: низко- и высокоэкзетермическую известь.

Наиболее важные показатели качество извести: активность - %-е соотношение оксидов способных гасится; количество не погасившейся зерен; продолжительность гашения. Скорость гашения зависит от t и размеров кусков комовой извести.

Воздушная известь широко применяется для изготовления искусственных каменных материалов - силикатного кирпича и бетона; для приготовления строительных растворов. Гидравлическая известь - продукт умеренного обжига она применяется как заменитель цементов.

22. Безобжиговые изделия на основе вяжущих материалов

Искусственные безобжиговые каменные строительные материалы получают на основе мин. вяж. в-в из растворных или бетонных смесей путем их формования с последующим твердением. Такие материалы не обжигаются. Для получения без. изделий применяют известь, цемент, гипс, магнезит и др. Различают 4 группы без. изделий: 1)Силикатные материалы и изделия, получаемые на основе извести: силикатный кирпич; крупноразмерные плотные силикатные изделия: блоки внутренних несущих стен зданий, лестничные ступени, балки и др. 2) гипсовые изделия, получаемые на основе строительного гипса: панели и плиты перегородочные, листы обшивочные, изделия для перекрытий, архитектурные детали и др. 3) мат-лы и изделия на основе магнезиальных вяжущих в-в: теплоизоляционный фибролит для утепления стен; фибролитовая фанера; пено- и газомагнезиты- высокоэффективные изоляционные материалы. 4) асбестоцементные изделия, получаемые на основе портландцемента с добавлением асбета: кровельные и стеновые панели, плиты и перегородки и др.

23. Особенности и основные направления научно-технического процесса и роль совркменных технологий

Технический прогресс -это исторический процесс совершенствования орудия труда и методов производства. Этот процесс обеспечивает повышение производительности общественного труда. ТП тесно связан с развитием науки. НТР- качественно новый этап в НТП. НТР характеризуется крупнейшими скачками в совершенствование орудий труда, переходам к автоматизации. Этапы развития технологии: 1-ый этап перехода от охоты и собирательства к сельскому хозяству. 2-ой этап: переход к индустриальному обществу (18 век). 3-ий этап информационных технологий . 4-ый этап кибернетики ( искусственного интеллекта). Особенности современного этапа: высокий темп развития наукоемких отраслей; модернизация отраслей; разработка и внедрения сберегающих технологий; мало-безотходное производство; развитие компьютерных технологий; замена Тж на Тп . Направления НТП :1 энергосбережение жизне-ти общества в соответствии с эколог. Ситуации. 2. освоение космоса, мир. Океана и др. 3. раз-е науки. 4. исп-е роботов, лазерных, мембранных и др. технологий. 5. электрификация пром-ти и химизация про-ва. 6. комплексная механизация и авто-ция про-ва. Тех-я в современ. про-ве оказывает знач. влияние на будущие экон. показатели еще в процессе конструирования изделия, создавая высокотех-ие разработки. В период НТР в рез-те возросшей роли тех-гий необычайно сокращаются сроки от возникновения идеи до ее реализации. Для прогназирования и оптимизации тех. процессов успешно применяются методы мат. Планирования эксперимента. Эти методы позволяют получать мат. модели, связывающие параметр оптимизации с влияющими на него факторами, и дают возможность выявлять их оптимальные технол. режимы. Т. о., тех-я получила новые соврем. Методы нахождения наилучших оптимальных результатов с наименьшими затратами.

24. Композиционные материалы, область применения и экономическая оценка

Для изготовления деталей машин, приборов используют консрукционные мат-лы и мат-лы спец. назначения. Кострукционные мат-лы подразделяются на металлические, неметаллич. и композиционные.

Композиционные материалы - это мат-лы, образованные объемным сочетанием химически разнородных компонентов с четкой границей разделения между ними. Характеризуются св-ми , кот. не обладает ни один из компонентов, взятый в отдельности. В копоз. Мат-лах четко выражены различия в св-вах составляющих компонентов. Отличительная особенность: малая пл-ть, высокая прочность и жесткость, хор. техн. св-ва. Классификация по материалам матрицы: полимерно-углеродная, метал., керамич. Различают волокнистые (упрочненные волокнами или нитевидными кристаллами), дисперсноупрочненные (упрочнитель в виде дисперсных частиц) и слоистые (полученные прокаткой или прессованием разнородных материалов) композиционные материалы. По прочности, жесткости и др. сво-ам превосходят обычные конструкционные материалы. Применяются в оборудовании, кот-е работает в экстремальных условиях.

25. Промышленные роботы и их использование в технологии. Классификация, технико-экономическая оценка

В настоящее время в промышленности получает большое распространение робототехника. Роботы используются для автоматизации многих работ. Робот- это автоматическая машина, включающая перепрограммируемое устройство управления и другие технические средства, обеспечивающие выполнение тех или иных действий. Классификация роботов (по характеру выполняемых операций) технологические роботы - выполняют основные операции технол. процесса в качестве производящих или обрабатывающих машин. Выполняют такие операции как гибка, окраска, сборка и т.д. вспомогательные (подъёмно-транспортные роботы) - выполняют действия типа «взять-перенести-положить». Их используют при обслуживании основного технологического оборудования для автоматизации вспомогательных операций установки и снятия деталей, заготовок, инструментов и т.д. универсальные роботы выполняют разнородные технологические операции - основные и вспомогательные.

По степени специализации технологические или вспомогательные роботы подразделяются на специальные, специализированные и многоцелевые. Если робот может выполнять основные и вспомогательные операции, объединяя признаки многоцелевых технологических и вспомогательных роботов, он относится к числу универсальных.

Промышленные роботы бывают а)жёсткопрограммируемые (программа действий содерхит полный неизменный набор информации), б)адаптивные (используют информацию об окружающей среде и внешних объектах, полученную в процессе работы. Можно корректировать программу управления), в) гибкопрограммируемые (могут формировать программу действий на основе поставленной цели с использованием информации об окружающей среде, полученной в процессе работы.

Роботы с высокой автономией действий позволяют исключить присутствие человека при выполнении вредных и опасных работ, связанных с радиацией, загазованностью, высокими и низкими температурами. Такие роботы могут эффективно применяться для автоматизации сварки, сборки, окраски, транспортировки и т.д. Роботы могут применяться в металлургических, литейных и гальванических цехах, на предприятиях атомной промышленности и энергетики, при подземной добыче полезных ископаемых, на нефтепромыслах. По мере совершенствования роботов расширяются их технологические возможности и повышается их экономическая рентабельность.

26. Основные свойства и назначения природных и искусственных строительных материалов

Основные свойства строительных материалов можно разделить на несколько групп.

К первой группе относятся физические свойства материалов: плотность и пористость.

Ко 2-й свойства, характеризующие устойчивость материала к воздействию воды и низких температур: водопоглощение, влажность, влагоотдача, гигроскопичность, водопроницаемость, водо- морозостойкость.

К 3-й группе относятся механические свойства материалов: прочность, твердость, истираемость и др.

В 4-ю группу объединены теплотехнические свойства материалов: теплопроводность, теплоемкость, огнестойкость и огнеупорность.

Особую группу составляют так называемые технологические свойства, которые характеризуют способность материала к механической обработке.

По назначению строительные материалы подразделяют на следующие группы: конструкционные, вяжущие, отделочные, теплоизоляционные, для полов, для остекления и другие.

27. Классификация и свойства керамических материалов

Керамические строительные материалы - это искусственные каменные изделия, получаемые из глиняных масс с добавками или без добавок других материалов путем формования и последующего обжига.

Керамические материалы и изделия классифицируются по различным признакам.

В зависимости от структуры керамические материалы разделяют на две основные группы:

Плотные, спекшиеся, имеющие блестящий раковистый излом, не пропускающие воду, с водопоглощением менее 5% (клинкерный кирпич для мощения дорог, плитки для пола, канализационные трубы, химически стойкие керамические изделия);

Пористые, имеющие тусклый землистый излом, с водопоглощением более 5% (стеновые, кровельные и облицовочные материалы, дренажные трубы и др.)

По степени однородности и зернистости керамического черепка различают изделия грубой и тонкой(фарфор, фаянс) керамики.

Керамические изделия бывают глазурованные и не глазурованные. Глазурь придает изделиям стойкость к внешним воздействиям, водонепроницаемость и высокие декоративные качества.

28. Технология производства керамического кирпича и пористых наполнителей

Несмотря на обширный ассортимент, разнообразие форм и свойств керамических изделий, основные этапы их производства являются общими и включают следующие стадии:

Карьерные работы (добыча, транспортирование и хранение запаса глин), подготовку глиняной массы, формование изделий, сушку отформованных изделий, обжиг высушенных изделий, обработку изделий (глазурование, ангобирование и прочее) и упаковку.

В зависимости от свойств исходного сырья и вида изготовляемой продукции подготовку глиняной массы осуществляют полусухим, пластическим и шликерным (мокрым) способами.

По первому способу сырьевые материалы после предварительного дробления на вальцах выдерживают в сушильном барабане (до остаточной влажности 6…8%), затем измельчают в дезинтеграторе, просеивают, увлажняют (до влажности 8…12%) и тщательно перемешивают. Полусухой способ подготовки глиняной массы используется в основном при производстве плиток для облицовки стен, полов и других.

При пластическом способе подготовки глиняной массы исходное сырье дробят, тонко измельчают и увлажняют до получения однородной пластичной массы влажностью 18…22%. Этот способ применяется при производстве глиняного кирпича, керамических камней, черепицы, труб.

Формование изделий осуществляется преимущественно на прессах: при первом способе подготовке глиняной массы - гидравлических или механических, при втором - ленточных вакуумных или без вакуумных. Вакуумирование глины способствует повышению плотности изделий на 6…8% (прочность увеличивается на 30-40%) и снижению их водопоглощения.

Обжиг изделий производят в кольцевых или туннельных печах непрерывного действия.

Обжиг является завершающей стадией производства керамических изделий, т.к. в процессе обжига формируется их структура, определяющая наиболее важные технические свойства изделий: прочность, водостойкость, морозостойкость и др.

29. Технология производства и экономическая эффективность выпуска и использования пластмасс

Изделия из пластмасс наиболее часто получают методами горячего прессования, литья под давлением, экструзии, выдувания, обработки резанием.

Прессование применяется главным образом для переработки термореактивных пластмасс. Дозированный пресс-материал в виде порошка, волокнистой массы или предварительно отпрессованной таблетки загружается в нагретую до 130...190 °С металлическую форму и прессуется под давлением 20...60МПа . Давление зависит от вида материала, размеров и конфигурации изделия.

Термореактивная смола переводится в плавкое состояние, при котором и происходит вторая стадия процесса -- формование; затем происходит реакция поликонденсации и пластмасса отверждается, становясь неплавкой и нерастворимой. Отформованное изделие после отверждения извлекается из пресс-формы. Обогрев пресс-форм при прессовании изделий осуществляется паром или электронагревательными приборами. Литье под давлением наиболее рационально при использовании в качестве формовочного материала термопластичных пластмасс. При этом способе размягченная при нагревании пластмасса выдавливается через литниковые каналы в полости закрытой формы. Порошкообразный материал засыпается в бункер литьевой машины, откуда плунжером перемещается в обогреваемую головку. Размягченная масса легко проходит через литниковые каналы и заполняет полость формы. Затем форма охлаждается и изделие извлекается из нее. Способ литья под давлением пригоден для изготовления массовых деталей, так как он отличается высокой производительностью и позволяет автоматизировать процесс.

Выдавливание является частным случаем литья под давлением. Этим способом из пластмасс изготовляют трубы, прутки, различные профили, а также износят изолирующую оболочку на электропровода. Порошкообразный материал засыпается в бункер машины и шнеком подается сначала в нагревательную камеру, где становится пластичным, а затем выдавливается через мундштук, имеющий сечение необходимой формы. Выдавливанием можно формовать изделия из термопластичных и термореактивных материалов (из полихлорвинила, полистирола, целлулоида и др.).

Выдувание применяется для формовки полых и открытых изделий из термопластичных материалов. Заготовка в виде нагретых листа, трубки или двух листов помещается между двумя половинками разъемной металлической формы, имеющей отверстия (сопла) для подвода горячего воздуха, который нагнетается под лист, в трубку или между листами. Размягченная заготовка под давлением воздуха вытягивается и заполняет форму. Этим способом получают изделия из полистирола, полиакрилатов, целлулоида и ацетилцеллюлозы.

Слоистые материалы -- это ткань, бумага или древесный шпон, пропитанные раствором фенолоальдегидной или карбамидной смолы и спрессованные в листы, трубки или профили. Смолу растворяют в спирте или другом растворителе и полученным раствором пропитывают ткань, бумагу или древесину, которые затем высушивают в сушильных камерах. Из высушенного материала делают заготовки, складывают их в пачки и прессуют горячим способом в листы или профильный материал. Одновременно с прессованием происходит отвердение смолы, которая прочно склеивает слои пропитанного материала. Таким способом получают текстолит (наполнитель--хлопчатобумажная ткань), стеклопластики (стеклянная ткань), гетинакс (на основе бумаги).

Обработке резанием подвергают изделия, изготовленные прессованием или литьем, для удаления некоторых дефектов (облоя, заусениц, литников). Кроме того, резанием выполняют отверстия, резьбы, пазы в изделиях, которые не могут быть получены в процессе их прессования или литья. Обработка резанием применяется как для термореактивных, так и термопластичных материалов.

Экономическая эффективность и перспективы развития производства пластмасс

Широкое применение полимерных материалов позволяет снизить материалоемкость продукции в ряде отраслей за счет замены пластмассами традиционных материалов. Благодаря способности пластмасс перерабатываться в изделия методами пластического деформирования коэффициент их использования составляет 0,89...0,98, т. е. объем отходов в 3...5 раз меньше, чем при обработке металлов.

Применение пластмасс вместо металлов позволяет достичь значительной экономии капитальных затрат. Для производства пластмасс требуются значительно меньшие капиталовложения, чем для производства эквивалентного объема металлов, особенно тяжелых цветных. Себестоимость 1 т пластмасс значительно выше, чем черных металлов, и несколько ниже себестоимости производства 1 т цветных металлов (себестоимость 1 т алюминия в 1,5...2 раза выше себестоимости некоторых пластмасс, например поливи-нилхлорида).

Наиболее эффективна замена пластмассами тяжелых цветных металлов, коррозионно-стойкой стали, ценных сортов древесины в различных областях. Черные металлы и алюминий целесообразно заменять такими недорогостоящими пластмассами, как полиэтилен, поливинилхлорид, фенопласты, особенно в изделиях сложной конфигурации и небольших габаритов, выпускаемых большими сериями. В некоторых случаях себестоимость пластмасс выше, чем материалов, взамен которых они применяются, но с учетом срока службы, снижения затрат при эксплуатации изделий применение пластмасс может оказаться выгодным.

В настоящее время наблюдается увеличение производства полимеризационных и, соответственно, снижение поликонденсационных пластмасс. Это обусловлено технологическими и экономическими преимуществами полимеризационных пластмасс: легкостью переработки в изделия и утилизации отходов, доступностью сырьевой базы и т. д. К тому же полимеризационные пластмассы, как правило, термопластичны, что обеспечивает более высокий коэффициент использования материала при переработке его в изделия.

Расширяется использование нефтехимического сырья для производства пластмасс, улучшаются их свойства, синтезируются новые виды пластмасс на основе радиационных процессов, создания наполненных термопластов с уникальными свойствами и др.

30. Основные свойства, классификация и назначение стеклянных изделий

Свойства: прозрачность стекла, его высокая механическая прочность, химическая стойкость, плотность, водо- и газонепроницаемость, способность к механической обработке. Поэтому можно использовать стеклянные изделия в самых разнообразных конструкциях зданий и сооружений. Стекло может быть использовано не только для остекления оконных проемов, витражей, световых фонарей, но и как эффективный конструктивно-строительный, отделочный и теплоизоляционный материал.

Материалы и изделия из стекла, применяемые в строительстве, в зависимости от назначения разделяются на следующие группы:

Материалы для заполнения проемов зданий и сооружений - наиболее обширная группа строительных материалов из стекла, включающая листовые стекла различных видов и стеклопакеты; в свою очередь листовое стекло подразделяется на листовое оконное, витринное (полированное и неполированное), армированное, узорчатое, увиолевое, трехслойное, закаленное и др.;

Материалы для строительных конструкций - профильное стекло, стеклоблоки;

Облицовочные и отделочные материалы - марблит, стемалит; плитки стеклянные облицовочные, коврово-мозаичные и ковры из них; смальта;

Теплоизоляционные материалы - пеностекло, стеклянная вата и изделия из нее, стекловолокно.

31. Производство литового стекла, труб

Листовое стекло - основной материал, вырабатываемый отечественной стекольной промышленностью. Это изделие из стекла в виде плоских листов, отношение толщины которых к длине сравнительно невелико и составляет приблизительно 0,15… 1,5%.

Стекольной промышленностью врабатывается широкий ассортимент листового стекла: обычное оконное, витринное (полированное и неполированное), армированное, узорчатое, увиолевое, трехслойное и др.

Производство строительного стекла включает следующие основные операции: подготовку сырьевых материалов, приготовление стекольной шихты, варку стекла, формование изделий, отжиг отформованных изделий.

Стекловарение - главнейшая и самая сложная операция стекольного производства. Процесс варки стекломассы условно принято делить на 4 стадии: силикатообразование стеклообразование, гомогенизация, студка. Между этими стадиями четко определенных границ нет.

Листовое стекло вырабатывают из вязкой стекломассы путем вытягивания (лодочный и безлодочный способы) или проката. При лодочном и безлодочном способах выработки стекла применяются машины вертикального вытягивания. Лодочный способ является основным в производстве листового стекла. Преимущество этого стекла заключается в возможности получения стекла любой толщины (0.6…12мм), недостаток - резко выраженная полосность и волнистость вырабатываемого стекла, а также невысокая скорость вытягивания стеклянной ленты (45…50 м/ч).

В нашей освоен новый способ непрерывного производства листового стекла (флоат-процесс) - формирование ленты стекла на поверхности расплавленного металла. В настоящее время флоат-процесс - основной способ производства полированного листового стекла.

Выработанное тем или иным способом стекло подвергается специальной термической обработке - отжигу. При выработке стекло охлаждается неравномерно: наружные слои остывают быстрее, внутренние - медленнее из-за низкой теплопроводности стекла. В результате в отформированных изделиях появляются внутренние температурные напряжения, которые могут вызвать разрушение изделий. Для уменьшения этих напряжений изделие подвергают отжигу, нагревая до температуры на 20 С ниже температуры размягчения стекла (400…600 С), и медленно охлаждают.

32. Принцип составления материального и энергетического балансов

Под технологическим балансом подразумевают результаты расчетов, отражающих количество введенных и полученных в производственном процессе материалов и энергии. В основе составления материального и энергетического балансов лежат законы сохоанения материи и энергии. В каждом материальном балансе количество введенных в производственный процесс материалов должно равняться количеству полученных основных ипромежуточных продуктов и отходов производства. Точно так же должны быть равны кол-ва введенной тепловой или электрич. энергии и кол-ва выведенной с продуктом и отходами энергии. Матер. и энерг. балансы имеют большое значение для анализа и эффект. осущесвления произв. процесса. С их помощью устанавливают фактич. выход прод-ции, коэф-ты полезного использ-я энергии, расходы и потери сырья, т.п.

Матер. баланс явл. количетвенным выражением закона сохр-я массы и применительно к отдельным стадиям произв. процесса означает, что масса в-в,поступивших на технологич. операцию (приход), равна массе полученых в-в (расходу). Матер. баланс составляется по уравнению суммарной хим. реакции с учетом параллельных и побочных реакций.

Побоч. р-ции часто явл-ся следствием присутствия примесей в исходном сырье. Поэтому в балансах приходится сопоставлять массу осн. компонентов и примесей с массой отходов произ-ва, осн. и побочных продуктов.

Определение массы в-ва производится отдельно для твердой, жидкой и газообразной фаз по выражения:

Мт+Мж+Мг=Мт'+Mж `+Mг `,

где Мт, Мж, Мг- массы твердых, жидких и газообр. материалов, поступивших на обработку (приход); Мт `,M ж`, Mг `- массы продуктоа получившихся в результате хим. обработки (расход).

Уравнение матер. баланса сост-ся в пересчет на еденицу готовой продукции, массы сырья или ед-цу времени. Для составления м.баланса необходимо знать хим. состав, некоторые физич. и физ-хим. св-ва хим. сырья, отходов, основных и побочных продуктов.

Тепловой (энергет.) баланс- количественное выражение закона сохранения энергии. Равенство прихода и расхода теплоты выржается ур-ем общего вида:

Qф+Qэ+Qв=Q`ф+Q`п,

где Qф-физич. теплота; Qэ-теплота экзотермич. и физ. переходов, Qв-теплота извне. Тепл. баланс сост-ся на основе матер. баланса, рассчитывается (в кДж) и оформляется в виде таблицы

33. Области применения серной кислоты и технико-экономические показатели ее производства

Производство серной кислоты -- одной из самых сильных и дешевых кислот -- имеет важное народнохозяйственное значение, обусловленное ее широким применением в различных отраслях промышленности.

Безводная серная кислота (моногидрат)--тяжелая маслянистая жидкость (плотность при 20 °С 1830 кг/м3, температура кипения 296,2 °С при атмосферном давлении; температура кристаллизации 10,45 °С). Она смешивается с водой в любых соотношениях со значительным выделением теплоты (образуются гидраты). В серной кислоте растворяется оксид серы. Такой рцствор, состав которого характеризуется содержанием свободного 5Оз(ЮО%-я H2SO4), называется олеумом.

Серная кислота используется для производства удобрений -- суперфосфата, аммофоса, сульфата аммония и др. Значителен ее расход при очистке нефтепродуктов, а также в цветной металлургии, при травлении металлов. Особо чистая серная кислота используется в производстве красителей, лаков, красок, лекарственных веществ, некоторых пластических масс, химических волокон, многих ядохимикатов, взрывчатых веществ, эфиров, спиртов и т. п.

Производится серная кислота двумя способами: контактным и нитрозным (башенным). Контактным способом получают около 90 % от общего объема производства кислоты, так как при этом обеспечивается высокая концентрация и чистота продукта.

В качестве сырья для производства серной кислоты применяются элементарная сера и серный колчедан; кроме того, широко используются серосодержащие промышленные отходы.

Серный колчедан характеризуется содержанием серы 35...50 %. В залежах серного колчедана часто присутствуют сульфидные руды, которые используются в производстве цветных металлов (Си, Zn, Pb и др.).

Сульфидные руды подвергаются обжигу, в процессе которого образуются сернистые газы, используемые для производства серной кислоты. В настоящее время сырьем для ее производства служат сероводородные газы, образующиеся при переработке нефти, коксовании углей, а также получаемые при очистке природного газа.

Наиболее просто производство серной к ислоты из серы, выделяемой из с амородных руд или из побочных продуктов ряда производств (газовой серы). Однако стоимость кислоты, получаемой из серы, в ыше, чем из колчедана. Кроме того, сера необходима для производства резины, спичек, сероуглерода, ядохимикатов, лекарственных препаратов и т. д.

На современном этапе обеспечение промышленности серосо-держащим сырьем предусматривается за счет разработки природной и получения попутной серы. В цветной и черной металлургии, газовой и нефтехимической промышленности серу получают из газоконденсатов. Поэтому увеличивается выпуск флотационного колчедана на предприятиях цветной металлургии.

Разрабатывается технология переработки новых видов сырья: сульфатизирующий обжиг коллективного сульфидного концентрата Соколовско-Сарбайского комплекса и обжиг некондиционного колчедана.

Процесс получения серной кислоты контактным способом значительно упрощается, если в качестве сырья для получения SO применять серу, почти не содержащую мышьяка, или сероводород, получаемый при очистке горючих газов и нефтепродуктов. При использовании в качестве сырья выплавленной серы процесс производства серной кислоты включает три стадии: сжигание серы в форсуночных печах; окисление диоксида серы в триоксид в контактных аппаратах; абсорбцию триоксида серы.

Промышленность выпускает техническую, аккумуляторную и реактивную серную кислоту. Эти виды кислоты отличаются по назначению и содержанию основного компонента и примесей.

Перспективными в отношении улучшения технико-экономических показателей производства серной кислоты являются системы сухой очистки газа. Классический контактный способ ее производства включает ряд противоположных процессов: горячий обжиговый газ охлаждается в очистном отделении, затем вновь нагревается в контактном; в промывных башнях газ увлажняется, в сушильных -- тщательно осушается. В СССР на основе научных исследований создан новый процесс производства серной кислоты -- сухая очистка (СО). Основная особенность процесса СО состоит в том, что после очистки от пыли горячий обжиговый газ без охлаждения, промывки и сушки направляется непосредственно в контактный аппарат. Это обеспечивается таким режимом работы обжиговых печей со взвешенным (кипящим) слоем колчедана, при котором значительная часть соединений мышьяка адсорбируется огарком. Таким образом, вместо четырех этапов классического процесса СО включает только три, за счет чего капиталовложения снижаются на 15...25 %, себестоимость серной кислоты -- на 10...15%.

Намечено увеличение мощностей действующих и строящихся предприятий по производству серной кислоты контактным способом при небольших дополнительных затратах. Это будет достигнуто за счет повышения концентрации ЗО2 в перерабатываемых газах, а также внедрения короткой схемы при переходе с обжига колчедана на сжигание серы. В целях совершенствования аппаратурного оформления процесса разработан контактный аппарат с параллельными слоями катализатора (металлоемкость его стала ниже на 25 %). Применение кожухотрубных холодильников с анодной защитой позволит продлить срок их службы до 10 лет.

Технология производства серной кислоты нитрозным способом обновляется за счет совершенствования башенных систем. Расчеты показывают, что по сравнению с контактным способом переработки газов, полученных при обжиге колчедана в воздухе, при нитрозном способе и установке аналогичной мощности (180 тыс. т в год) капитальные затраты снижаются на 43,6 %, себестоимость переработки сернистых газов -- на 45,5, приведенные затраты -- на 44,7 и трудоемкость -- на 20,2 %.

Крупные потребители серной кислоты должны производить ее на своих предприятиях вне зависимости от ведомственной принадлежности, это позволит в 3 раза сократить загрузку железнодорожного транспорта и потребность в цистернах.

Увеличится использование в производстве минеральных удобрений отработанных серных кислот после их очистки и регенерации.

34. Оптимизация и экономическая оценка технологических процессов

Главный критерий при выборе технологического процесса является максимум прибыли и минимум себестоимости при максимуме рентабельного производства, максимальном спросе на продукцию.

Оценку, каким образом можно определить экономические показатели, могут дать расходные коэффициенты. Другими словами можно определить, что расходные коэффициенты - это затраты на единицу продукции с учетом качества потребляемого сырья и стоимости. Чем ниже расходный коэффициент, тем более экономически выгодным будет данный технологический процесс и ниже себестоимость выпускаемой продукции.

Чтобы снизить показатель необходимы дополнительные затраты. Эти затраты связаны с увеличением степени чистоты используемого сырья. Особенно для химических отраслей промышленности и, которые используют природные сырьевые материалы. Для определения расходного коэффициента необходимо знать все стадии производства, вме технологические операции, как исходный материал превращается в готовый продукт.

Различают теоретический и практический расходный коэффициент. Теор. Расходный коэф. Рассчитывается исходя изхимических реакций, из абсолютной чистоты используемого материала, т. е. характеризует теоретическую возможность получения данного продукта. Но в реальных условиях расходный коэффициент будет практически выше

Теор. Коэф. Характеризует, сколько может получится целевого продукта с единицы сырья.

Р= m сырья / m целевого продукта

C1 + C2 = Пц + Пп

В технологических процессах используется несколько видов сырья.

C1, C2 - сырьевые компоненты пром. Отходы

Пц - целевой продукт

Пп - побочный продукт

Для количественной характеристики используемого сырья применяют такие показатели как концентрация. Концентрация - это содержание полезного компонента в исходном сырье.

Для определения экономических показателей любого производства используют расчет материального баланса.

35. Возможные способы утилизации и использования вторичного сырья

Создание безотходных технологий является важной задачей на сегодняшний день(предусматривают использование самих отходов в технологическом процессе):

-отработочные масла исп-ся для получения битуна(повышают его стойкость в 2 раза).

-фосфогипс- этот отход производства фосфорных удобрений выбрасывается на свалку, хотя мог бы использоваться для получения вяжущего гипса, цемента в строительстве многоэтажных зданий, можно перерабатывать в строительный гипс, может также использоваться при производстве гипсокартонных листов для изоляции, стеновых плит перегородок, в производстве серной кислоты и CaO(известь).

-изношенная футеровка(при кладке промышленных печей)- получают жаростойкий бетон, можно использовать в качестве добавки в кирпичи.

-отходы микробиологической пром-ти: основной отход- лигнин(образуется до 1 млн т в год). Лигнин- масса коричневого цвета с влажностью 60-70%. Исп-ся как добавка в произ-ве аглопарита, можно вводить в состав керамической массы для произ-ва кирпича(до 8%)

-отходы черной металлургии: образуются доменные, сталеплавильные шлаки(200-300 тыс т в год). Используются: для получения щебня, минеральной ваты, вводится в состав ячеистых бетонов; шлаки в кирпичном произ-ве как добавка, в произ-ве шлакоситалов(для плиток, посуды).

-мартыновские шлаки- для произ-ва щкбня, добавка в цемент.

-сталеплавильные шлаки- в дорожном строительстве, в произ-ве цемента, в состав газобетона.

-отходы резины- для приготовления бутумов(отходы растворяют и получают суспензию); отделить сажу от металоруды, а сажу использовать как наполнитель резиновой смеси.

-отходы калийного производства- необходимо извлекать CaCl- исп-ся в качестве удобрения в сельском хоз-ве. Остаток является источником загрязнения почв и подземных вод.

36. Технологическая блок-схема и пооперационная структура

Технологическая схема пр-ва состоит из отдельных операций через к-х проходит сырье для получения продукта. Взаимосвязь между отдельными операциями, и их описание представляют собой техн схему пр-ва. Рассмотрим на примере листового стекла : сырье- шикта- варка- формирование ленты и охлаждение - резка - контроль- упаковка. Все процессы взаимосвязаны между собой и направлены на изготовление конечного продукта. Последовательность расположение этих процессов необходимое условие для тех схемы. На основе к-й можно оценить экономич целесообразность и экологическую защищенность пр-ва. Для получения конечного продукта могут быть и другие схемы, но здесь важно с экономической точки зрения оценить в к-ой схеме мы имеем больше выгоды. Для того, чтобы определить ее целесообразность нужно выполнить расчет материального баланса.

37. Влияние промышленных и бытовых отходов на экономию

Создание безотходных технологий (кол-во сырья равно кол-ву конечного продукта, побоч. = О). Также сущ. малоотходные технологии. Используют побоч. продукты, отходы пром. произ-ва. в основном в строительной промышленности. Для их использования нужно знать физико-химич. состав и др. свойства. Влияют на свойства получаемого продукта. Побочные продукты, образующиеся в ходе различных технологических процессов можно разделить на 2 группы: твердые (в результате термических процессов от отходов твердого сырья) и жидкие (в результате обогащения и флотации- суспензии и шламы). Их можно использовать в промышленном производстве. По физическому состоянию отходы делятся на 3 группы: при сжигании твердого топлива- золы из неоплавленных. и оплавленных частиц, шлаки твердые(пористая прочная порода из конгламератов размером более 20см, получают при температуре более 1000 градусов на колосниках), шлаки распл. (плотная стекловидная или закристаллизованная масса, получают при темп. 1200-1500) Наибольшее применение в пром-ти находят золы ТЭЦ, т.к. содержат 20-25% углерода, содержат много оксидов, что способствует процессу спекания. Твердые продукты после осаждения: мелкодисперсные и крупнодисперсные (гипс) по термическим свойствам. Отходы легкоплавкие (до 1000 градусов), среднеплавкие (100-1300) н тугоплавкие (1300л более). По технологическому назначению побоч. продукты: грубодисперсные (доя улучшения сушильных свойств, усадки). Пластификаторы (при формировании пластмасс), снижается температура при обжиге. При выборе отходов необходимо их соответствие следующим требованиям: должен содержать макс, кол-во состава, который содержится в исходном сырье, для некоторых про-в ограничено содержание в побоч. продукте соли СаСO3 (более 2 мл.), содержанке серы в составе каких-либо веществ. Отходы используют как пластифицирующие добавки в битумное про-во, что увеличивает прочность материала в 2 р. Гомель - фосфорные удобрения, кислота - отход фосфогипс. Предлагают использовать как добавку в стройгипс, в про-ве пластмассы, для упрочнения дорожных покрытий. Для утилизации хим. волокон делают теплоизоляционные плиты. Переработка резиновых покрышек. Уплавленные охлажденные компоненты исп. в качестве топлива при изготовлении плит для полов. Отходы от деревообрабатывающей пром-ти: опилки как выгорающая добавка, для получения древесного волокна и древесно-стружечных плит, делают из них мебель.

38. Определение расходных коэффициентов, степени превращения, выхода продукции

Оценка выбора технологии определяется экономич. показателями, кот-е дают расходные коэффициенты. Расх. коэф-т- это затраты на еденицу продукции с учетом качества потребляемого сырья и стоимости. Чем ниже расх. коэф-т, тем более экономически выгодным будет данный технолог. процесс и будет ниже себестоимость дан. продукции. Для определения расх. коэф-та необходимо знать все стадии производства, т.е. техн. операции, в результате которых исходный сырьевой материал превращается в готовый продукт. Различают практич. и теоретич. расх. коэф-ты. Теоретич. расх. коэф-т расчитываеися исходя из хим. реакции, обсалютной чистоты используемого материала.

Коэффициент определяется отношением массы сырья к массе целевого продукта: А=С/Q. Характеризует сколько можно получить целевого продукта с ед-цы сырья. Степень совершенства техн процесса определяется выходом продукта и ее качеством. Под выходом продукта понимают отношение фактически полученного продукта Qп к теоретическому Qт, к-е можно было бы получить их данного исходного вещества: =(Qп/Qт)*100% Для хим реакций выход продукта определяется по уровню реакций с учетом количества исходного вещесива. Для диффузионных процессов сушки, испарения, улавливания, поглощение и других, связанных с переносом массы из фазы в фазу через границу раздела, за мах принемается все количество продукта, к-е имеется в отдельной фазе. Такой выход продукта применительно к хим реакциям наз степенью превращения, а применительно к процессам переноса массы - степенью улавливания, поглощение:

=(Ст/Сп)*100%.

Размещено на Allbest.ru

...

Подобные документы

  • Анализ технологического процесса и условий образования опасных факторов. Действие вредных факторов на рабочем месте. Изучение особенностей применения методов флотации, сорбции и коагуляции для очистки сточных вод. Расчет интегральной оценки тяжести труда.

    курсовая работа [902,2 K], добавлен 06.07.2015

  • Состояние сточных вод Байкальского региона. Влияние тяжелых металлов на окружающую среду и человека. Специфика очистки сточных вод на основе отходов. Глобальная проблема утилизации многотонажных хлорорганических и золошлаковых отходов, способы ее решения.

    реферат [437,5 K], добавлен 20.03.2014

  • Экологические проблемы в химии и технологии полимерных материалов. Классификация полимерных отходов. Методы утилизации и обезвреживания полимерных материалов. Основные принципы разработки безотходных технологий. Очистка сточных вод и газовых выбросов.

    реферат [29,2 K], добавлен 19.11.2012

  • Способы утилизации отходов птицеводства, животноводства, существующие технологии в данной сфере, оценка преимуществ и недостатков. Способы переработки отходов растительного сырья. Общая характеристика отходов сельского хозяйства, способы их утилизации.

    дипломная работа [3,5 M], добавлен 22.07.2011

  • Общие сведения о механической очистке сточных вод. Механическая очистка, фильтрование и отстаивание воды. Основные параметры каркасно-засыпных фильтров. Основные загрязнения сточных вод. Разделение суспензий и эмульсий в поле гравитационных сил.

    реферат [1,8 M], добавлен 24.04.2015

  • Очистка сточных вод как комплекс мероприятий по удалению загрязнений, содержащихся в бытовых и промышленных водах. Особенности механического, биологического и физико-химического способа. Сущность термической утилизации. Бактерии, водоросли, коловратки.

    презентация [580,0 K], добавлен 24.04.2014

  • Описание существующих методов очистки воздуха от вредных газообразных примесей: абсорбционный и адсорбционный методы, термическое дожигание. Очистка отходящих газов на заводах технического углерода. Оборудование для биохимических методов очистки.

    контрольная работа [36,0 K], добавлен 11.01.2012

  • Разработка и внедрение принципов и технологий изготовления строительных материалов, изделий и конструкций на основе крупнотоннажных отходов промышленности. Пути повышения заинтересованности инвесторов и производителей в переработке техногенных отходов.

    контрольная работа [467,9 K], добавлен 27.02.2016

  • Организация малоотходного производства. Современные способы подготовки и утилизации сточных вод гальванического производства. Способы и аппараты для очистки сточных вод. Анализ экологической безопасности на предприятии. Система водоснабжения завода.

    курсовая работа [242,9 K], добавлен 29.11.2009

  • Общая характеристика утилизации и вариантов использования отходов металлургического комплекса и химического производства в промышленности. Основные направления утилизации графитовой пыли. Оценка золошлаковых отходов как сырья для строительных материалов.

    реферат [27,6 K], добавлен 27.05.2010

  • История введения в эксплуатацию, описание технологического процесса и технологический схемы биохимической (биологической) очистки сточных вод от загрязняющих веществ. Характеристика смесителей и аэротенков, их значение в биохимической очистке стоков.

    реферат [29,1 K], добавлен 29.06.2010

  • Экологическое значение процесса очистки сточных вод. Характеристика технологии производства и технологического оборудования. Механическая, физико-химическая, электрохимическая и биохимическая очистка. Охрана водоемов от загрязнения сточными водами.

    курсовая работа [571,6 K], добавлен 19.06.2012

  • Влияние целлюлозно-бумажного производства (ЦБП) на состояние водных объектов. Разработка технологической схемы очистки сточных вод ЦБП. Укрупненный расчет очистных сооружений водоотведения. Методы утилизации осадков сточных вод. Основные виды коагулянтов.

    курсовая работа [403,3 K], добавлен 06.09.2016

  • Источники и виды загрязнителей окружающей среды, характерные для данного производства. Методы очистки сточных вод: механические, термические, физико-химические, химические и электрохимические. Описание технологического процесса и техника безопасности.

    дипломная работа [813,1 K], добавлен 10.02.2009

  • Нормирование и контроль выбросов метана на предприятиях газовой промышленности. Вклад ОАО "Газпром" в загрязнение атмосферного воздуха. Вероятность и возникновение аварийных и залповых выбросов загрязняющих веществ. Инвентаризация выбросов в атмосферу.

    дипломная работа [749,8 K], добавлен 09.09.2014

  • Основные показатели технологического процесса биологической очистки хозяйственно-бытовых и промышленных сточных вод. Материальный баланс установки. Расчет и выбор технологического оборудования. Особенности пуска, остановки и эксплуатации участка.

    курсовая работа [54,2 K], добавлен 12.05.2011

  • Ценность пресной воды как природного ресурса, роль сооружений, реализующих отведение, очистку, обезвреживание воды в системе водоснабжения городов и промышленных предприятий. Применяемые методы физико-химической и биологической очистки сточных вод.

    реферат [38,3 K], добавлен 10.06.2015

  • Применение мембранной технологии в целлюлозно-бумажной промышленности. Технология переработки техногенных отходов целлюлозно-бумажной промышленности. Комплексная утилизация отходов целлюлозно-бумажной промышленности. Фильтровальный материал "Тефма".

    контрольная работа [749,9 K], добавлен 30.07.2010

  • Ознакомление со способами очистки гальваностоков путем использования промышленных отходов. Рассмотрение возможности утилизации сточных вод гальванических производств биосорбционным методом в биосорбере горизонтального типа в анаэробных условиях.

    реферат [462,9 K], добавлен 30.07.2010

  • Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа [3,0 M], добавлен 04.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.