Механизмы возникновения и особенности поведения глобальных катаклизмов в космическую эру
Определение причинно-следственных связей между запусками космических ракет и глобальными катаклизмами. Виды природных катастроф. Магнитодинамическая природа геомагнетизма. Разрушение озонового слоя Земли. Меры обеспечения экологической безопасности.
Рубрика | Экология и охрана природы |
Вид | статья |
Язык | русский |
Дата добавления | 03.02.2014 |
Размер файла | 2,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
МЕХАНИЗМЫ ВОЗНИКНОВЕНИЯ И ОСОБЕННОСТИ ПОВЕДЕНИЯ ГЛОБАЛЬНЫХ КАТАКЛИЗМОВ В КОСМИЧЕСКУЮ ЭРУ
Вертинский П. А.,
DOCTOR OF SCIENCE, HONORIS CAUSA (МАЕ)
pavel-35@mail.ru
г. Усолье-Сибирское
ПРЕДИСЛОВИЕ
21.12.2004 осуществлен запуск мощного КЛА с космодрома на мысе Канаверал, а 25.12.2004 произошло землетрясение в Индийском океане, породившее страшное цунами в Индонезии, подтвердившее худшие опасения автора о причинно-следственных связях природных катаклизмов с современной ракетно-космической деятельностью.
Вот уже истекает 8-й год публикаций в открытых изданиях и обращений автора в адреса специализированных ведомст, на которые пришли лишь редкие ханжеские отписки канцеляристов из РОСКОСМОСА, ОНЗ РАН и др., а большинство обращений, писем и просьб остались безответными.
Письмо ведущего научного сотрудника ИЗМИРАН, профессора РГАТА, доктора ф.-м. наук Старченко С. В., приложенное к исх. № 12-47/ 6415 от 22. 07. 2005 Директора Департамента ГП в сфере ООС Ишкова А. Г. и 2) Исх.№ 661 от 07.11.2007 «Заключение» Директора центра экспертизы в сфере науки и инноваций Севастьянов Ю.С., приложенное к №65ПГ-ФАНИ-29 от 15. 02.2008 Заместителя начальника Управления ФАНИ Дроженко В. Г.
Все выше отмеченные обстоятельства делают необходимым здесь снова изложить естественнонаучные основания выводов и рекомендаций автора по существу геоэкологических проблем современной ракетно-космической деятельности.
1. СТАТИСТИКА ЗАПУСКОВ
Накопление статистических материалов в подтверждение объективности функциональных причинно-следственных связей между запусками космических ракет с глобальными катаклизмами в эру космонавтики.
В опровержение мнения канцеляристов из Роскосмоса и других ведомств, приверженных к хищническому природопользованию, Природа регулярно грозно напоминает нам об объективности своих законов. В этом свете следует особо выделить наиболее ужасные катаклизмы, последствия которых человечество не сможет забыть никогда:
I. 23.04.1986 осуществлен запуск мощного КЛА с космодрома Байконур, а 26.04.1986 произошла катастрофа на Чернобыльской АЭС.
II. 02.12.1988 осуществлен запуск мощного КЛА с космодрома на мысе Канаверал, а 07.12.1988 произошло страшное землетрясение в Спитаке (Армения).
III. 21.12.2004 осуществлен запуск мощного КЛА с космодрома на мысе Канаверал, а 25.12.2004 произошло землетрясение в Индийском океане, породившее страшное цунами в Индонезии...
IV. 17.08.2005 с борта АПЛ "Екатеринбург" запущена ракета Р-29РМ, и спустя 30 минут головная часть ракеты успешно поразила цель на полигоне "Кура" на Камчатке, а 23. 08. 2005 у Багамов начал формироваться ураган Катрина, до Нью-Орлеана (США) он пришел 27. 08. 2005.
V. 31. 05. 2008 с мыса Канаверал запущен на орбиту «Дискавери» № 35, а 03.06.2008 внезапно возобновилось, достигая магнитуд до 7 баллов 05. 06. 2008, землетрясение в провинции Сычуань (КНР).
VI. 14. 06. 2008 на мысе Канаверал посажен «Дискавери» № 35, а 19. 06. 2008 последовали многочисленные метеосообщения о невиданных наводнениях в долине Миссури и в восточных штатах Индии.
VII. 11. 08. 2009 запуск ракеты-носителя "Протон-М" с космическим аппаратом AsiaSat-5, а 17. 08. 2009 произошла авария на Саяно-Шушенской ГЭС.
VIII. Конец 2009-начало 2010 годов отмечен секретными учебно-боевыми запусками ракет, из которых сообщалось лишь, что:
24. 12. 2009 РВСН провели пуск РС-20В («Воевода») и др.
29. 12. 2009 с космодрома Байконур стартовала ракета-носитель "Протон-М" с американским спутником DirecTV-12, а 12. 01. 2010 землетрясение на Гаити М 7.
IX. 22. 02. 2010 - на мысе Канаверал приземлился «Индевор», а 27. 02. 2010 в Чили (Сантяго) землетрясение М 8,8.
X. 17.04.10Шаттл Discovery STS-131 отстыковался от МКС и перешёл в режим автономного полёта, и 20.04.10 осуществлена успешная посадка шаттла Discovery STS-131, а 22. 04. 2010 пришли сообщение всех СМИ, что в Мексиканском заливе затонула нефтяная платформа Deepwater Horizon, управляемая компанией BP (British Petroleum). Нефтяное пятно достигло побережья штата Луизиана и берегов Флориды и Алабамы.
XI. 14. 05. 2010 из Космического центра имени Кеннеди стартовал комплекс Atlantis с экипажем на МКС, а 20. 05. 2010 мостовой переход через Волгу словно огромное живое существо начал двигаться вверх-вниз с амплитудой полутора-двух метров.
XII. 02. 03. 2010 с Байконура запущены три навигационных спутника, а 04.03.2010 в средиземном море лайнер Louis Majesty попал в зону сильных волн высотой до 8 метров. Корабль получил повреждения, погибли два человека, и еще несколько получили серьезные травмы.
Инфографика с сайта eco.ria.ru свидетельствует, что все они вызваны запусками космических ракет!
Указанная трагическая статистика глобальных катаклизмов неуклонно продолжается. Например, только во втором полугодии текущего года можно отметить серию дополнительных циклонов, вызванных нарушениями магнитосферы Земли ракетно-космической деятельностью:
Так, на многочисленных сообщается: «…Успешно завершен полет космического корабля Shenzhou 9: около 6 утра по московскому времени спускаемый аппарат корабля с тайконавтами Цзин Хайпэнем (Jing Haipeng), Лю Ваном (Liu Wang) и Лю Ян (Liu Yang[) совершил мягкую посадку в провинции Внутренняя Монголия. Продолжительность полета составила 12 суток, 15 часов, 23 минуты и 35 секунд - это рекорд для китайской космонавтики…». И далее: «…В 17:15 московского времени с мыса Канаверал осуществлен пуск ракеты-носителя Delta-4 Heavy с грузом Национального разведывательного управления США NROL-15. После выхода на околоземную орбиту спутник получил официальное обозначение USA-237. О назначении полезной нагрузки не сообщается…».
В полном соответствии с выводами на основе магнитодинамической природы геомагнетизма уже 07. 07. 2012 года пошли многочисленные сообщения СМИ о новых катаклизмах, порождённых упомянутыми КЛА.
«…Побережье Краснодарского края оказалось затопленным в результате сильных ливневых дождей. Особенно пострадала курортная зона Геленджик, там за сутки выпала пятимесячная норма осадков… По данным на 9 июля, в результате удара стихии погиб 171 человек.…».
А на сайте Росбалт сообщается: «…Японский остров уходит под воду. Десять человек стали жертвами ливневых дождей и вызванных ими паводков и горных оползней на южном японском острове Кюсю. В списках пропавших без вести значатся 20 имен.
Ки-Уэст. «Исаак» приближается к побережью Флориды со скоростью около 30 километров в час…» На сайтах http://novoteka.ru и http://www.korabli.eu 26 августа 2012 г сообщается: «…На Карибский бассейн обрушился ураган «Айзек». Тропический ураган «Айзек» обрушился 25 августа 2012 года на восточную часть Кубы. В ночь с пятницы на субботу тайфун, зародившийся над Атлантикой и распространяющийся на северо-запад, налетел на южную часть Гаити, где погибли четыре человека…».
На сайте http://polsergmich.blogspot.com 26 августа 2012 года сообщается: Тайфун "Болавен" (Bolaven) - уже пятнадцатый по счету в этом году - приближается к острову Окинава на юго-западе Японии со скоростью 15 километров в час. Циклон сопровождается порывами ветра со скоростью 215 километров в час. При этом, все эти и другие сообщения СМИ обращают на себя внимание тем обстоятельством, что все они последовали после сообщений, что 19 августа 2012 года «…Старт ракеты-носителя "Зенит" вывел спутник связи "Интелсат-21" на целевую орбиту. Запуск спутника Intelsat-21 стал рекордным по точности…».
Статистика Запусков Космических Ракет в октябре 2012г.
Дата (UTC)Стартовый комплексРакета-носитель NSSDC IDИмя КАТип
1) 10 16:10:00 Канаверал SLC-37BДельта-4M+(4,2)2012-053AGPS IIF-3GPS IIF
2) 08.10 00:35 Канаверал SLC-40 Фалькон-9 2012-054A Dragon CRS-1 Dragon SpaceX 2012-054B Orbcomm OG2-1
3) 12.10 18:15 Куру ELSСоюз-СТБ 2012-055AGalileo IOV-3Галилео 2012-055BGalileo IOV-4Галилео
4) 14.10 03:25 ТайюаньВеликий поход-2C2012-056BShi Jian 9 A 2012-056CShi Jian 9 B
5) 14.10 08:37 Байконур Пл. 81/24 Протон-М / Бриз-М2012-057AIntelsat IS-23
6) 23.10 10:51 Байконур Пл. 31Союз-ФГ2012-058AСоюз ТМА-06МСоюз-ТМА М
7) 25.10 15:33 СичанВеликий поход-3C2012-059AБэйдоу DW16Бэйдоу
8) 31.10 07:41 Байконур Пл. 1Союз-У2012-060AПрогресс М-17М 04.
2. ГЕОМАГНИТНЫЕ МЕХАНИЗМЫ
В соответствии с геомагнитными механизмами геоэкологических последствий современной ракетно-космической деятельности многочисленные СМИ отметили в ОКТЯБРЕ 2012 года значительный рост числа и мощности дополнительных циклонов и землетрясений в различных районах Земли, из которых здесь обращают на себя внимание два: Ураган «Сэнди» (англ. Sandy) -- зародился 22 октября и за 6 часов превратился в тропический шторм. Последствия Тайфуна "Шонтинь": На юге Китая из-за тайфуна "Шонтинь" эвакуированы 150 тысяч человек!
Все вышеперечисленные факты порождения глобальных катаклизмов космическими запусками ракет логически продолжают аналогичную статистику, указанную в [1] и объективно подтверждают справедливость сформулированных там выводов и рекомендаций по существу оснований магнитодинамической природы геомагнетизма и влияния современной ракетно-космической деятельности на возникновение и характер поведения глобальных катаклизмов, которые здесь необходимо, не повторяясь излишне, изложить.
3. ЕСТЕСТВЕННОНАУЧНЫЕ ОСНОВАНИЯ МАГНИТОДИНАМИКИ
Как известно [7], классическая электродинамика в попытках выйти из своих противоречий вводит надуманный векторный потенциал, подчиняя его произвольным требованиям
(1)
и (2),
которые к желаемым результатам не привели. Релятивистская физика, пытаясь рассматривать магнитное и электрическое поля в четырёхмерном пространстве, в своих дифференциальных преобразованиях применяет к ним так называемый четырёх-вектор, получая результаты:
(3)
и (4),
которые по прежнему означают раздельные магнитное и электрическое поля, так и не выйдя из тупиков и парадоксов классической электродинамики. Показательным в этой связи является сравнение погрешностей, допускаемых в электродинамических расчётах при решении прямой задачи в области электромашиностроения (рис.1) и обратных задач в расчётах и проектировании волноводов (рис.2) и в исследованиях плазмы с помощью магнитных зондов (рис.3), представленных фрагментами графических зависимостей из первоисточников
Рис. 1
Рис. 2
Рис. 3
Действительно, если погрешность в проектировании электромашин составляет 10-12%, то в расчётах волноводов она достигает 50%, а в исследованиях плазмы с помощью магнитных зондов она превышает 100%. В связи с отмеченной динамикой в зависимости погрешности в электродинамических исследованиях и расчётах можно заключить, что классическая электродинамика в настоящее время вступила в свой V этап эволюции - этап самовырождения, когда в её недрах особенно интенсивно формируются новые гипотезы, идёт поиск новых подходов для обоснования новой теории, новых принципов построения новейшей теории, которая должна сменить классическую электродинамику.
Другими словами, классическая электродинамика в действительности была основана не на четырёх уравнениях Максвелла:
(5),
(6),
(7),
(8)
а на трех аксиомах, поэтому могла решать лишь плоские задачи, то есть для нее оказалось невозможным решение задач в трехмерном пространстве (“электромагнитный парадокс”, взаимодействие тороидальных обмоток, взаимодействие длинных соленоидов и др.).
Магнитодинамика заменила неадекватную аксиому (8) на адекватную
(9)
и оказалась способной успешно решать трехмерные задачи на основе четырех адекватных аксиом.
После замены в фундаментальной системе уравнений классической электродинамики неадэкватного положения, что (8), которое означает отсутствие источников магнитного поля, на соответствующий действительности принцип, что (9), оказалось возможным не только снять «электромагнитный парадокс», но и решить многие теоретические проблемы электродинамики и практические задачи электротехники.
Таким образом, принимая за начало узловых этапов эволюции электродинамики даты фундаментальных открытий и изобретений из её истории, можно графически представить эволюцию электродинамики в полном соответствии с S - образным законом эволюции систем на рис. 4:
Рис. 4 3000 1819 1858 1905 1954 Годы до н. э. Эрстед Максвелл Попов Токамак-1.
Таким образом, магнитодинамика на основе адекватного положения (9) позволяет специалистам не только снять «электромагнитный парадокс», но и решить многие теоретические проблемы электродинамики (взаимодействие «длинных соленоидов», тороидальных обмоток с токами между собой и с другими проводниками, восстановить симметрию физических эффектов в электромагнетизме, но и решать практические задачи электротехники, используя заметные электромагнитные (см. патенты РФ №№2041779, 2026768 и др.) электромеханические (см. патенты РФ №№ 1424998, 1574906 и др.) или электрохимические (см. патенты РФ №№2147555, 2197550 и др.) эффекты [8].
4. ЕСТЕСТВЕННОНАУЧНЫЕ ОСНОВАНИЯ МАГНИТОДИНАМИЧЕСКОЙ ПРИРОДЫ ГЕОМАГНЕТИЗМА
С помощью компьютерной томографии авторы работы [9] представили вид нашей планеты через платформу Тихого океана глубинным трёхгранным пирамидальным вырезом (рис. 5), убедительно подтверждая свои выводы о неоднородности мантийного вещества на различных глубинах не только по величинам сейсмических скоростей, давлений, плотности, но и по всем другим физическим свойствам.
Рис. 5 (Фиг. 21 по [9])
Рис 6 (рис. 21 по [1])
Кроме того, как достоверно установлено [10, 11] и др., что околоземное космическое пространство можно представить как на рисунке 6, где области электризованных зон ионосферы любой полярности обозначены белым цветом. Более детально показать данное распределение электричества в электризованных зонах ионосферы Земли можно на рис. 7, где показан вид сбоку на атмосферу Земли с электризованной зоной с ночной стороны вокруг тени Земли, и на рис.8 изображен вид А-А рис. 7, то есть взгляд на атмосферу Земли с ночной стороны.
Рис.7 (рис.8 по [1]) Рис. 8 (рис.9 по [1])
космический геомагнетизм катаклизм озоновый
Учитывая различные формы и размеры наэлектризованных зон, то есть различные количества электричества Qi каждой из этих зон, и различные их расстояния от центра Земли, то есть различные их линейные скорости Vi относительно поверхности Земли, приходится признать, что в результате суточного вращения Земли по её широтам текут электрические токи различных направлений и величин, которые определяются конкретными значениями указанных параметров, создавая соответствующие по (9) поля магнитного натяжения.
Объединяя теперь этот наш вывод c выводом выше о широтных ионосферных электротоках , можно сформулировать наш ответ на вопрос о природе геомагнетизма : магнитное поле Земли образовано и поддерживается в стационарном состоянии благодаря двум глобальным системам кольцевых электрических токов : широтным в ионосфере и геосферным в недрах планеты.
Другими словами, в результате своей эволюции в условиях постоянной солнечной радиации вращающаяся вокруг своей оси наша планета превратилась во вращающийся постоянный магнит, отличающийся от вращающегося магнита в опытах М. Фарадея лишь своей шарообразной формой [1].
Не повторяя здесь рассуждений в [1] по объяснению этого эффекта М. Фарадея, здесь на его основе сразу можно сделать логический вывод, что внутри нашей планеты кроме отмеченных выше постоянного магнитного поля по (9) и электрических полей вокруг локализованных зон положительного (сжатие) и отрицательного (растяжение) электричества существует также и электрическое поле: (10), которое создано вращением магнита вокруг своей оси как компенсация поля электризованной поверхности вращающегося магнита
(11) [1].
Другими словами, планета Земля со своим магнитным полем представляет собой магнитодинамическую машину в стационарном режиме работы, когда все электрические токи по всевозможным контурам между собой связаны силами электромагнитного взаимодействия.
Таким образом, вся накопленная информация о магнетизме Земли и планет Солнечной системы позволяет с магнитодинамических позиций предположить два механизма образования геомагнетизма: широтные кольцевые электрические токи вследствие суточного вращения электрических зарядов атмосферы и зарядов в недрах Земли.
Изложенные выводы о магнитодинамической природе геомагнетизма не только фактически подтверждаются, но и позволят просто объяснить известную «двугорбую» графическую зависимость величины H (х, у) - магнитной напряженности от геомагнитных координат в субтропических поясах, понять которую на основе современных геофизических представлениях невозможно.
Более того, из приведенной оценки количества электричества ионосферных зон различных широт можно также заключить, что по каждой широте тропического пояса протекает два - вечерний и утренний - ионосферных электрических тока, то есть разделенные во времени, поэтому их общее магнитное поле меньше их алгебраической суммы, что дополнительно объясняет не только наш вывод о «двугорбой» графической зависимости величины H(х, у) - магнитной напряженности от геомагнитных координат в субтропических поясах, но и поясняет причины суточных колебаний величины магнитного поля в указанном поясе широт.
Кроме того, исходя из фактического направления магнитного поля Земли и направления её вращения, необходимо отметить встречное направление этих векторов, что сразу приводит нас к выводу о положительном знаке электризации поверхности Земли. В свете этого вывода становится понятным, почему в разрядах молний земная поверхность является анодом.
5. ВЛИЯНИЕ СОВРЕМЕННОЙ РАКЕТНО-КОСМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ НА ВОЗНИКНОВЕНИЕ И ХАРАКТЕР ПОВЕДЕНИЯ ГЛОБАЛЬНЫХ КАТАКЛИЗМОВ
Таким образом, на основании тезисно изложенных вышеестественнонаучных оснований магнитодинамической природы геомагнетизма [1] вполне обоснованно можно заключить, что после запуска КЛА в ионосфере Земли образуется криволинейный цилиндрический канал с осью О1О2 длиной в несколько сотен или даже тысяч километров, в зависимости от конкретных условий запуска КЛА, а сечение этого канала исчисляется также тысячами квадратных километров! Это значит, что объём канала ионосферы, в котором рекомбинация ионов раскалённого газа реактивной струи нарушает равномерность распределения электрических зарядов на значительный период восстановления её за счёт фотоионизации и светового давления, исчисляется миллионами кубических километров, как это схематично представлено на рис.9.
Рис. 9
В свою очередь, это значит, что при возмущении магнитосферы после запуска КЛА вследствие изменения на количества электричества электризованной зоны ионосферы, через который пролегает активный участок траектории ракеты носителя КЛА, вызывая в свою очередь изменение величины соответствующего кольцевого тока по
(12),
в силу фундаментального принципа динамики систем Д,Аламбера - Лагранжа, немедленно изменяется и величина внутреннего электрического поля Земли, сразу же приводя к изменению электрических сил между геосферными электризованными зонами, чтобы обеспечить выполнение выражения
(13).
Таким образом, после запуска КЛА на поверхности Земли в местах проекций входной и выходной областей канала образуются два разноименно электризованных участка.
Данное обстоятельство приводит к созданию необходимых условий для начала работы механизма известной гравитационно-тепловой машины, чем и обеспечивается образование двух дополнительных циклонов.
Рис.10
Прямым фактическим подтверждением отмеченного выше обстоятельства являются результаты мониторинга ионосферы системой ГЛОНАС, как об этом сообщает на стр. 8 академической газеты ПОИСК № 51 от 21.12. 2007, откуда сканирован приведеннный здесь рис.10, на котором отчётливо видно на порядок-два и даже три превышение амплитуды «возмущения», к. п. д. которого не превышает доли процентов, и вывод из него исследователей ионосферы: «…Если следить за её (ионосферой) состоянием, то ни один запуск космического корабля, ракеты, спутника не останется незамеченным!..»
Именно подобные ситуации позволили Н. Ф. Реймерсу обобщить «…для энергетических процессов или воздействия на них порог «спускового крючка» или триггерного эффекта (например, при наведенных землетрясениях (!)) составляет 10-6-10-8 раз от наблюдаемой нормы энергетического состояния…».
Особое внимание на рис. 9 обращает равноправность направлений образования криволинейного цилиндра О1-О2 через слой ионосферы: снизу вверх (запуск КЛА) или сверху вниз (посадка КЛА), так как реактивные струи раскаленных газов из сопла ракеты-носителя при запуске КЛА или из сопел реактивных двигателей торможения КЛА при посадке в одинаковой степени нарушают слой ионосферы, изменяя лишь очередность образования электризованных областей на поверхности Земли под основаниями этого цилиндра.
Данный вывод фактически подтверждается при каждом рейсе КЛА типа ШАТТЛ, например, «Дискавери» № 35 запущен на орбиту к МКС 31. 05. 2008 с мыса Канаверал и посажен там же 14. 06. 2008.
Здесь только напомню сведения из интернет-сайта http://www. americanru. com/ метеосведения: затихшее после 12. 05. 2008 землетрясение в провинции Сычуань (КНР) внезапно возобновилось 03.06.2008, достигая магнитуд до 7 баллов 05. 06. 2008. свидетельствуя о возмущении магнитосферы Земли запуском «Дискавери» №35, а многочисленные метеосообщения о невиданных наводнениях в долине Миссури и в восточных штатах Индии после посадки «Дискавери» №35 подтверждают образование двух мощных дополнительных циклонов в атмосфере Земли аналогично ураганам 31. 08. 2005 «Катрина» в США и 03. 09. 2005 «Бабочка» в Японии.
6. ФАКТИЧЕСКИЕ ПРИЗНАКИ КАТАКЛИЗМОВ
Как глубоко обосновано на обширной статистической информации об интенсивности техногенного воздействия на геолого-геофизическую среду нашей планеты в монографии [12], новейшая история подразделяется на два этапа: первый в течение 1901-1950 гг. - нарастание техногенного давления, включая и первые десятки ядерных взрывов (в основном воздушного типа), и первые ракетные пуски и второй в течение 1950-1990 гг. - максимальное техногенное давление на геолого-геофизическую среду, включая тысячи ядерных взрывов и десятки тысяч тяжелых ракетных пусков.
В упомянутой монографии особое внимание привлекает таблица 1, которая ниже приведена полностью.
В этой таблице 1 обозначены: М --мелкофокусные землетрясения на глубинах Н < 70 км;
С -- среднефокусные землетрясения, 70 < Н < 300 км;
Г -- глубокофокусные землетрясения, Н > 300 км;
R -- отношение числа мелкофокусных землетрясений к сумме средне- и глубокофокусных землетрясений. Как самоочевидно из графы R приведенной таблицы, доля мелкофокусных землетрясений в новейший период истории возрастает многократно, позволяя обобщить: наведенные запусками КЛА землетрясения являются преимущественно мелкофокусными, эпицентры которых находятся на глубинах порядка 70 км и менее.
В качестве иллюстрирующего примера здесь можно вспомнить, что запуск 11. 08. 2009 ракеты-носителя "Протон-М" с космическим аппаратом AsiaSat-5 спровоцировал 16 августа в 14:38 по местному времени (11:38 мск) землетрясение магнитудой 6,9 в провинции Западная Суматра.
Таблица 1. Встречаемость землетрясений (М ?7) за 1901-1990 гг.
После первого толчка в течение суток последовали 11 новых толчков магнитудой от 5,2 до 6,1. Последний толчок был зафиксирован 17 августа в 7:35 по местному времени (4:35 мск). Его магнитуда составила 5,2. Эпицентр землетрясения располагался в 67 км к юго-востоку от города Сиберут Ментавей, глубина залегания очага оказалась мелкофокусной, то есть 32 км под уровнем моря, а 17. 08. 2009 произошла авария на Саяно-Шушенской ГЭС.
Из указанной таблицы 1. Встречаемость землетрясений (М ?7) вытекает важное следствие: так как наибольшему влиянию ионосферных возмущений подвержены ближайшие к поверхности Земли геосферные электризованные зоны, то именно малые глубины гипоцентра и выдают техногенное происхождение землетрясения. Кроме того, малые потери сейсмических волн на пути к поверхности от мелкофокусных гипоцентров и объясняют высокую [5] разрушительную мощность наведенных землетрясений.
Кроме того, так как после запуска КЛА на поверхности Земли создаются благоприятные условия для зарождения непременно двух циклонов над участками поверхности Земли С1Д1 и А2В2 (рис. 9), то с учётом электризации поверхности Земли вследствие вращения магнита (эффект М. Фарадея), то суммарные электрические поля над участками поверхности Земли С1Д1 и А2В2, многократно превосходят поля грозовых облаков, порождающих естественные смерчи и циклоны.
Данное обстоятельство и обеспечивает мощности дополнительных циклонов, отличаясь друг от друга, превосходящие мощности естественных циклонов многократно [6].
ВЫВОДЫ
На основании изложенного можно заключить, что планета Земля со своим магнитным полем представляет собой магнитодинамическую машину в стационарном режиме работы, когда все электрические токи по всевозможным контурам между собой связаны силами электромагнитного взаимодействия, из чего объективно следуют выводы:
1. После запуска КЛА в ионосфере Земли образуется криволинейный цилиндрический канал с осью О1О2 длиной в несколько сотен или даже тысяч километров, в зависимости от конкретных условий запуска КЛА, а сечение этого канала исчисляется также тысячами квадратных километров! Это значит, что объём канала ионосферы, в котором рекомбинация ионов раскалённого газа реактивной струи нарушает равномерность распределения электрических зарядов на значительный период восстановления её за счёт фотоионизации и светового давления, исчисляется миллионами кубических километров, тем самым обеспечивая образование минимум двух дополнительных циклонов в атмосфере Земли! При этом мощности дополнительных циклонов, отличаясь друг от друга, превосходят мощности естественных циклонов многократно, позволяя однозначно определить техногенный характер их происхождения.
2. При возмущении магнитосферы после запуска КЛА вследствие изменения на количества электричества электризованной зоны ионосферы, через который пролегает активный участок траектории ракеты - носителя КЛА, вызывая изменение величины соответствующего кольцевого тока и величины внутреннего электрического поля Земли, сразу же приводя к изменению электрических сил между геосферными электризованными зонами, чтобы обеспечить выполнение фундаментального положения динамики системы , запуская таким образом механизм землетрясений. При этом гипоцентры землетрясений являются мелкофокусными, что и выдаёт техногенное происхождение землетрясения. Кроме того, малые потери сейсмических волн на пути к поверхности от мелкофокусных гипоцентров и объясняют высокую разрушительную мощность наведенных землетрясений, позволяя однозначно определить техногенный характер их происхождения.
3. Вместе с тем, нам нечего возразить К. Э. Циолковскому, что «Земля - колыбель человечества, но нельзя же вечно жить в колыбели». Так как устранить последствия природных катаклизмов невозможно (нельзя оживить погибших людей, возместить материальный ущерб), то единственным способом защиты людей Земли от последствий катаклизмов может лишь профилактика этих катаклизмов, то есть предотвращение самой причины возмущения магнитосферы Земли путём переноса всех космодромов в заполярные широты. Вспомним, что все национальные космодромы предпочтительно базируются поближе к экваториальным широтам.
Поэтому единственно объективной мерой обеспечения экологической безопасности космонавтики может стать всемирный мораторий на запуски КЛА со всех космодромов, широты которых менее 72о, оставив только подвижные космодромы «Одиссей» и «Руслан», которые временно, до сооружения заполярных космодромов, могут выполнять неотложную нагрузку для обеспечения работы действующих космических программ, в том числе и обеспечение функционирования МКС, если базирование этих подвижных космодромов обеспечить за пределами широты 72о.
ЛИТЕРАТУРА
1. П.А.Вертинский. Геоэкологические проблемы современной ракетно-космической деятельности, ИрГСХА, Усолье-Сибирское-Иркутск, 2009
2.Вертинский П. А.: ГЕОЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ РАКЕТНО-КОСМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ.
3. P. A. Vertinsky THE GEOECOLOGICAL CHALLENGES OF THE MODERN SPACE ROCKET ACTIVITY
4. Вертинский П. А. ТЕХНОГЕННОЕ НАРУШЕНИЕ ЭНЕРГЕТИЧЕСКОГО БАЛАНСА ПРИРОДНОЙ СРЕДЫ.
5. Вертинский П. А. СЕЙСМИЧЕСКИЕ МОДЕЛИ ПОЛИГАРМОНИЧЕСКОГО РЕЗОНАНСА// Вестник ИРО АН ВШ РФ №1 (18), 2011, стр. 223-233.
6. Вертинский П. А. ГИДРОМЕХАНИЧЕСКИЕ ПРОЯВЛЕНИЯ СЕЙСМИЧЕСКИХ ВОЛН КАК ПРИЧИНА АВАРИИ НА САЯНО-ШУШЕНСКОЙ ГЭС// «Сибресурс-2012»,
7.П.А.Вертинский. Естественнонаучные основания стереохронодинамики. ИрГТУ, Иркутск, 2009
8.П.А.Вертинский. Электромеханические задачи магнитодинамики. Вып.2. ИрГТУ, Иркутск, 2008
9. Wei-jia Su , Robert L. Woodward, and Adam Dziewonski Degree 12 Model of Shear Velocity Heterogeneity in theMantle//J.Geophys. Res.1994. Vol. 99,№B4.P. 6945-80.
10.Атмосфера. Справочное изд. Л., Гидрометеоиздат, 1991, стр. 364, др.
11. Мизун Ю. Г. Ионосфера Земли. М., «Наука», 1985, стр.29 и др.
12. Дмитриев А. Н. и Шитов А. В. Техногенное воздействие на природные процессы Земли. Проблемы глобальной экологии. Новосибирск, И Д "Манускрипт", 2003.
Размещено на Allbest.ru
...Подобные документы
Из истории. Местоположение и функции озонового слоя. Причины ослабления озонового щита. Озон и климат в стратосфере. Разрушение озонового слоя земли хлорфторуглеводородами. Что было сделано в области защиты озонового слоя. Факты говорят сами за себя.
реферат [67,2 K], добавлен 14.03.2007Защита климата и озонового слоя атмосферы как одна из наиболее острых глобальных экологических проблем современности. Суть и причины возникновения парникового эффекта. Состояние озонового слоя над Россией, уменьшение содержания озона ("озоновая дыра").
реферат [40,3 K], добавлен 31.10.2013Влияние теплового режима поверхности Земли на состояние атмосферы. Защита планеты от ультрафиолетовой радиации озоновым экраном. Загрязнение атмосферы и разрушение озонового слоя как глобальные проблемы. Парниковый эффект, угроза глобального потепления.
реферат [39,3 K], добавлен 13.05.2013Роль озона и озонового экрана для жизни планеты. Экологические проблемы атмосферы. Озоноразрушающие вещества и механизм их действия. Влияние уменьшения озонового слоя на жизнь на Земле. Меры, принимаемые по его защите. Роль ионизаторов в жизни человека.
реферат [31,1 K], добавлен 04.02.2014Сущность и причины возникновения глобальных экологических проблем. Распространение загрязняющих веществ в атмосфере. Разрушение озонового слоя Земли. Загрязнение гидросферы и литосферы. Влияние антропогенной деятельности на животный и растительный мир.
презентация [1,8 M], добавлен 19.12.2013Озоновая дыра как локальное падение озонового слоя. Роль озонового слоя в атмосфере Земли. Фреоны - основные разрушители озона. Методы восстановления озонового слоя. Кислотные дожди: сущность, причины появления и негативное воздействие на природу.
презентация [354,1 K], добавлен 14.03.2011Озон. Озоновая дыра - разрыв озоносферы диаметром св. 1000 км. По своему воздействию на живые организмы жесткий ультрафиолет близок к ионизирующим излучениям. Образование озона. Хлорфторуглероды (ХФУ) могут вызывать разрушение озона.
реферат [164,6 K], добавлен 14.03.2007Понятие и местоположение озонового слоя, его функциональные особенности и оценка значения для биосферы Земли. Структура и элементы озонового слоя, причины его ослабления в последние десятилетия, негативные последствия данного процесса и его замедление.
презентация [339,3 K], добавлен 24.02.2013Глобальные экологические проблемы: сокращение биоразнообразия Земли, деградация экосистем; потепление климата; разрушение озонового слоя; загрязнение атмосферы, воды, земель; увеличение населения Земли. Состояние окружающей среды в Республике Беларусь.
реферат [68,8 K], добавлен 24.10.2011Сущность глобальных экологических проблем. Разрушение природной среды. Загрязнение атмосферы, почвы, воды. Проблема озонового слоя, кислотных осадков. Причины парникового эффекта. Пути решения проблем перенаселения планеты, энергетических вопросов.
презентация [1,1 M], добавлен 05.11.2014Воздействие на экосистемы первых атомных бомбардировок Японии. Рассмотрение глобальных последствий ядерной войны для жизни на Земле: климатические эффекты; разрушение озонового слоя; радиоактивное загрязнение планеты и массовая гибель живых существ.
реферат [26,2 K], добавлен 11.04.2012Принцип ценностного равноправия всего живого как основа экологической этики. Описания производственных и транспортных катастроф, которые ведут к массовой гибели живых организмов. Обзор проблем озонового слоя, загрязнения мирового океана, атмосферы, почвы.
презентация [802,0 K], добавлен 06.04.2013Противоречия социального и экономического развития человечества как причины современных глобальных экологических проблем. Разрушение природной среды, загрязнение атмосферы, почвы и воды. Проблемы озонового слоя, кислотных осадков, парникового эффекта.
доклад [20,4 K], добавлен 17.01.2012Причины возникновения и методы борьбы с глобальными экологическими проблемами: потеплением, истощением озонового слоя, сокращением биологического разнообразия, выпадением кислотных осадков. Анализ основных экологических проблем в Республике Беларусь.
презентация [83,0 K], добавлен 29.04.2015Воздействие человека на окружающую среду. Основы экологических проблем. Парниковый эффект (глобальное потепление климата): история, признаки, возможные экологические последствия и пути решения проблемы. Кислотные осадки. Разрушение озонового слоя.
курсовая работа [1,3 M], добавлен 15.02.2009Проблемы глобального экологического кризиса. Глобальное потепление климата, разрушение озонового слоя Земли, сокращение площади лесного покрова, опустынивание территорий, обеднение генетического фонда. Формы международного экологического сотрудничества.
реферат [23,0 K], добавлен 09.11.2010Озоновые дыры и причины их возникновения. Источники разрушения озонового слоя. Озоновая дыра над Антарктикой. Мероприятия по защите озонового слоя. Правило оптимальной компонентной дополнительности. Закон Н.Ф. Реймерса о разрушении иерархии экосистем.
контрольная работа [24,7 K], добавлен 19.07.2010Экологический кризис биосферы. Усилия по охране окружающей среды. Увеличение выбросов углекислого газа. Парниковый эффект и разрушение озонового слоя Земли. Борьба с оскудением почвы и обеднением водных ресурсов. Расширение обрабатываемых площадей.
реферат [27,0 K], добавлен 26.03.2011Экологическая безопасность: атмосфера, гидросфера, литосфера, биосфера. Факторы, источники, последствия экологической опасности: утоньшение озонового слоя, сокращение биоразнообразия. Зона экологического бедствия и зона чрезвычайной экологической ситуации
реферат [29,1 K], добавлен 19.10.2007Проблема сохранения мира, международного терроризма. Экологические проблемы. Изменение климата, разрушение озонового слоя, истощение запасов пресной воды, разрушение почвенного покрова. Сохранение биологического разнообразия. Демографическая проблема.
реферат [58,7 K], добавлен 24.10.2008