Пищевые цепи в экосистеме
Понятие экологической системы. Схема и компоненты пищевых цепей в экологической системе, характеристика их типов. Процесс переноса энергии пищи. Изображение пищевых цепей в виде линейных диаграмм. Продуктивность экосистемы, экологические пирамиды.
Рубрика | Экология и охрана природы |
Вид | реферат |
Язык | русский |
Дата добавления | 22.08.2013 |
Размер файла | 57,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
План
- 1. Введение
- 2. Пищевые цепи в экосистеме
- 3. Продуктивность экосистемы
- 4. Экологические пирамиды
- 4.1 Пирамиды численности
- 4.2 Пирамиды биомассы
- 4.3 Пирамиды энергии
- 5. Заключение
- 6. Список литературы
1. Введение
Все живые организмы, населяющие нашу планету, существуют не сами по себе, они зависят от окружающей среды и испытывают на себе ее воздействие. Этот точно согласованный комплекс множества факторов окружающей среды и приспособлений к ним живых организмов обусловливает возможность существования всевозможных форм организмов самой различной организации. Изучением условий жизни организмов и их взаимных связей с окружающей средой занимается экология, наука о взаимоотношениях живых организмов и их сообществ с окружающей их живой и неживой средой обитания.
Каждый организм живет в окружении множества других организмов, вступает с ними в самые разнообразные отношения, как с отрицательными, так и с положительными для себя последствиями и, в конечном счете, не может существовать без этого живого окружения. Связь с другими организмами необходимое условие питания и размножения, возможность защиты, смягчения неблагоприятных условий среды, а с другой стороны это опасность ущерба и часто даже непосредственная угроза существованию индивидуума.
Всю сумму воздействий, которую оказывают друг на друга живые существа, объединяют под названием "биотические факторы среды". Важнейшим обобщением экологии является понятие экологической системы (экосистемы), включающее группу взаимосвязанных живых организмов и тех элементов внешней среды, которые оказывают на них наиболее сильное влияние и сами в той или иной степени зависят от деятельности организмов.
Целью контрольной работы является изучение пищевых цепей в экосистеме.
пищевая цепь экологическая система
2. Пищевые цепи в экосистеме
Пищевая цепь - это последовательное превращение с помощью растений и света элементов неорганической природы в органические вещества (первичную продукцию), а последних животными организмами на последующих трофических (пищевых) звеньях в их биомассу. В пищевую цепь входят все растения и животные, а также содержащиеся в воде химические элементы, необходимые для фотосинтеза. В процессе переноса энергии пищи от ее источника растений через ряд организмов, происходящих путем поедания одних организмов другими, наблюдается рассеивание энергии, часть которой переходит в тепло. При каждом очередном переходе от одного трофического звена к другому теряется до 80-90 % потенциальной энергии. Это ограничивает возможное число этапов, или звеньев цепи, обычно до четырех-пяти. Чем короче пищевая цепь, тем большее количество доступной энергии сохраняется.
В схемах пищевых цепей каждый организм бывает представлен как питающийся другими организмами какого-то одного типа. Однако реальные пищевые связи в экосистеме намного сложнее, т.к. животное может питаться организмами разных типов из одной и той же пищевой цепи или даже из разных пищевых цепей. Это в особенности относится к хищникам верхних трофических уровней. Некоторые животные питаются как другими животными, так и растениями; их называют всеядными (таков, в частности, и человек). В действительности пищевые цепи переплетаются таким образом, что образуется пищевая (трофическая) сеть. В схеме пищевой сети могут быть показаны только некоторые из многих возможных связей, и она обычно включает лишь одного или двух хищников каждого из верхних трофических уровней. Такие схемы иллюстрируют пищевые связи между организмами в экосистеме и служат основой для количественного изучения экологических пирамид и продуктивности экосистем.
Цепи питания пресного водоема состоят из нескольких последовательных звеньев. Например, растительными остатками и развивающимися на них бактериями питаются простейшие, которых поедают мелкие рачки. Рачки, в свою очередь, служат пищей рыбам, а последних могут поедать хищные рыбы. Почти все виды питаются не одним типом пищи, а используют разные пищевые объекты. Пищевые цепи сложно переплетены. Отсюда следует важный общий вывод: если какой-нибудь член биогеоценоза выпадает, то система не нарушается, так как используются другие источники пищи. Чем больше видовое разнообразие, тем система устойчивее.
В воде пищевая цепь начинается с водорослей, часто мелких одноклеточных организмов, использующих солнечную энергию для синтеза органических веществ из растворенных в воде неорганических химических питательных веществ и углекислоты. Они составляют фитопланктон поверхностных слоев океанов и озер. В водных экосистемах (пресноводных и морских) травоядные формы представлены обычно моллюсками и мелкими ракообразными. Большинство этих организмов ветвистоусые и веслоногие раки, личинки крабов, усоногие раки и двустворчатые моллюски (например, мидии и устрицы) питаются, отфильтровывая мельчайших первичных продуцентов из воды. Вместе с простейшими многие из них составляют основную часть зоопланктона, питающегося фитопланктоном. Жизнь в океанах и озерах практически полностью зависит от планктона, так как с него начинаются почти все пищевые цепи.
На суше большую часть первичной продукции поставляют более высокоорганизованные формы, относящиеся к голосемянным и покрытосемянным. Они формируют леса и луга. Типичными травоядными на суше являются многие насекомые, рептилии, птицы и млекопитающие. Наиболее важные группы травоядных млекопитающих - это грызуны и копытные. К последним относятся пастбищные животные, такие как лошади, овцы, крупный рогатый скот, приспособленные к бегу на кончиках пальцев.
Вторичные консументы питаются травоядными; таким образом, это уже плотоядные животные, как и третичные консументы, поедающие консументов второго порядка. Консументы второго и третьего порядка могут быть хищниками и охотиться, схватывать и убивать свою жертву, могут питаться падалью или быть паразитами.
Пищевые цепи можно изобразить достаточно просто в виде линейных диаграмм. Каждый вид в такой цепи обычно питается организмами только одного вида либо очень небольшого числа видов; в свою очередь, этот вид служит объектом охоты только для одного или очень небольшого числа хищников.
Первой ступенью цепи хищников являются травоядные (пастбищные) животные. Следом за ними идут мелкие плотоядные, питающиеся травоядными, затем звено более крупных хищников. В цепи каждый последующий организм крупнее предыдущего. Цепи хищников способствуют устойчивости трофической цепочки.
В типичных пищевых цепях хищников плотоядные животные оказываются крупнее на каждом следующем трофическом уровне:
1. растительный материал (например, нектар), муха, паук, землеройка, сова;
2. сок розового куста, тля, божья коровка, паук, насекомоядная птица, хищная птица.
Цепь паразитов, с энергетической точки зрения, принципиально не отличается от цепи хищников, поскольку и паразиты, и хищники являются консументами. Но в цепи паразитов, в отличие от хищников, каждый последующий трофический уровень (звено) состоит из организмов, по размерам меньших, чем организмы предыдущего уровня, на котором или в котором они паразитируют. В цепи паразитов могут быть растительные и животные организмы. Паразиты растений на диаграмме потоков энергии будут занимать то же положение, что и травоядные животные, а паразиты животных попадут в категорию хищников. Размеры организмов в цепи паразитов в каждом последующем звене не увеличиваются, а мельчают. Цепи паразитов в среднем короче цепей хищников, поскольку с уменьшением размеров организма быстро увеличивается интенсивность метаболизма, в результате чего резко сокращается та биомасса, которую можно поддержать при данном количестве пищи. Например, на растения нападают нематоды, а на них могут нападать бактерии и другие мелкие паразиты паразитов (нематод).
Существуют два главных типа пищевых цепей пастбищные и детритные. Выше были приведены примеры пастбищных цепей, в которых первый трофический уровень занимают зеленые растения, второй пастбищные животные и третий хищники. Тела погибших растений и животных еще содержат энергию и "строительный материал", как и прижизненные выделения, например, мочу и фекалии. Эти органические материалы разлагаются микроорганизмами, а именно грибами и бактериями, живущими как сапрофиты на органических остатках.
Такие организмы называются редуцентами. Они выделяют пищеварительные ферменты на мертвые тела или отходы жизнедеятельности и поглощают продукты их переваривания. Скорость разложения может быть различной. Органические вещества мочи, фекалий и трупов животных потребляются за несколько недель, тогда как упавшие деревья и ветви могут разлагаться многие годы. Очень существенную роль в разложении древесины (и других растительных остатков) играют грибы, которые выделяют фермент целлюлозу, размягчающий древесину, и это дает возможность мелким животным проникать внутрь и поглощать размягченный материал.
Кусочки частично разложившегося материала называют детритом, и многие мелкие животные (детритофаги) питаются им, ускоряя процесс разложения. Поскольку в этом процессе участвуют как истинные редуценты (грибы и бактерии), так и детритофаги (животные), и тех и других иногда называют редуцентами, хотя в действительности этот термин относится только к сапрофитным организмам.
Первичным источником энергии в водном биогеоценозе, как и в большинстве экологических систем, служит солнечный свет, благодаря которому растения синтезируют органическое вещество. Очевидно, биомасса всех существующих в водоеме животных полностью зависит от биологической продуктивности растений.
Часто причиной низкой продуктивности естественных водоемов бывает недостаток минеральных веществ (в особенности азота и фосфора), необходимых для роста автотрофных растений, или неблагоприятная кислотность воды. Внесение минеральных удобрений, а в случае кислой среды известкование водоемов способствуют размножению растительного планктона, которым питаются животные, служащие кормом для рыб. Таким путем повышают продуктивность рыбохозяйственных прудов.
Богатство и разнообразие растений, производящих громадное количество органического вещества, которое может быть использовано в качестве пищи, становятся причиной развития в дубравах многочисленных потребителей из мира животных, от простейших до высших позвоночных - птиц и млекопитающих.
Среди млекопитающих пищевую цепь, например, составляют растительноядные мышевидные грызуны и зайцы, а также копытные, за счет которых существуют хищники: ласка, горностай, куница, лиса, волк. Все виды позвоночных служат средой обитания и источником питания для различных наружных паразитов, преимущественно насекомых и клещей, а также внутренних паразитов: плоских и круглых червей, простейших, бактерий.
Пищевые цепи в лесу переплетены в очень сложную пищевую сеть, поэтому выпадение какого-нибудь одного вида животных обычно не нарушает существенно всю систему. Значение разных групп животных в биогеоценозе неодинаково. Исчезновение, например, в большинстве наших дубрав всех крупных растительноядных копытных: зубров, оленей, косуль, лосей - слабо отразилось бы на общей экосистеме, так как их численность, а следовательно, биомасса никогда не была большой и не играла существенной роли в общем круговороте веществ. Но если бы исчезли растительноядные насекомые, то последствия были бы очень серьезными, так как насекомые выполняют важную в биогеоценозе функцию опылителей, участвуют в разрушении опада и служат основой существования многих последующих звеньев пищевых цепей.
Процесс саморегуляции в дубраве проявляется в том, что все разнообразное население леса существует совместно, не уничтожая полностью друг друга, а лишь ограничивая численность особей каждого вида определенным уровнем. Насколько велико в жизни леса значение такой регуляции численности, можно видеть из следующего примера. Листьями дуба питается несколько сотен видов насекомых, но в нормальных условиях каждый вид представлен столь малым количеством особей, что даже их общая деятельность не наносит существенного вреда дереву и лесу. Между тем все насекомые обладают большой плодовитостью. Количество яиц, откладываемых одной самкой, редко бывает менее 100. Многие виды способны давать 2-3 поколения за лето. Следовательно, при отсутствии ограничивающих факторов численность любого вида насекомых возросла бы очень быстро и привела бы к разрушению экологической системы. Некоторая часть потомства погибает под влиянием различных неблагоприятных условий погоды. Но основную массу уничтожают другие члены биогеоценоза: хищные и паразитические насекомые, птицы, болезнетворные микроорганизмы.
Ограничивающее действие экологической системы все же не исключает полностью случаев массового размножения отдельных видов, которое бывает связано с сочетанием благоприятных факторов среды. Однако после массовой вспышки особенно интенсивно проявляются регулирующие факторы (паразиты, болезнетворные бактерии и др.), которые снижают численность вредителей до средней нормы.
3. Продуктивность экосистемы
Солнце для планеты Земля - это жизнь для всего живого. На поверхность планеты Земля ежегодно поступает примерно 55 ккал/см2. При этом растения фиксируют не более 1-2% солнечной энергии, остальное затрачивается на нагревание атмосферы, суши и испарения.
Из накопленной растениями солнечной энергии не более 7-10% достается растительноядным животным, питающимся живыми растениями.
По продуктивности экосистемы разделяются на 4 класса.
1. Экосистемы очень высокой биологической продуктивности - свыше 2 кг/м2 в год. К ним относятся заросли тростника в дельтах Волги, Дона и Урала. По продуктивности они близки к экосистемам тропических лесов и коралловых рифов.
2. Экосистемы высокой биологической продуктивности - 1-2 кг/м2 в год. Это липово-дубовые леса, прибрежные заросли тростника на озере, посевы кукурузы и многолетних трав при орошении.
3. Экосистемы умеренной биологической продуктивности - 0,25-1 кг/м2 в год. Такую продуктивность имеют многие растения: сосновые и березовые леса, сенокосные луга и степи, "морские луга", водоросли в Японском море.
4. Экосистемы низкой биологической продуктивности - менее 0,25 кг/м2 в год. Это арктические пустыни островов Северного Ледовитого океана, тундры, полупустыни.
Средняя продуктивность экосистем Земли не превышает 0,3 кг/м2 в год.
Биологическая продуктивность экосистем - основа жизни биосферы и человека как ее части. Она зависит от ресурсов почвы (ее обеспеченности питательными элементами и влагой), атмосферы, солнечного света и тепла. Каждый из этих ресурсов незаменим. Продуктивность экосистемы в основном зависит от того ресурса, которого недостаточно или который находится в избытке (пример: переувлажнения почвы или высокая температура воздуха).
Такой ресурс называется лимитирующим (т.е. ограничивающим) фактором; так, например, в Прикаспийской низменности урожай лимитируется количеством осадков. В зоне тундры и горных районов урожай лимитируется количеством тепла.
Чтобы повысить продуктивность экосистем, человек стремится уменьшить влияние лимитирующих факторов - вносит удобрения, сажает влаголюбивые культуры, строит теплицы, парники.
Биологическая продуктивность может снижаться и при загрязнении экосистем газообразными или жидкими ядовитыми отходами промышленных и сельскохозяйственных предприятий (кислотные дожди, ядохимикаты, дефолианты и т.д.).
Любое нарушение взаимосвязей в экосистемах означает нарушение энергетических потоков. Производство способно развиваться только за счет использования ресурсов окружающей среды. Но нарушение энергетики биосферы более чем на 1% может привести к резкому нарастанию энтропии и гибели всей системы в результате термодинамического кризиса.
Таким образом, биологическая продуктивность - основа жизни и человека. Она зависит от ресурсов почвы, от атмосферы, солнечного света и тепла. Каждый из этих элементов незаменим.
Рассмотрим биологическую продуктивность почв в зависимости от климатических условий.
Известно, что главное вещество почвы - это гумус, который по своей природе является детритом - органическим веществом.
Химический состав гумуса сложен: он состоит из фенолов и органических кислот темной окраски и образуется в результате процесса разложения (гумификации) органических веществ корневых остатков растений и почвенных животных. На долю гумуса приходится до 98% всего органического вещества почвы (остальные - живые корни, почвенные животные и неразложившиеся мертвые остатки организмов).
В почве одновременно с процессом гумификации органического вещества происходит процесс минерализации гумуса. Под воздействием микроорганизмов сложные органические вещества разрушаются до форм, доступных растениям. У разных почв разные свойства. Они могут быть кислыми, нормальными, щелочными (рН 7). Они имеют и разные физические свойства. Могут быть рыхлыми и плотными. Естественный процесс почвообразования нарушается, если на почву влияет человек. Почвы могут быть очень разнообразные по продуктивности:
самые плодородные - черноземы;
менее плодородные - подзолистые, серолесные;
в зоне полупустынь почвы содержат меньше гумуса и называются каштановыми;
в степных местах, где почвы насыщены солями, их называют солончаковыми, а если солей очень много - солончаками. Происходит засоление почв там, где широко применяли и применяют орошение, особенно в степном Заволжье, в низовьях рек Дона и Кубани. Чтобы избежать засоления, необходимо снижать нормы полива и использовать экологически безопасные приемы улучшения водного снабжения растений - капельный и внутрипочвенный поливы.
Медленные, но постоянные изменения происходят в экосистемах как под воздействием внешних, так и под влиянием внутренних факторов. Когда, например, озеро наполняется илом, оно постепенно превращается в болото, потом в луг, на котором в дальнейшем вырастают кустарники и деревья. При этом обычно сначала развиваются светолюбивые и относительно быстрорастущие лиственные породы, под пологом которых начинают расти хвойные.
Процессы последовательной смены биоценозов, протекающие под влиянием как внешних факторов, так и внутренних, называются сукцессиями.
Сукцессия - естественное явление, хотя часто обусловлено вмешательством человека.
4. Экологические пирамиды
4.1 Пирамиды численности
Для изучения взаимоотношений между организмами в экосистеме и для графического представления этих взаимоотношений удобнее использовать не схемы пищевых сетей, а экологические пирамиды. При этом сначала подсчитывают число различных организмов на данной территории, сгруппировав их по трофическим уровням. После таких подсчетов становится очевидным, что численность животных прогрессивно уменьшается при переходе от второго трофического уровня к последующим. Численность растений первого трофического уровня тоже нередко превосходит численность животных, составляющих второй уровень. Это можно отобразить в виде пирамиды численности.
Для удобства количество организмов на данном трофическом уровне может быть представлено в виде прямоугольника, длина (или площадь) которого пропорциональна числу организмов, обитающих на данной площади (или в данном объеме, если это водная экосистема). На рисунке показана пирамида численности, отображающая реальную ситуацию в природе. Хищники, расположенные на высшем трофическом уровне, называются конечными хищниками.
4.2 Пирамиды биомассы
Неудобств, связанных с использованием пирамид численности, можно избежать путем построения пирамид биомассы, в которых учитывается суммарная масса организмов (биомассы) каждого трофического уровня. Определение биомассы включает не только учет численности, но и взвешивание отдельных особей, так что это более трудоемкий процесс, требующий больше времени и специального оборудования. Таким образом, прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема.
При отборе образцов - иными словами, в данный момент времени - всегда определяется так называемая биомасса на корню, или урожай на корню. Важно понимать, что эта величина не содержит никакой информации о скорости образования биомассы (продуктивности) или ее потребления; иначе могут возникнуть ошибки по двум причинам:
Если скорость потребления биомассы (потеря вследствие поедания) примерно соответствует скорости ее образования, то урожай на корню не обязательно свидетельствует о продуктивности, т.е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой за данный период времени, например за год. Например, на плодородном, интенсивно используемом пастбище урожай трав на корню может быть ниже, а продуктивность выше, чем на менее плодородном, но мало используемом для выпаса.
Продуцентом небольших размеров, таким, как водоросли, свойственна высокая скорость возобновления, т.е. высокая скорость роста и размножения, уравновешенная интенсивным потреблением их в пищу другими организмами и естественной гибелью. Таким образом, хотя биомасса на корню может быть малой по сравнению с крупными продуцентами (например, деревьями), продуктивность может быть не меньшей, так как деревья накапливают биомассу в течение длительного времени. Иными словами, фитопланктон с такой же продуктивностью, как у дерева, будет иметь намного меньшую биомассу, хотя он мог бы поддержать жизнь такой же массы животных. Вообще популяции крупных и долговечных растений и животных обладают меньшей скоростью обновления по сравнению с мелкими и короткоживущими и аккумулируют вещество и энергию в течение более длительного времени. Зоопланктон обладает большей биомассой, чем фитопланктон, которым он питается. Это характерно для планктонных сообществ озер и морей в определенное время года; биомасса фитопланктона превышает биомассу зоопланктона во время весеннего "цветения", но в другие периоды возможно обратное соотношение. Подобных кажущихся аномалий можно избежать, применяя пирамиды энергии.
4.3 Пирамиды энергии
Организмы в экосистеме связаны общностью энергии и питательных веществ. Всю экосистему можно уподобить единому механизму, потребляющему энергию и питательные вещества для совершения работы. Питательные вещества первоначально происходят из абиотического компонента системы, в который в конце концов и возвращаются либо в качестве отходов жизнедеятельности, либо после гибели и разрушения организмов. Таким образом, в экосистеме происходит круговорот питательных веществ, в котором участвуют и живой, и неживой компоненты.
Движущей силой этих круговоротов служит, в конечном счете, энергия Солнца. Фотосинтезирующие организмы непосредственно используют энергию солнечного света и затем передают ее другим представителям биотического компонента. В итоге создается поток энергии и питательных веществ через экосистему. Энергия может существовать в виде различных взаимопревращаемых форм, таких как механическая, химическая, тепловая и электрическая энергия. Переход одной формы в другую называется преобразованием энергии.
В отличие от потока веществ в экосистеме, носящего циклический характер, поток энергии напоминает улицу с односторонним движением. В экосистемы энергия поступает от Солнца и, постепенно переходя из одной формы в другую, рассеивается в виде тепла, теряясь в бесконечном космическом пространстве. Необходимо еще отметить, что климатические факторы абиотического компонента, такие как температура, движение атмосферы, испарение и осадки, тоже регулируются поступлением солнечной энергии. Таким образом, все живые организмы это преобразователи энергии, и каждый раз, когда происходит превращение энергии, часть ее теряется в виде тепла. В конце концов, вся энергия, поступающая в биотический компонент экосистемы, рассеивается в виде тепла.
В 1942 г.Р. Линдеман сформулировал закон пирамиды энергий, или закон (правило) 10 %, согласно которому с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по "лестнице": продуцент консумент редуцент) в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Обратный поток, связанный с потреблением веществ и продуцируемой верхним уровнем экологической пирамиды энергией более низким ее уровням, например от животных к растениям, намного слабее не более 0,5 % (даже 0,25 %) от общего ее потока, и потому говорить о круговороте энергии в биоценозе не приходится.
Если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, в примерно такой же пропорции увеличивается. Этот факт фиксирован в правиле биологического усиления. Оно справедливо для всех ценозов.
При неизменном энергетическом потоке в пищевой сети или цепи более мелкие наземные организмы с высоким удельным метаболизмом создают относительно меньшую биомассу, чем крупные. Поэтому из-за антропогенного нарушения природы происходит измельчение "средней" особи живого на суше крупные звери и птицы истребляются, вообще все крупные представители растительного и животного царства все больше и больше делаются раритетами. Это неминуемо должно вести к общему снижению относительной продуктивности организмов суши и термодинамическому разладу в биосистемах, в том числе сообществ и биоценозов.
Исчезновение видов, составленных крупными особями, меняет вещественно-энергетическую структуру ценозов. Поскольку энергетический поток, проходящий через биоценоз и экосистему, в целом практически не меняется (иначе бы произошла смена типа ценоза), включаются механизмы биоценотического, или экологического, дублирования: организмы одной трофической группы и уровня экологической пирамиды закономерно замещают друг друга. Причем мелкий вид встает на место крупного, эволюционно ниже организованный вытесняет более высокоорганизованный, более генетически подвижный приходит на смену менее генетически изменчивому.
Так, при истреблении копытных в степи их заменяют грызуны, а в ряде случаев растительноядные насекомые. Иными словами, именно в антропогенном нарушении энергетического баланса природных степных экосистем следует искать одну из причин участившихся нашествий саранчи. При отсутствии хищников на водоразделах Южного Сахалина в бамбучниках их роль выполняет серая крыса. Возможно, таков же механизм возникновения новых инфекционных заболеваний человека. В одних случаях возникает совершенно новая экологическая ниша, а в других борьба с заболеваниями и уничтожение их возбудителей освобождает такую нишу в человеческих популяциях. Еще за 13 лет до открытия ВИЧ была предсказана вероятность появления "гриппоподобного заболевания с высокой летальностью".
5. Заключение
Завершая работу над рефератом, можно сделать следующие выводы. Функциональная система, включающая в себя сообщество живых существ и их среду обитания, называется экологической системой (или экосистемой). В такой системе связи между ее компонентами возникают прежде всего на пищевой основе. Пищевая цепь указывает путь движения органических веществ, а также содержащихся в ней энергии и неорганических питательных веществ.
В экологических системах в процессе эволюции сложились цепи взаимосвязанных видов, последовательно извлекающих материалы и энергию из исходного пищевого вещества. Такая последовательность называется пищевой цепью, а каждое ее звено - трофическим уровнем. Первый трофический уровень занимают организмы автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами, третьего - вторичными консументами и т.д. Последний уровень обычно занимают редуценты или детритофаги.
Пищевые связи в экосистеме не являются прямолинейными, так как компоненты экосистемы находятся между собой в сложных взаимодействиях
Очевидно, что системы, противоречащие естественным принципам и законам, неустойчивы. Попытки сохранить их становятся все более дорогостоящими и сложными, и в любом случае обречены на неудачу. Изучая законы функционирования экосистем, мы имеем дело с потоком энергии, проходящих через ту или иную экосистему. Скорость накопления энергии в форме органического вещества, которое может быть использовано в пищу, важный параметр, т.к. им определяется общий поток энергии через биотический компонент экосистемы, а значит и количество (биомасса) животных организмов, которые могут существовать в экосистеме. "Получение урожая" означает изъятие из экосистемы тех организмов или их частей, которые используются в пищу (или для иных целей). При этом желательно, чтобы экосистема производила пригодную для пищи продукцию наиболее эффективно. Рациональное природопользование единственный выход из ситуации.
Общая задача рационального управления природными ресурсами состоит в выборе наилучших, или оптимальных, способов эксплуатации естественных и искусственных (например, в сельском хозяйстве) экосистем. Причем под эксплуатацией понимается не только сбор урожая, но и воздействие теми или иными видами хозяйственной деятельности на условия существования природных биогеоценозов. Следовательно, рациональное использование природных ресурсов предполагает создание сбалансированного сельскохозяйственного производства, не истощающего почвенные и водные ресурсы и не загрязняющего землю и продукты питания; сохранение природных ландшафтов и обеспечение чистоты окружающей среды, сохранение нормального функционирования экосистем и их комплексов, поддержание биологического разнообразия природных сообществ на планете.
6. Список литературы
1. Акимова Т.А., Хаскин В.В. Экология: Учебник для вузов. - М.: ЮНИТИ, 1998г. - 455 с.
2. Биологический энциклопедический словарь. - М.: Советская энциклопедия, 1986. - 832 с.
3. Гольдфейн Н.Д., Кожевников Н.В., Трубников А.В., Шумов С.Я., Проблемы в жизни окружающей среде. Саратов, 1995г.
4. Реввель П., Реввель Г. Среда нашего обитания, М., 2001 г.
5. Риклефс Р. Основы общей экологии. - М.: Мир, 1979. - 424 с.
6. Яблоков А.В. Популяционная биология. - М.: Высшая школа, 1987. - 304 с.
7. Интернет ресурсы.
Размещено на Allbest.ru
...Подобные документы
Правило экологической пирамиды. Пирамида энергии, чисел и массы. Количество пищевых цепей в БГЦ. Продукция природных и искусственных сообществ как основной источник запасов пищи для человечества. Расчеты потока энергии, масштабов продуктивности экосистем.
презентация [1,3 M], добавлен 11.05.2011Биотический круговорот в природной системе. Группы организмов, и трансформация энергии в биогеоцинозе. Трофическая структура экосистемы. Типы пищевых цепей. Графическая модель экологических пирамид и способы ее построения. Пищевые связи водоема и леса.
контрольная работа [1008,3 K], добавлен 12.11.2009Сущность понятия "экосистема". Энергетические потоки в экосистеме. Типы пищевых цепей в экологической системе. Связи и взаимоотношения организмов в экосистеме. Нормирование качества окружающей природной среды. Антропогенное воздействием на биосферу.
контрольная работа [265,5 K], добавлен 02.11.2009Концепции экологической ниши, история формирования понятия. Внутривидовая и межвидовая конкуренция. Правило конкурентного исключения. Принцип "плотной упаковки". Функциональная организация экосистем, её продуктивность. Примеры типов пищевых цепей.
презентация [533,8 K], добавлен 23.09.2013Циклы и цепи питания биоценоза: продуценты или производители, консументы или потребители, это редуценты или деструкторы - разрушители органического вещества. Анализ экологической пирамиды. Получение потоков энергии в экосистеме через цепи питания.
реферат [226,7 K], добавлен 07.06.2009Состав и структура экологической системы. Биотический круговорот веществ и энергия в экологической системе. Перенос веществ и энергии в природных экосистемах. Пример наземной экосистемы дубравы. Экологическая система в виде диаграммы потока энергии.
презентация [6,8 M], добавлен 11.06.2010Изучение сообщества живых организмов и составление схемы экологической системы луга. Анализ биосферы как экосистемы высшего порядка, обеспечивающей существование жизни на планете. Исследование экологической ниши как места, занимаемого видом в биоценозе.
контрольная работа [20,2 K], добавлен 05.03.2011Описание пищевых цепей, регулирование численности популяций. Современная классическая экология. Основные компоненты экосистемы. Функциональные блоки организмов. Сущность терминов биосфера, биоценоз, биотоп, эдафотоп, климат, экотоп. Биомасса экосистемы.
презентация [1,9 M], добавлен 27.03.2016Общее понятие экосистемы, характеристика ее пищевых цепей и сетей. Экологические кризисы и их последствия. Экологическая экспертиза и оценка воздействия на окружающую среду. Органы управления, контроля и надзора по охране природы Российской Федерации.
курсовая работа [53,1 K], добавлен 04.04.2011Понятие экологической ниши. Экологические группы: продуценты, консументы и редуценты. Биогеоценоз и экосистема и их структура. Трофические цепи, сети и уровни как пути передачи веществ и энергии. Биологическая продуктивность экосистем, правила пирамид.
курсовая работа [1,4 M], добавлен 19.05.2015Понятие трофической структуры как совокупности всех пищевых зависимостей в экосистеме. Факторы активности сообщества. Типы питания живых организмов. Распределение диапазонов солнечного спектра. Схема круговорота вещества и потока энергии в экосистеме.
презентация [113,1 K], добавлен 08.02.2016Природа как объект воздействия и среда обитания; ее элементы: измененные человеком, искусственные, социальные. Основные положения учения В.И. Вернадского о биосфере. Приемы сохранения плодородия почв; рекультивация земель. Понятие пищевых цепей.
реферат [18,0 K], добавлен 08.04.2011Зоны чрезвычайной экологической ситуации и экологического бедствия. Экологическая сукцессия, понятие о климаксных системах. Биотические экологические факторы, методы изучения экосистем. Нормирование ЭМП и ионизирующих излучений, экологический контроль.
контрольная работа [40,2 K], добавлен 19.07.2010Понятие и функции экологической сертификации. Нормативные акты в области экологической сертификации. Информационное обеспечение системы экосертификации. Направления и объекты экологической сертификации. Органы экологической сертификации.
реферат [19,9 K], добавлен 07.08.2007Понятие и функции, нормативные акты экологической сертификации. Информационное обеспечение системы экосертификации. Экономические принципы функционирования системы. Направления и объекты, порядок проведения, органы экологической сертификации.
курсовая работа [29,2 K], добавлен 19.10.2002Ситуационный анализ вопроса экологической безопасности человека в условиях современной экосистемы. Характеристика и способы предотвращения антропогенных воздействий и экологических поражений как следствий техногенных катастроф и экологического кризиса.
реферат [18,5 K], добавлен 27.12.2010Понятие и критерии оценивания плотности популяции, основные факторы, влияющие на ее значение. Структура плотности популяции. Сущность и структура биоценоза, типы пищевых цепей. Компоненты видового разнообразия биоценоза. Экосистема и ее динамика.
краткое изложение [18,7 K], добавлен 24.11.2010Факторы, определяющие длину пищевых цепей и механизм передачи энергии по ним. Особенности функционирования типичных наземных экосистем. Сущность предельно-допустимой концентрации загрязняющих веществ в атмосфере. Животные в круговороте веществ в природе.
контрольная работа [249,5 K], добавлен 17.06.2009Экологический фактор в жизнедеятельности общества. Характеристика экологической ситуации в Республике Беларусь. Понятие экологической стратегии, ее значение. Механизм формирования экологической стратегии и политики предприятия ГЛХУ "Чаусский лесхоз".
дипломная работа [2,1 M], добавлен 17.07.2016Глобальные экологические проблемы: краткая характеристика и существующие прогнозы развития ситуации. Страны-участники формирования и реализации экологической политики, а также факторы, влияющие на данный процесс, принципы и этапы практической реализации.
курсовая работа [44,1 K], добавлен 23.02.2015