Предмет, метод и задачи метеорологии

Изучение истории развития и определение предмета метеорологии как науки о строении и свойствах земной атмосферы. Физические процессы в атмосфере и аэрозольный состав воздуха, водяной пар. Основные климатообразующие факторы и общие задачи метеослужб.

Рубрика Экология и охрана природы
Вид шпаргалка
Язык русский
Дата добавления 30.11.2013
Размер файла 166,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

Предмет, метод и задачи метеорологии

атмосфера аэрозольный состав воздух метеослужба

1. Предмет метеорологии. Методы

Метеорология -- наука о строении и свойствах земной атмосферы и совершающихся в ней физических процессах.

Объект - атмосфера.

Предмет: физические, химические процессы в атмосфере, состав атмосферы, строение атмосферы, тепловой режим атмосферы, влагообмен в атмосфере, общая циркуляция атмосферы, электрические поля, оптические и акустические явления, циклоны, антициклоны, ветра, фронты.

2. История науки

Еще на заре своей истории человек сталкивался с неблагоприятными атмосферными явлениями. Не понимая их, он обожествлял грозные и стихийные явления, связанные с атмосферой (боги - Перун, Зевс, Дажбог и др.). По мере развития цивилизации в Китае, Индии, странах Средиземноморья делаются попытки регулярных метеорологических наблюдений, появляются первые научные представления о климате. Первый труд об атмосферных явлениях был составлен Аристотелем. Современная научная метеорология ведет начало с XVII в., когда были заложены основы физики. Великим ученым Галилеем и его учениками были изобретены термометр (1610г.), барометр, дождемер, то есть появилась новая возможность инструментальных наблюдений. Начиная с середины XVII в. академия экспериментирования в Тоскане организовало первую немногочисленную сеть инструментальных наблюдений, которые проводились в нескольких пунктах Европы. Кроме того, непременной частью программ всех морских плаваний было проведение наблюдений за погодой. В это же время появились первые метеорологические теории. Э. Галлей дал первое объяснение муссонов, а Э. Гадлей опубликовал трактат о пассатах. К середине XVIII в. М. В. Ломоносов считал метеорологию самостоятельной наукой, главной задачей которой было "предзнание погоды". Было организовано по частной инициативе Маннгеймское метеорологическое общество, которое создало в Европе на добровольной основе сеть из 39 метеорологических станций (в том числе три в России - Санкт-Петербурге, Москве, Пышменский завод), укомплектованных единообразными и проградуированными приборами. Сеть функционировала 12 лет. В середине XIX в. возникают государственные сети станций. А в начале века трудами А. Гумбольдта и Г. Дове в Германии закладываются основы климатологии. Около 1820 года Г. В. Брандесу в Германии пришла мысль нанести на географические карты наблюдения Маннгеймской сети станций. Таким образом, появились первые синоптические карты, позволившие обнаружить области высокого и низкого давления. Они оказались подвижные и двигались, как правило, с запада на восток. После изобретения телеграфа, с 50-х годов, по инициативе астронома У. Леверье во Франции и адмирала Р. Фицроя в Англии синоптический метод исследования атмосферных фронтов быстро вошел в общее употребление. На его основе возникла новая отрасль метеорологии - синоптическая метеорология. К середине XIX в. относится организация первых метеорологических институтов, в том числе Главной физической обсерватории в Петербурге (1849г.). Во второй половине XIX столетия были заложены основы динамической метеорологии, т. е. применения законов гидромеханики и термодинамики к исследованиям атмосферных процессов. Большой вклад в эту область метеорологии был сделан Кориолисом и Пуассоном во Франции, В. Феррелем в США, Г. Гельмгольцем в Германии, Г. Моном и К. Гульдбергом в Норвегии. К концу столетия усилилось изучение радиационных и электрических процессов в атмосфере. Развитие метеорологии в XX в. шло нарастающими темпами. Большие успехи достигнуты в области аэрологических исследований. Широкое использование радиолокационной техники для аэрологических исследований связано с именами Г. И. Голышева, В. В. Костарева, Б.д. Рождественского. Велик прогресс в актинометрии - учении о радиации в атмосфере. Основные заслуги в разработке методов и приборов для измерения лучистой энергии, организации сети актинометрических станций в России принадлежит Н. Н. Калитину, В. А. Михельсону, О. Д. Хвольсону, С. И. Савинову. В XX в. появились новые, углубленные подходы к климатологическим исследованиям. Особенно большой вклад в разработку проблем климатологии в России внесен трудами А. А. Каминского, Л. С. Берга, М. И. Будыко, М. М. Сомова и др. Бурный рост промышленности во второй половине 20-го века оказал неблагоприятное влияние на атмосферу. Огромное значение приобрели проблемы загрязнения атмосферы и распространения примесей как естественного, так и антропогенного происхождения. Потребовалось создание специальной службы загрязнений, под руководством Е. К. Федорова и Ю. А. Израэля. Развитие народного хозяйства привело к необходимости более тщательного учета свойств атмосферных процессов. Поэтому стали интенсивно развиваться многие отрасли прикладной климатологии, такие, как авиационная, медицинская, строительная и др. Во всем мире объем метеорологических исследований растет, накоплен большой опыт международного сотрудничества в проведении таких международных программ, как Программа исследования глобальных атмосферных процессов, и уникальных экспериментов, подобных Международному геофизическому году (1957-1958), Атлантическому тропическому эксперименту (1974) и т.д.

Метеорологическая сеть - совокупность метеорологических станций, ведущих наблюдения по единой программе и в строго установленные сроки для изучения погоды, климата и решения др. прикладных и научных задач. Метеорологическая сеть строится таким образом, чтобы для любой точки территории страны можно было с достаточной точностью получить данные о текущих условиях погоды и климате местности. В равнинных условиях для получения достаточно полной характеристики температурного режима необходимо иметь сеть станций, расположенных на расстоянии 50 км друг от друга, в горных местностях - меньше 30-40 км.

Результаты наблюдений метеорологических станций и постов в целях их сравнимости должны обладать достаточной степенью точности и однородностью. Это достигается путем использования однотипных, проверенных, одинаково на всех пунктах установленных приборов, проведением наблюдений по единой методике и в строго определенные сроки. Координацию работы метеорологических служб разных стран осуществляет Всемирная Метеорологическая Организация, ВМО.

Ответ номер 1.Метеослужба. ВМО

Для успешного прогнозирования погоды синоптикам необходимо оперативно получать текущую информацию о погоде со всего мира. С этой целью в 1968 году была создана Всемирная Служба Погоды. На сегодняшний день почти 9000 метеорологических станций мира участвуют в международном обмене данными. Ежедневно каждые три часа в строго определенные сроки: 0, 3, 6, 9, 12, 15, 18 и 21 час по всемирному времени наблюдатели выходят на метеорологическую площадку и с помощью различных приборов фиксируют скорость ветра, облачность, температуру воздуха и атмосферное давление. Они отмечают общий характер погоды, например, наличие дождя или тумана в данной местности. В крупных аэропортах наблюдения производятся ежечасно, а в некоторых - даже каждые полчаса! После этого данные зашифровываются специальным синоптическим кодом и передаются в региональные или областные Гидрометцентры. Оттуда данные поступают в межрегиональные центры и, в конце концов, оказываются в трех мировых центрах данных (Москва, Вашингтон, Мельбурн). Оттуда все эти сведения передаются метеослужбам всех стран мира для анализа, изучения, включения в модельные расчеты, построения синоптических карт и разработки прогнозов погоды.

Сведения о погоде в тех местах, где нет метеостанций, помогают собирать самолеты и корабли. Они снабжены аппаратурой, позволяющей фиксировать различные погодные условия по маршруту их следования. Также в труднодоступных районах, где невозможно постоянно держать наблюдателей за погодой, размещаются автоматические метеостанции. Показатели метеорологических приборов ежечасно считываются компьютером.

Температура, влажность и атмосферное давление на больших высотах измеряются с помощью приборов, именуемых радиозондами. Их поднимают на нужную высоту аэростаты (воздушные шары). Скорость и направление подъема зонда позволяют определить силу и направление ветра. По мере того, как зонд поднимается все выше, идут замеры температуры, влажности и давления воздуха.

Немаловажную роль в метеослужбе играют данные, получаемые с искусственных спутников Земли. Метеорологические спутники поставляют ученых важную информацию об общих тенденциях развития погоды, а также о характере облачного покрова. На спутниках установлены приборы, именуемые радиометрами, которые улавливают интенсивность отраженного света или тепла. Эти данные преобразуются в изображения (фотографии). Спутники играют важную роль в наблюдении за процессами образования погоды, особенно над большими океанами.

Для наблюдений за дождем, снегом и градом используются метеорадары. Они позволяют определить место и интенсивность выпадения осадков. Радары испускают радиоволны, которые, ударяясь о дождевые капли, отражаются от них и возвращаются на приемную антенну. После этого полученные данные преобразуются в изображение.

Всемирная метеорологическая организация, ВМО -- специализированное межправительственное учреждение Организации Объединённых Наций в области метеорологии. Основано в 1950 году. Является компетентным органом ООН по вопросам наблюдения за состоянием атмосферы Земли и её взаимодействия с океанами. Штаб-квартира ВМО находится в Женеве, Швейцария.

23 марта, в день вступления в силу Конвенции об основании ВМО, отмечается Всемирный метеорологический день.

Существует проблема прогнозов долгосрочных, т.е. более чем на несколько дней вперед, для которых абсолютно необходимы наблюдения за погодой в пределах всего земного шара, но даже и этого оказывается недостаточно. Поскольку турбулентная природа атмосферы ограничивает возможности предсказания погоды на большой территории примерным сроком до двух недель, прогноз на более продолжительное время должен основываться на факторах, которые предсказуемым образом воздействуют на атмосферу и при этом сами будут известны более чем за две недели. Одним из таких факторов является температура поверхности океана, которая медленно меняется в течение недель и месяцев, влияет на синоптические процессы и может быть использована для выявления районов с аномальными температурами и количеством осадков.

Ответ номер 2. Состав воздуха. В. пар. Аэрозоль.

СОСТАВ СУХОГО ЧИСТОГО ВОЗДУХА У ПОВЕРХНОСТИ ЗЕМЛИ

Газ Содержание, %

по объему по массе

N 278,0975,50

O 220,9523,10

Ar 0,9321,286

CO 20,0360,052

Ne 1,8·10-31,3·10-3

He 4,6·10-47,2·10-5

Kr 1,1·10-42,9·10-4

N2O 5·10-57,7·10-5

H 25·10-52,6·10-6

O 32·10-73,3·10-6

Водяной пар - это вода в газообразном состоянии. Если воздух не способен удерживать большее количество водяного пара, он переходит в состояние насыщения, и тогда вода с открытой поверхности перестает испаряться. Содержание водяного пара в насыщенном воздухе находится в тесной зависимости от температуры и при ее повышении на 10° С может увеличиться не более, чем вдвое.

Относительная влажность - это отношение фактически содержащегося в воздухе водяного пара к количеству водяного пара, соответствующему состоянию насыщения. Относительная влажность воздуха вблизи земной поверхности часто велика утром, когда прохладно. С повышением температуры относительная влажность обычно уменьшается, даже если количество водяного пара в воздухе мало изменяется. Предположим, что утром при температуре 10° С относительная влажность была близка к 100%. Если в течение дня температура понизится, начнется конденсация воды и выпадет роса. Если же температура повысится, например до 20° С, роса испарится, но относительная влажность составит лишь ок. 50%.

Облака возникают при конденсации водяного пара в атмосфере, когда образуются либо капельки воды, либо кристаллы льда. Формирование облаков происходит, когда при подъеме и охлаждении водяной пар переходит через точку насыщения. При подъеме воздух попадает в слои все более низкого давления. Ненасыщенный воздух с подъемом на каждый километр охлаждается примерно на 10° С. Если воздух с относительной влажностью ок. 50% поднимется более чем на 1 км, начнется образование облака. Конденсация сначала происходит у основания облака, которое растет вверх до тех пор, пока воздух не перестанет подниматься и, следовательно, охлаждаться. Летом этот процесс легко увидеть на примере пышных кучевых облаков с плоским основанием и воздымающейся и опускающейся вместе с перемещением воздуха вершиной. Облака формируются также в фронтальных зонах, когда теплый воздух скользит вверх, надвигаясь на холодный, и при этом охлаждается до состояния насыщения. Облачность возникает и в областях низкого давления с восходящими потоками воздуха.

Туман представляет собой облако, расположенное у самой земной поверхности. Он часто опускается на землю в тихие, ясные ночи, когда воздух влажный, а земная поверхность охлаждается, излучая в пространство тепло. Туман также может образоваться при прохождении теплого влажного воздуха над холодной поверхностью суши или воды. Если холодный воздух оказывается над поверхностью теплой воды, прямо на глазах возникает туман испарения. Он часто образуется по утрам поздней осенью над озерами, и тогда кажется, что вода кипит.

Конденсация является сложным процессом, при котором микроскопические частицы содержащихся в воздухе примесей (сажи, пыли, морской соли) служат ядрами конденсации, вокруг которых формируются капельки воды.

Аэрозоли - твёрдые частички (пыли например), взвешенные в воздухе.

5. Климатообразующие факторы

Древнегреческий астроном Гиппарх (2 в. до н.э.) условно разделил поверхность Земли параллелями на широтные зоны, отличающиеся по высоте полуденного стояния Солнца в самый длинный день года. Эти зоны были названы климатами (от греч. klima - наклон, первоначально означавшего «наклон солнечных лучей»). Таким образом было выделено пять климатических зон: одна жаркая, две умеренных и две холодных, - которые и составили основу географической зональности земного шара.

Более 2000 лет термин «климат» употреблялся именно в таком смысле. Но после 1450, когда португальские мореплаватели пересекли экватор и вернулись на родину, появились новые факты, потребовавшие пересмотра классических воззрений. В числе сведений о мире, приобретенных во время путешествий первооткрывателей, были и климатические характеристики выделенных зон, что позволило расширить сам термин «климат». Климатические зоны уже не были лишь математически рассчитанными по астрономическим данным районами земной поверхности (т.е. жарко и сухо там, где Солнце поднимается высоко, а холодно и сыро там, где оно стоит низко, а потому слабо греет). Было обнаружено, что климатические зоны не просто соответствуют широтным поясам, как это представлялось ранее, а имеют весьма неправильные очертания.

Солнечная радиация, общая циркуляция атмосферы, географическое распределение материков и океанов и крупнейшие формы рельефа - главные факторы, влияющие на климат суши. Солнечная радиация является важнейшим фактором климатообразования и поэтому будет рассмотрена более подробно.

6. Свойства атмосферы

Физические свойства

Толщина атмосферы -- примерно 2000 -- 3000 км от поверхности Земли. Суммарная масса воздуха -- (5,1--5,3)?1018 кг. Молярная масса чистого сухого воздуха составляет 28,966. Давление при 0 °C на уровне моря 101,325 кПа; критическая температура ?140,7 °C; критическое давление 3,7 МПа; Cp 1,0048?10? Дж/(кг·К)(при 0 °C), Cv 0,7159·10? Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде при 0°С -- 0,036 %, при 25°С -- 0,22 %.

Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород. Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода. В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа -- 40 мм рт. ст., а паров воды -- 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным -- около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19--20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15--19 км.

Плотные слои воздуха -- тропосфера и стратосфера -- защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация -- первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли, постепенно ослабляются, а затем и полностью исчезают, такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60--90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100--130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл, там проходит условная Линия Кармана за которой начинается сфера чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства -- способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, -- с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.

7. Связь давления и температуры. Характеристики давления

Связь между давлением p, плотностью r и абсолютной температурой T дается формулой p = rRT, где R -- газовая постоянная, равная 287,14 м2/с2ЧК для воздуха. Из этой формулы следует закон Бойля, согласно которому при постоянной температуре p/r = const, т. е. изменение плотности прямо пропорционально изменению давления.

Атмосферное давление - давление атмосферного воздуха на находящиеся в нем предметы и на земную поверхность. В каждой точке атмосферы атмосферное давление равно весу вышележащего столба воздуха с основанием, равным единице площади; с высотой атмосферное давление убывает.

Показателем давления служит высота ртутного столба в мм, уравновешиваемого давлением воздуха. В системе СГС атмосферное давление измеряется в миллибарах (мбар), в системе СИ - в гектопаскалях (гПа). При повышении температуры воздух расширяется и конвективно поднимается, а давление падает. При уменьшении температуры воздух сжимается, становится более плотным, а давление растет.

Распределение атмосферного давления по земной поверхности обусловливает движение воздушных масс и атмосферных фронтов, определяет направление и скорость ветра.

8. Тепловой режим воздуха, воды, почвы

Тепловой режим атмосферы -- это характер распределения и изменения температур в атмосфере. Он определяется теплообменом с окружающей средой -- деятельной поверхностью Земли и космическим пространством. Солнечное тепло поглощается в основном верхними слоями, в целом же атмосфера поглощает его слабо, а в отдельных слоях -- незначительно. Нижние слои получают тепло главным образом от деятельной поверхности, которая нагревается в дневные часы, становится теплее воздуха и отдает ему свое тепло, ночью наоборот -- деятельная поверхность теряет тепло излучением, становится холоднее, и тогда уже воздух отдает свое тепло почве. Суша возвращает воздуху большую часть полученного ею лучистого тепла -- 35--50%, в то время как вода большую часть тепла отдает нижележащим глубинным слоям. На нагревание воздуха уходит немного тепла, так как оно в значительной степени затрачивается еще и на испарение воды. Отсюда следует, что в периоды, нагревания суши воздух над ней теплее, чем над водными пространствами. В теплое время года океаны, моря и крупные озера накапливают в толще вод огромные запасы тепла и отдают его воздуху в зимнее время. Вот почему зимой воздух над водными поверхностями теплее, чем над сушей.

Ответ 5. Основное уравнение статики атмосферы

Уравнение, описывающее изменение атмосферного давления с высотой в предположении статического равновесия, т. е. при равновесии силы тяжести и вертикальной составляющей барического градиента:

Или

Интеграл этого уравнения называется барометрической формулой.

Барометримческая ступемнь (баримческая ступемнь) -- величина, определяющая изменение высоты в зависимости от изменения атмосферного давления. Применяется при барометрическом нивелировании и при пересчёте показаний статоскопа в разность высот.

Зависит от давления и температуры воздуха.

Наглядный смысл барометрической ступени -- высота, на которую надо подняться, чтобы давление понизилось на 1 гПа.

10. Вычисление барометрической ступени

- значение барометрической ступени, м/гПа

- изменение давления, гПа

Т - температура, градусы Цельсия.

11. Адиабатические процессы в атмосфере

Адиабатический процесс в атмосфере От греч.Adiabatos - непереходимый. Адиабатический процесс в атмосфере - изменение температуры воздуха, протекающее без теплообмена с окружающей средой, только за счет внутренней энергии воздушных масс при их перемещении.

При этом внутренняя энергия и температура воздуха изменяются за счет работы сжатия или расширения. При сжатии давление и внутренняя энергия воздуха возрастают, и температура повышается. При расширении давление и внутренняя энергия убывают, и температура падает.

При адиабатическом процессе воздушная масса, поднимаясь в более разреженные слои атмосферы, расширяется и охлаждается, при опускании в более плотные слои - сжимается и нагревается.

Ответ 8. Строение атмосферы

Тропосфера

Её верхняя граница находится на высоте 8--10 км в полярных, 10--12 км в умеренных и 16--18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы. Содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Тропопауза.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11--25 км (нижний слой стратосферы) и повышение её в слое 25--40 км от ?56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0° С), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80--90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25--0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около --90°С).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом.

Термосфера

Верхний предел -- около 800 км. Температура растёт до высот 200--300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») -- основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород.

Экзосфера (сфера рассеяния) Экзосфера -- зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация). До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до -110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200--250 км соответствует температуре ~1500°С. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000--3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы -- около 20 %; масса мезосферы -- не более 0,3 %, термосферы -- менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000--3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера -- это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

13. Ветер, турбулентность, конвекция

Ветер -- поток воздуха, движущийся относительно земной поверхности со скоростью свыше 0,6 м/с [1].

Ветры над большими площадями образуют обширные воздушные течения -- муссоны, пассаты, из которых слагается общая и местная циркуляция атмосферы.

Ветер возникает в результате неравномерного распределения атмосферного давления и направлен от зоны высокого давления к зоне низкого давления. Вследствие непрерывного изменения давления во времени и пространстве скорость и направление ветра постоянно меняются. С высотой скорость ветра меняется из-за убывания силы трения.

Для визуальной оценки скорости ветра служит шкала Бофорта. Метеорологическое направление ветра указывается азимутом точки, откуда дует ветер; тогда как аэронавигационное[2] направление ветра -- куда дует, таким образом значения различаются на 180°. Многолетние наблюдения за направлением и силой ветра изображают в виде графика -- розы ветров.

В ряде случаев важным является не само направление ветра, а положение объекта относительно него. Так, при охоте на животное с острым нюхом к нему подходят с подветренной стороны[3] -- во избежание распространения запаха от охотника в сторону животного.

Виды ветров

Бриз -- ветер, дующий с берега в море и с моря на берег; в первом случае называется береговым бризом, а во втором -- морским.

Муссон -- периодический ветер, изменяющий свое направление в зависимости от времени года. Муссоны наблюдаются главным образом в тропическом поясе.

Пассаты -- ветры, дующие с довольно постоянной силой трех-четырёх баллов; направление их не сохраняется всегда постоянным, но изменяется, в тесных, однако, пределах.

ТУРБУЛЕНТНОСТЬ АТМОСФЕРЫ -- беспорядочные вихревые движения небольших масс воздуха (скоплений молекул), непрерывно изменяющихся по своему составу. Каждая частица воздуха участвует одновременно как в этих движениях, так и в ламинарном переносе определённого слоя атмосферы. Частицы воздуха, переносимые вихрями из одного слоя атмосферы в другой, приносят с собой свойства (скорость движения, темп-ру, влагосодержапис, твёрдые примеси и т.д.), присущие слою, из к-рого они вышли. Тем самым Т. а. обусловливает перемешивание горизонтальных слоев и способствует увеличению однородности атмосферы. Т. а. воспринимается как порывистость ветра. В приземном слое Т. а. резко ослабляется с приближением к земной поверхности (уменьшаются размеры вихрей и переносимых ими масс). В этом слое интенсивность Т. а. возрастает от величин, характерных для молекулярных процессов (в пограничном слое толщиной неск. см), до величин, в десятки и сотни тысяч раз больших на вые. 30--40 м (см. Коэффициент турбулентного обмена).

Конвекция в атмосфере, вертикальные перемещения объёмов воздуха с одних высот на другие, обусловленные архимедовой силой: воздух более тёплый и, следовательно, менее плотный, чем окружающая среда, перемещается вверх, а воздух более холодный и более плотный -- вниз. При слабом развитии Конвекция (в атмосфере) имеет беспорядочный, турбулентный характер.

При развитой Конвекция (в атмосфере) над отдельными участками земной поверхности возникают восходящие и нисходящие токи воздуха, пронизывающие атмосферу иногда до высот стратосферы (проникающая Конвекция (в атмосфере)). Вертикальная скорость восходящих токов (термиков) при этом обычно порядка нескольких м/сек, по иногда может превышать 20--30 м/сек. С проникающей Конвекция (в атмосфере) обычно связано образование облаков Конвекция (в атмосфере) -- кучевых и кучево-дождевых (грозовых).

Ответ 10. Воздушные массы и фронты

Воздушная масса - большая масса воздуха в тропосфере, горизонтальные размеры которой соизмеримы с размерами частей океанов и континентов. Воздушная масса обладает сравнительной однородностью физических свойств.

Обычно воздушная масса перемещается в направлении основного воздушного течения на высотах и отделяется от соседних воздушных масс атмосферными фронтами.

По областям формирования различают арктические/антарктические, умеренные (полярные), тропические и экваториальные воздушные массы, которые, в свою очередь, делятся на морские и континентальные.

Атмосферный фронт - переходная зона в тропосфере между смежными воздушными массами с разными физическими свойствами.

Атмосферный фронт возникает при сближении и встрече масс холодного и теплого воздуха в нижних слоях атмосферы или во всей тропосфере, охватывая слой мощностью до нескольких км, с образованием между ними наклонной поверхности раздела. Атмосферный фронт может находиться в стационарном состоянии или в движении.

Различают теплые, холодные фронты, а также фронты окклюзии. Основными атмосферными фронтами являются: арктические, полярные и тропические.

Воздух умеренных широт - воздушные массы, формирующиеся в умеренных широтах. Континентальный воздух умеренных широт имеет невысокую влажность, его летние и зимние температуры значительно различаются. Морской воздух умеренных широт - влажный, перепады температуры от зимы к лету гораздо меньше.

Тропический воздух - воздушные массы, формирующиеся в течение всего года в тропических и субтропических широтах, а также (летом) на юге умеренных широт. Тропический воздух взаимодействует

- с воздухом умеренных широт, от которого отделен полярным фронтом; и

- с экваториальным воздухом, от которого отделен внутритропической зоной конвергенции.

Летние температуры континентального тропического воздуха очень высоки, влажность мала, воздух сильно запылен. Морской тропический воздух - теплый и влажный.

Экваториальный воздух - воздушные массы, формирующиеся близ экватора. Экваториальный воздух отличается высокой влажностью; перемещаясь в более высокие тропические широты, приносят сильные ливни, особенно при переходе с океана на более нагретую сушу, где влажные воздушные массы подхватываются мощными конвективными движениями. Экваториальный воздух отделен от тропического воздуха внутритропической зоной конвергенции.

15. Радиация

В метеорологии термин «радиация» означает электромагнитное излучение, к которому относят видимый свет, ультрафиолетовое и инфракрасное излучение, но не включают радиоактивное излучение. Каждый объект в зависимости от своей температуры испускает разные лучи: менее нагретые тела - главным образом инфракрасные, горячие тела - красные, более горячие - белые (т.е. эти цвета будут преобладать при восприятии нашим зрением). Еще более горячие объекты испускают голубые лучи. Чем сильнее нагрет объект, тем больше он излучает световой энергии.

Преобладающим типом электромагнитного излучения облаков, деревьев или людей является инфракрасное излучение, невидимое для человеческого глаза. Оно является основным способом вертикального обмена энергией между земной поверхностью, облаками и атмосферой. Метеорологические спутники оснащены специальными приборами, которые выполняют съемку в инфракрасных лучах, испускаемых в космическое пространство облаками и земной поверхностью. Более холодные, чем земная поверхность, облака излучают меньше и, следовательно, выглядят в инфракрасных лучах темнее, чем Земля. Большое преимущество инфракрасной фотосъемки заключается в том, что ее можно проводить круглосуточно (ведь облака и Земля излучают инфракрасные лучи постоянно).

Угол инсоляции. Величина инсоляции (приходящей солнечной радиации) меняется во времени и от места к месту в соответствии с изменением угла, под которым солнечные лучи падают на поверхность Земли: чем выше Солнце над головой, тем она больше. Изменения этого угла определяются в основном обращением Земли вокруг Солнца и ее вращением вокруг своей оси.

Величина солнечной радиации, поступающей за сутки на внешнюю границу атмосферы в Северном полушарии, выражается в ваттах на квадратный метр горизонтальной поверхности (т.е. параллельной земной поверхности, не всегда перпендикулярной солнечным лучам) и зависит от солнечной постоянной, угла наклона солнечных лучей и продолжительности дня.

16 - распределение радиации в спектре

Поглощение атмосферой. Около 19% солнечной радиации, поступающей на Землю, поглощается атмосферой (по осредненным оценкам для всех широт и всех времен года). В верхних слоях атмосферы ультрафиолетовое излучение поглощается преимущественно кислородом и озоном, а в нижних слоях красная и инфракрасная радиация (длина волны более 630 нм) поглощается в основном водяным паром и в меньшей степени - углекислым газом.

Поглощение поверхностью Земли. Около 34% приходящей на верхнюю границу атмосферы прямой солнечной радиации отражается в космическое пространство, а 47% проходит сквозь атмосферу и поглощается земной поверхностью.

17. Ответ 11 Радиационный баланс

Сумма прихода и расхода лучистой энергии, поглощаемой и излучаемой атмосферой и подстилающей поверхностью. Для атмосферы Р. б. состоит из приходной части -- поглощённой прямой и рассеянной солнечной радиации, а также поглощённого длинноволнового (инфракрасного) излучения земной поверхности, и расходной части -- потери тепла за счёт длинноволнового излучения атмосферы в направлении к земной поверхности (т. н. Противоизлучение атмосферы) и в мировое пространство.

Приходную часть Р. б. подстилающей поверхности составляют: поглощённая подстилающей поверхностью прямая и рассеянная солнечная радиация, а также поглощённое противоизлучение атмосферы; расходная часть состоит из потери тепла подстилающей поверхностью за счёт собственного теплового излучения. Р. б. является составной частью теплового баланса атмосферы и подстилающей поверхности.

Разница между величиной прихода солнечной радиации к верхней границе атмосферы и величиной ее прихода на земную поверхность при средней облачности, обусловленная потерями радиации в атмосфере, существенно зависит от географической широты: 52% на экваторе, 41% на 30° с.ш. и 57% на 60° с.ш. Это прямое следствие количественного изменения облачности с широтой. Из-за особенностей циркуляции атмосферы в Северном полушарии количество облаков минимально на широте ок. 30°. Влияние облачности столь велико, что максимум энергии доходит до земной поверхности не на экваторе, а в субтропических широтах. Разница между количеством радиации, приходящей на земную поверхность, и количеством поглощенной радиации образуется только за счет альбедо, которое особенно велико в высоких широтах и обусловлено большой отражательной способностью снежного и ледяного покрова.

Из всей солнечной энергии, используемой системой Земля - атмосфера, менее одной трети непосредственно поглощается атмосферой, а основную часть энергии она получает отраженной от земной поверхности. Больше всего солнечной энергии поступает в районы, расположенные в низких широтах.

Ответ 12 Отражение, рассеяние, поглощение

Суммарная солнечная радиация - вся прямая и рассеянная солнечная радиация, поступающая на земную поверхность. Суммарная солнечная радиация характеризуется интенсивностью. При безоблачном небе суммарная солнечная радиация имеет максимальное значение около полудня, а в течение года - летом.

Отраженная солнечная радиация - часть суммарной солнечной радиации, которая не поглощается земной поверхностью, а отражается от нее. Зависит от характера поверхности отражения.

Поглощенная солнечная радиация - часть суммарной солнечной радиации, которая поглощается земной поверхностью и идет на нагревание верхних слоев почвы, воды, снежного покрова. Поглощенная солнечная радиация равна разности суммарной и отраженной радиаций.

Рассеянная солнечная радиация - часть солнечного излучения (около 25%), претерпевшая рассеяние в атмосфере - преобразованная в атмосфере из прямой солнечной радиации в радиацию, идущую по всем направлениям. Причиной рассеяния солнечных лучей является неоднородность воздуха. Радиация распространяется от рассеивающих частиц воздуха так, как если бы эти частицы сами были источником излучения. Рассеянной солнечной радиацией объясняется голубой цвет неба.

Парниковый эффект -- повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса.

Количественно величина парникового эффекта определяется как разница между средней приповерхностной температурой атмосферы планеты и её эффективной температурой . Парниковый эффект существенен для планет с плотными атмосферами, содержащими газы, поглощающие излучение в инфракрасной области спектра, и пропорционален плотности атмосферы. Следствием парникового эффекта является также сглаживание температурных контрастов как между полярными и экваториальными зонами планеты, так и между дневными и ночными температурами.

Солнечный свет поглощается поверхностью планеты и её атмосферой (особенно излучение в ближней УФ- и ИК-областях) и разогревает их. Нагретая поверхность планеты и атмосфера излучают в дальнем инфракрасном диапазоне.

Атмосфера, содержащая газы, поглощающие в этой области спектра (т. н. парниковые газы -- H2O, CO2, CH4 и пр.), существенно непрозрачна для такого излучения, направленного от её поверхности в космическое пространство, то есть имеет в ИК-диапазоне большую оптическую толщину. Вследствие такой непрозрачности атмосфера становится хорошим теплоизолятором, что, в свою очередь, приводит к тому, что переизлучение поглощённой солнечной энергии в космическое пространство происходит в верхних холодных слоях атмосферы. В результате эффективная температура Земли как излучателя оказывается более низкой, чем температура её поверхности.

19. Закон ослабления радиации

Проходя через земную атмосферу, поток солнечных лучей по пути частично рассеивается и частично поглощается и до Земли доходит ослабленным. Чем ближе опускается Солнце к горизонту, тем больше ослабляются его лучи. Чем длиннее путь лучей, тем больше энергии они будут терять на этом пути.

Ослабление солнечных лучей в атмосфере происходит за счет двух процессов: поглощения и рассеяния. Поглощенная солнечная радиация переходит в другие виды энергии, в основном в тепловую, т. е. расходуется на нагревание воздуха. Поглощение солнечной радиации газами атмосферы носит избирательный, или селективный, характер, т. е. поглощаются определенные длины или участки длин волн. Главными поглотителями солнечной радиации являются озон, водяной пар и углекислый газ. Основное поглощение происходит в УФ- и ИК-областях солнечного спектра. В видимой части спектра поглощение играет малую роль в сравнении с рассеянием. Именно за счет рассеяния происходит главное ослабление световых солнечных лучей. При рассеянии световых лучей в атмосфере и возникают многообразные световые явления, объяснение которых является предметом данной книги.

Рассеяние световых лучей также сильно зависит от длины волны. Поэтому, проходя через атмосферу, лучи разных длин волн ослабляются по-разному. Закон ослабления, выведенный еще в XVIII в. французским физиком Пьером Бугером, записывается для так называемого монохроматического пучка лучей, т. е. пучка лучей определенной длины волны л:

где S л -- плотность потока (или интенсивность) пучка монохроматических лучей длины волны л, дошедших до поверхности Земли; S -- плотность потока (или интенсивность) этого пучка на внешней границе атмосферы; m -- масса или число масс атмосферы; фл -- оптическая толщина атмосферы.

Для всего потока солнечных лучей (его называют также интегральным потоком) формула (1.3) приобретает вид:

где Pm-- коэффициент прозрачности (сколько лучей доходит до земной поверхности), осредненный для интегрального потока; S0-- солнечная постоянная.

Ответ 13. Изменения радиации

Приход суммарной радиации уменьшается с увеличением интенсивности потока ГКЛ в 11-летнем цикле солнечной активности, при этом отклонения годовых сумм радиации от векового хода могут составлять до ±6 -- 8%. Эффекты галактических космических лучей в вариациях прихода суммарной радиации наиболее четко выражены на станциях с преобладающей облачностью верхнего яруса (Верхоянск, Оленек).

Наряду с вариациями ГКЛ на поступление солнечной радиации в высокоширотной области могут влиять высыпания авроральных электронов, частично компенсирующие эффекты вариаций ГКЛ.

Обнаруженные изменения прихода суммарной радиации свидетельствуют об изменениях состояния облачности, обусловленных вариациями космических лучей с энергиями выше ~ 0,1 ГэВ.

21. Значения законов излучения

Закон Стефена-Больцмана.

Энергия излучаемой радиации растёт пропорционально 4й степени абсолютной температуры излучателя.

I= удT4

Для Солнца - д - 0,95; у - 5,7*10-8 [(Вт/м24].

Закон Планка.

Распределение энергии в спектре радиации зависит от температуры излучателя.

Закон Вина.

Максимум излучаемой энергии обратно пропорционален Табс. излучателя.

22. Альбедо. Встречное излучение. Эффективное излучение

Альбедо Земли Процентное отношение солнечной радиации, отданной земным шаром (вместе с атмосферой) обратно в мировое пространство, к солнечной радиации, поступившей на границу атмосферы. Отдача солнечной радиации Землей слагается из отражения от земной поверхности, рассеяния прямой радиации атмосферой в мировое пространство (обратного рассеяния) и отражения от верхней поверхности облаков. А. 3. в видимой части спектра (визуальное)--около 40%. Для интегрального потока солнечной радиации интегральное (энергетическое) А. 3. около 35%. В отсутствие облаков визуальное А. 3. было бы около 15%.

Излучение земной поверхности - тепловое инфракрасное, не воспринимаемое глазом излучение земной поверхности с длинами волн от 3 до 80 мкм. Поток собственного излучения земной поверхности направлен вверх и почти целиком поглощается атмосферой, нагревая ее. За счет собственного излучения земная поверхность теряет тепло. Атмосфера Земли поглощает земное излучение и снова возвращает большую его часть к Земле (встречное излучение). Эффективное излучение земной поверхности - разность собственного излучения земной поверхности и поглощенного ею встречного излучения атмосферы.

23. Тепловой баланс земной поверхности

Тепловой баланс земной поверхности - алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются:

- радиационный баланс;

- затрата тепла на испарение;

- турбулентный теплообмен между поверхностью океана и атмосферой;

- вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и

- горизонтальная океаническая адвекция.

24. Теплопроводность почвы. Законы Фурье.

Пористость -- порошкообразное измельчение массы -- сильно затрудняет проведение тепла в почве, так как прикосновение отдельных частичек ее в высшей степени несовершенно, а лежащий между ними воздух обладает очень слабою теплопроводимостью. Влияние воды на передачу тепла в глубь почвы может быть разъяснена двумя следующими случаями. Во-первых, если почва только влажна, т. е. все водяные частички удерживаются большой капиллярной силой, вследствие чего затрудняется их циркуляция, то вода не может играть заметной роли при распределении теплоты в такой почве. В этом случае влажная почва относительно распределения теплоты по почвенным слоям будет действовать почти как сухая, т. е. как дурной проводник теплоты.

Теплопроводность влажной почвы больше, чем сухой, так как вода до некоторой степени вытесняет частицы воздуха, обладающие наислабейшею способностью проводить теплоту; притом почва теряет и свою пористость. Во-вторых, если почва настолько мокрая, что вода до некоторой степени может циркулировать, то подобная почва при нагревании сверху не передает нагретых водяных частичек в более глубокие горизонты; они находятся уже в положении самом благоприятном -- устойчивого равновесия. Но если почва будет охлаждаться сверху, вследствие ли холодного ветра или лучеиспускания в мировое пространство, то охлажденные верхние частички жидкости получат стремление опускаться вниз, на место более теплых и глубже лежащих; вследствие чего охлаждение почвы будет чувствоваться на большей глубине, чем нагревание ее, но именно потому, что при охлаждении почвы участвуют большие массы частичек воды, в ней не обнаруживаются при этом такие крайности, как при противоположном явлении.

Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность теплового потока, пропорционально градиенту температуры -закон Фурье.

25. Теплопроводность водоёмов

У поверхностных слоёв - больше, чем вглубь. Летом сверху вниз, зимой наоборот.

Теплопроводность чистой воды = 0,6 Вт/(м·K)

26. Ход температур воздуха. Годовая амплитуда температуры и континентальность

Практическое значение имеет только суточный ход, т.е. изменение температуры в течении суток в определенном районе. Обычно суточный ход температуры воздуха над морем достигает минимума через 2-3 часа до восхода солнца, а максимума - к 15-16 часам. На суше этот процесс менее инерционен и поэтому сдвинут на 1-1.5 часа. Такой суточный ход характерен лишь для устойчивой погоды. Нарушается он при теплообменных процессах в атмосфере, например при смене теплых воздушных масс холодными. В таких случаях ночная температура может оказаться выше дневной.

Суточная амплитуда изменений температуры воздуха. - разность между самой высокой и самой низкой температурой за сутки зависит от облачности, при которой она уменьшается, и от времени года. В открытых морях и океанах суточная амплитуда составляет около 1.0-1.5° С, а в закрытых морях может достигать 10-15° С. В районах с резкоконтинетальным климатом, например, в пустынях, суточные колебания температуры максимальны и могут достигать 30° С. Все это необходимо учитывать , т.к. характер суточного хода имеет прямое отношение к погоде. Так, нарушение правильного суточного хода температуры предвещает ухудшение погоды, а при резком понижении дневной температуры после ненастья можно ожидать улучшения погоды. Ухудшение погоды может наступить при повышении температуры к вечеру.

Про континентальность - от себя.

Ответ 7. Распределение температуры воздуха с высотой. Конвекция

По многим причинам следовало бы ожидать, что в верхних слоях воздуха температура будет ниже, чем в нижних: 1) верхние слои атмосферы более разрежены, поэтому они менее задерживают теплоту, получаемую непосредственно от солнца, и 2) нагревание воздуха, главным образом, происходит снизу. Но вместе с тем воздух, как и вода, i стремится расположиться так, чтобы наверху были более теплые и легкие слои, а внизу более холодные и тяжелые. Действительно, воздух, соприкасающийся с земной поверхностью, нагреваясь, расширяется, делается менее плотным и поднимается кверху, а более плотный и холодный воздух опускается вниз (конвекция).

...

Подобные документы

  • Предмет и задачи экологии. Учение Вернадского о биосфере. Классификация экологических факторов. Абиотические факторы наземной среды. Лучистая энергия солнца. Влажность атмосферного воздуха, атмосферные осадки. Газовый состав атмосферы. Давление атмосферы.

    лекция [141,8 K], добавлен 01.01.2009

  • Строение и состав атмосферы. Загрязнение атмосферы. Качество атмосферы и особенности ее загрязнения. Основные химические примеси, загрязняющие атмосферу. Методы и средства защиты атмосферы. Классификация систем очистки воздуха и их параметры.

    реферат [362,1 K], добавлен 09.11.2006

  • Состав и строение атмосферы. Основные источники тепла, нагревающие земную поверхность и атмосферу и температура воздуха. Вода в атмосфере, образование облаков и осадки. Давление атмосферы, ветры, их виды. Погода и ее прогнозирование. Понятие о климате.

    реферат [1,9 M], добавлен 15.08.2010

  • Состав атмосферного воздуха. Особенности рекогносцировочного метода получения репрезентативной информации о пространственной и временной изменчивости загрязнения воздуха. Задачи маршрутного и передвижного постов наблюдений загрязнения атмосферы.

    презентация [261,9 K], добавлен 08.10.2013

  • Основные загрязнители атмосферного воздуха и глобальные последствия загрязнения атмосферы. Естественные и антропогенные источники загрязнения. Факторы самоочищения атмосферы и методы очистки воздуха. Классификация типов выбросов и их источников.

    презентация [468,7 K], добавлен 27.11.2011

  • Исследования газового состава атмосферы. Атмосферная химия. Спутниковый мониторинг атмосферы. Прогнозирование изменений состава атмосферы и климата Земли. Явление парникового эффекта атмосферы. Влияние увеличивающейся концентрации СО2.

    реферат [49,4 K], добавлен 27.12.2002

  • Общее понятие экологии. Прикладные аспекты экологической науки. Основные макросистемы природной среды. Характеристика, структура и значение атмосферы, ее функции. Глобальный характер антропогенных загрязнений и воздействий на атмосферу, их последствия.

    реферат [23,1 K], добавлен 14.04.2009

  • Современные проблемы атмосферного воздуха. Основные физические свойства воздуха: температура, влажность, скорость движения, барометрическое давление. Химический состав, микроорганизмы и механические примеси воздуха. Гигиеническое значение чистого воздуха.

    презентация [925,3 K], добавлен 06.09.2017

  • Количество вредных веществ, выделяемых в атмосферу. Подразделение атмосферы на слои в соответствии с температурой. Основные загрязнители атмосферы. Кислотные дожди, влияние на растения. Уровни фотохимического загрязнения воздуха. Запыленность атмосферы.

    реферат [29,8 K], добавлен 18.01.2009

  • Газы, которые входят в состав атмосферы; их процентное содержание в атмосфере и их время жизни. Роль и значение в жизни различных экосистем кислорода, азота и углекислого газа. Защита озоном живых организмов от вредного ультрафиолетового излучения.

    реферат [173,1 K], добавлен 27.03.2014

  • Изучение атмосферы на метеорологических станциях. Основные методы изучения погоды. Изменение атмосферы человеком. Глобальное потепление климата как одна из серьезнейших проблем человечества. Причины увеличения содержания углекислого газа в атмосфере.

    презентация [2,0 M], добавлен 06.03.2015

  • Понятие экологии как науки, ее сущность и особенности, предмет и методы изучения, основные цели и задачи, значение в современном обществе. Разновидности экологии, их характеристика и отличительные признаки, состав и структура, основные элементы.

    реферат [65,8 K], добавлен 03.05.2009

  • Климатические условия играют важную роль в жизни людей. Существование десятков климатообразующих факторов. Наличие парниковых газов в атмосфере. Движение воздушных масс. Концентрация тропосферных аэрозолей. Солнечная радиация. Вулканическая активность.

    реферат [25,2 K], добавлен 17.02.2009

  • Основные источники антропогенных аэрозольных загрязнений воздуха. Особенности мониторинга стационарных источников газовых выбросов. Анализ причин и последствий загрязнения атмосферы газопылевыми выбросами. Расчет концентрации фторидов в растворах.

    лабораторная работа [153,4 K], добавлен 25.03.2012

  • Рассмотрение основных веществ-загрязнителей атмосферы. Свойства аэрозоля, радиоактивных веществ. Изучение данных о количестве газообразных выбросов. Анализ основных проблем общепланетарного масштаба. Охрана атмосферного воздуха, контроль, отчистка.

    реферат [34,6 K], добавлен 04.04.2015

  • Задачи мониторинга атмосферного воздуха, его основные методы. Критерии санитарно-гигиенической оценки состояния воздуха. Система государственного мониторинга состояния и загрязнения атмосферного воздуха в России, ее проблемы и пути дальнейшего развития.

    реферат [487,3 K], добавлен 15.08.2015

  • Предмет, задачи, методы исследования экологи. Структура современной экологии, ее связь с другими науками. Уровни организации живых систем. Взаимодействие природы и общества. Виды и методы экологических исследований. Основные экологические проблемы.

    реферат [71,5 K], добавлен 10.09.2013

  • Критерии и показатели оценки состояния загрязнения воздуха. Определение ресурсного потенциала воздушного бассейна. Основные природные и антропогенные загрязнители окружающей среды. Осуществление мероприятий по снижению уровня загрязненности атмосферы.

    курсовая работа [30,2 K], добавлен 13.10.2014

  • Изучение информации об источниках загрязнения воздуха, о его воздействии на условия жизни и здоровье людей. Рассмотрение методики оценки степени загрязненности воздуха городов. Сбор и анализ данных об экологическом состоянии атмосферы города Твери.

    дипломная работа [5,0 M], добавлен 07.06.2012

  • Физико-географическое описание Иркутской области, климатическая характеристика. Оценка влияния метеорологических условий на рассеяние примесей в атмосфере. Оценка состояния загрязнения атмосферы в области. Влияние загрязнения атмосферы на здоровье.

    курсовая работа [33,6 K], добавлен 04.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.