Загрязнение и очистка атмосферы и гидросферы

Рассмотрение источников загрязнения гидросферы и атмосферы. Изучение подходов к расчету оборудования по абсорбции и адсорбции, каталитическому и термическому обезвреживанию вредных примесей из промышленных, вентиляционных и транспортных выбросов.

Рубрика Экология и охрана природы
Вид учебное пособие
Язык русский
Дата добавления 04.03.2014
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Абсорбентами служат индивидуальные жидкости или растворы активного компонента в жидком растворителе. Во всех случаях к абсорбентам предъявляют ряд требований, среди которых наиболее существенными являются: высокая абсорбционная способность, селективность, низкое давление пара, химическая инертность по отношению к распространенным конструкционным материалам (при физической абсорбции - также к компонентам газовой смеси), не токсичность, огне- и взрывобезопасность, доступность и не высокая стоимость.

При проведении абсорбции в качестве абсорбентов применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей, органические вещества и водные суспензии различных веществ.

Если растворимость газов при 0°С и парциальном давлении 101,3 кПа составляет сотни грамм на 1кг абсорбента, то такие пары называют хорошо

растворимыми. Для удаления из технических выбросов таких газов, как NH3, НСl и HF, целесообразно применять в качестве абсорбента воду. Нецелесообразно использовать воду для очистки выбросов с нерастворимыми в ней органическими примесями. Подобные загрязнители, как правило хорошо поглощаются органическими жидкостями, среди которых могут использоваться как абсорбенты высококипящие вещества, такие как этаноламины и тяжелые предельные углеводороды (минеральные масла).

С ростом давления и снижением температуры скорость абсорбции увеличивается. Абсорбенты, работающие при отрицательных (по Цельсию) температурах, принято называть хладоносителями, а процесс абсорбции, протекающий в таких условиях - контактной конденсацией.

Абсорбционную очистку выбросов в атмосферу применяют как для извлечения ценного компонента из газа, так и для санитарной очистки газа. Считают, что целесообразно применять абсорбцию, если концентрация данного компонента в газовом потоке составляет свыше 1 %.

Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа в жидкости не сопровождается химической реакцией или, по крайней мере, влиянием этой реакции на скорость процесса можно пренебречь. Вследствие этого физическая абсорбция не сопровождается тепловым эффектом. Если в этом случае начальные потоки газа и жидкости незначительно различаются по температуре, то такую абсорбцию можно рассматривать как изотермическую.

На рис. 9 представлена принципиальная схема установки для абсорбции определенного компонента из газовой среды и последующего его выделения из абсорбента (десорбции).

На рис. 9 представлена принципиальная схема установки для абсорбции определенного компонента из газовой среды и последующего его выделения из абсорбента (десорбции).

Рис. 9 Принципиальная схема установки для абсорбционно-десорбционного улавливания определенного компонента из газовой смеси: 1 - абсорбер; 2 - холодильник; 3 - десорбер; 4 - теплообменник

Газовая смесь, содержащая извлекаемый из нее компонент, поступает в абсорбер, где происходит контакт с абсорбентом, который поглощает данный компонент. Газ, очищенный от компонента, удаляется (очищенный воздух может быть выброшен в атмосферу), а раствор поглотителя, содержащий абсорбированный компонент, поступает в теплообменник, где нагревается. Нагретый раствор насосом подается в десорбер, где из него выделяется (десорбируется) поглощенный компонент путем испарения в результате нагревания поглотителя паром. Поглотитель, освобожденный от компонента, поступает в теплообменник, где отдает теплоту абсорбенту при его противоточном движении в десорбер, а затем направляется в холодильник, пройдя который, снова поступает в абсорбер. Круг замкнулся. По такому циклу работает установка для абсорбционно-десорбционного улавливания определенных паров и газов из газовой смеси (из воздуха).

2.6 Технология абсорбционной очистки промышленных выбросов

Одной из основных областей применения абсорбции является удаление водорастворимых газообразных загрязнений из отходящих газов различных процессов. Примерами таких загрязнений являются HCl, SO2, NO2,HF, SiF4, NH3 и H2S. Из-за ограниченной растворимости SO2 в воде обычно применяют щелочную абсорбирующую жидкость, что позволяет нейтрализовать SO2 в абсорбирующей жидкой пленке, снизить давление паров SO2 и увеличить движущую силу.

Очистка газов от SО2 ведется преимущественно хемосорбционными методами на основе извести или известняка. При абсорбции известковым молоком процесс протекает следующим образом:

Высокая степень улавливания SO2 достигается при использовании аммиачного способа:

При нагревании бисульфат аммония разлагается:

Недостаток метода - большой расход NН3, сложность схем улавливания и регенерации полученных растворов. Однако поскольку продукты сгорания содержат CO2, в случае сильно щелочных растворов (рН > 9) будут абсорбироваться большие количества CO2, что приведет к повышенному расходу щелочи и твердых реагентов для удаления отходов. Обычно величину рН абсорбирующей жидкости на выходе газового потока поддерживают равной 8,0…8,5. Для поддержания в отработанной жидкости рН > 7 соответствующим образом регулируют отношение скоростей жидкого и газового потоков. Чтобы движущая сила была максимальной, жидкость и газ направляют противотоком.

Насадочные и тарельчатые колонны, обеспечивающие наиболее эффективный контакт газа с жидкостью, являются оптимальными аппаратами для абсорбции в отсутствие твердых частиц (как присутствующих в газовом потоке, так и образующихся в результате реакции осаждения). Известь (а также известняк) - доступные и недорогие щелочные агенты - часто применяются для достижения требуемого рН абсорбирующей жидкости. В то же время многие соли кальция, такие как сульфаты, сульфиты и фториды, имеют ограниченную растворимость. При использовании их растворов возможна забивка трубопроводов, форсунок, насадки и т. п., что представляет серьезную проблему в системах обессеривания топочных газов. Для абсорбции HF часто используют открытые распыливающие камеры, однако при обессеривапии в этих аппаратах также возможны указанные трудности. Успешно был проведен процесс очистки в скрубберах Вентури и в турбулентных контактных аппаратах.

При абсорбции NO2 серьезные проблемы связаны с тем, что из каждых 3 молей диоксида, поглощенных водой, образуется, наряду с азотнойкислотой, 1 моль NO. Последний необходимо вновь окислять до NO2 (реакция протекает с малой скоростью) и снова подавать на абсорбцию. При уменьшении концентраций оксида азота общая скорость процесса снижается. При практическом осуществлении абсорбции в насадочных и в тарельчатых колоннах полное удаление никогда не достигается и выбрасываемые в атмосферу газы часто имеют коричневую окраску. Полной очистки можно достичь путем дополнительного промывания щелочью, однако удаление образующихся при этом продуктов связано с очень большими трудностями. Серная кислота хорошо поглощает NOx, однако и в этом случае возникает проблема утилизации или удаления отработанных растворов. Также проводят абсорбцию NO2 отогнанной азотной кислотой с использованием каталитической насадки, на которой происходит окисление образующегося NO.

Пары органических соединений, не растворимых в воде, обычно абсорбируют органическими малолетучими жидкостями. На практике используют процессы удаления H2S и кислых продуктов для очистки углеводородных газов, основанные на абсорбции органическими аминами.

На рис. 10 показана схема абсорбции СО2 раствором моноэтаноламина с рециркуляцией жидкости и десорбцией, применяемая в производстве жидкой углекислоты и сухого льда.

Рис. 10 Схема абсорбционной установки для извлечения углекислого газа из дымовых газов водным раствором моноэтаноламина

Охлажденные до температуры 30…40°С и отмытые от механических примесей и сернистых соединений дымовые газы, содержащие CO2, подаются снизу в абсорбер 1, заполненный нерегулярной насадкой 4 из колец Рашига. Насадка орошается 10…30 % - м раствором моноэтаноламина, подаваемым через распределитель 3. Стекающий по насадке раствор контактирует с поднимающимися вверх дымовыми газами, насыщается углекислотой и собирается в нижней части абсорбера. Вследствие выделения теплоты абсорбции температура раствора и отходящих газов повышается. Проходя через установленный в верхней части абсорбера трубчатый водяной холодильник 2, газы охлаждаются до температуры, которую они имели на входе.

Насыщенный раствор из абсорбера насосом 5 через рекуперативный теплообменник 8 направляется в десорбер 12. В теплообменнике раствор нагревается за счет охлаждения истощенного раствора, отводимого из десорбера. Десорбер 12 состоит из двух частей: нижняя представляет собой кипятильник 9, выполненный в виде вертикального кожухотрубного теплообменника, верхняя 13 заполнена насадкой и работает как ректификатор. Насыщенный раствор распределяется по насадке ректификатора и стекает по ней, контактируя с поднимающейся вверх парогазовой смесью. Из ректификатора по наружному трубопроводу раствор перетекает в нижнюю часть трубного пространства кипятильника 9. Здесь он нагревается за счет теплоты конденсации водяного пара, подаваемого в межтрубное пространство, и закипает. Выделяющаяся при кипении раствора парогазовая смесь через трубу 14 направляется в ректификатор 13 десорбера, а истощенный раствор моноэтаноламина отводится на охлаждение в рекуперативный теплообменник 8, а затем насосом 7 через холодильник 6 направляется на орошение насадки 4 абсорбера. Таким образом абсорбционнодесорбционный цикл замыкается.

Выходящая из верхней части десорбера парогазовая смесь, состоящая из углекислого газа, паров моноэтаноламина и воды, поступает в холодильник 10, где пары моноэтаноламина и воды конденсируются. Конденсат отделяется в сборнике конденсата 11, а углекислый газ направляется на отмывку от следов моноэтаноламина, а затем на сжижение.

Газообразные загрязнения могут быть удалены с помощью твердых абсорбентов, так, например, удаляется H2S при прохождении через слой гранулированного оксида железа Fe2O3. В процессе обработки оксид сульфидируется, и через некоторое время его регенерируют, обрабатывая воздухом. Оксид цинка также был использован для удаления серы. Проводилось также гидрирование органических серусодержащих соединений на твердых катализаторах, содержащих сульфиды кобальта, никеля и молибдена. В результате чего достигалось выделение серы из органической молекулы. Обычно используются неподвижные слои материала, хотя описано и применение ожиженного слоя оксида железа. Эффективность реакций, как правило, невелика, что связано с недостаточно большими площадями поверхности твердых материалов. В настоящее время специалисты технологи рассматривают подобные методы как устаревшие и малоэффективные. Однако при интенсивной разработке процессов газификации и ожижения угля эти методы снова могут приобрести практическое значение, поскольку следует ожидать, что будут разработаны твердые абсорбенты с большой площадью поверхности, пригодные для использования в ожиженных и в движущихся слоях.

В последнее время были предприняты попытки использовать твердую известь и известняк для обессеривания топочных газов. Однако в этих экспериментах степень удаления SO2 редко превышала 50…60 %. Намного более эффективное удаление SO2 было достигнуто при использовании жидких суспензий, что привело к прекращению работ с твердыми материалами.

2.7 Конструкции и принцип действия абсорберов

Процессы абсорбции проводят в специальных аппаратах - абсорберах.

Абсорбция, как и другие процессы массопередачи, протекает на развитой поверхности раздела фаз. Для интенсификации процесса абсорбции необходимы аппараты с развитой поверхностью контакта между жидкой и газовой фазами (абсорбента с газом-носителем). По способу образования этой поверхности и диспергации абсорбента, их можно подразделить на четыре основные группы: 1) пленочные; 2) насадочные; 3) барботажные (тарельчатые); 4) распыливающие или распылительные (брызгальные).

В пленочных абсорберах поверхностью контакта фаз является поверхность жидкости, текущей по твердой, обычно вертикальной стенке. К этому виду аппаратов относятся: 1) трубчатые абсорберы; 2) абсорберы с плоскопараллельной или листовой насадкой; 3) абсорберы с восходящим движением пленки жидкости.

Насадочные абсорберы представляют собой колонны, заполненные насадкой - твердыми телами различной формы, которая служит для увеличения поверхности контакта соприкасающихся фаз - газа и жидкости.

Многочисленные типы барботажных абсорберов можно разделить на три основные группы:

- абсорберы со сплошным барботажным слоем, в которых осуществляется непрерывный контакт между фазами;

- абсорберы тарельчатого типа со ступенчатым контактом между фазами, причем ступени (тарелки) размещены в одном аппарате;

- абсорберы с механическим перемешиванием жидкости.

Барботажные абсорберы тарельчатого типа, имеющие наибольшее применение, выполняют в виде колонн круглого (иногда прямоугольного) сечения, по высоте которых расположены той или иной конструкции тарелки, причем на каждой тарелке осуществляется одна ступень контакта. Таким образом, в рассматриваемых абсорберах происходит ступенчатый контакт с соединением ступеней противотоком: газ поступает в нижнюю часть колонны и выходит сверху; жидкость подводится сверху и выходит снизу. На каждой тарелке, в зависимости от ее конструкции, может осуществляться тот или иной вид движения фаз, обычно перекрестный ток или полное перемешивание жидкости.

В распыливающих абсорберах контакт между фазами достигается распыливанием или разбрызгиванием жидкости в газовом потоке. Эти абсорберы подразделяют на следующие группы:

1) форсуночные распыливающие абсорберы, в которых жидкость распыляется на капли форсунками;

2) скоростные прямоточные распыливающие абсорберы, в которых распыление жидкости осуществляется за счет кинетической энергии газового потока;

3) механические распыливающие абсорберы, в которых жидкость распыляется вращающимися деталями.

По способу организации массообмена абсорбционные устройства принято делить на аппараты с непрерывным и ступенчатым контактом фаз. К устройствам с непрерывным контактом можно отнести насадочные колонны, распылительные аппараты (полые скрубберы, скрубберы Вентури, ротоклоны и др.), однополочные барботажные и пенные устройства, а к устройствам со ступенчатым контактом - тарельчатые колонны, многополочные барботажные и пенные устройства.

Часть подобных устройств применяются для мокрой пылеочистки. В принципе их можно было бы использовать и для совместного улавливания дисперсных и газовых загрязнителей, однако осуществить это на практике удается редко. Очистные устройства создавались и совершенствовались либо для поглощения газообразных примесей, либо для пылезолоулавливания. Поэтому современные абсорберы для улавливания газообразных примесей не приспособлены для обработки потоков с дисперсными загрязнителями, а высокоэффективные пылезолоуловители, как правило, непригодны для сколько-нибудь существенного извлечения газообразных вредностей. Серийные мокрые пылеуловители могут быть использованы только для предварительной обработки с целью освобождения газового потока от дисперсных примесей перед абсорбционной обработкой.

Для абсорбции газовых загрязнителей наиболее часто используются насадочные и тарельчатые колонны.

2.7.1 Насадочные абсорберы

Насадочные абсорберы получили наибольшее применение в промышленности. Эти абсорберы (рис. 2.5.1) представляют собой колонны, заполненные насадкой - твердыми телами различной формы. В насадочных колоннах обеспечивается лучший контакт обрабатываемых газов с абсорбентом, чем в полых распылителях, благодаря чему интенсифицируется процесс массопереноса и уменьшаются габариты очистных устройств.

Рис. 11 Схемы насадочных абсорберов: а - со сплошным слоем насадки; б - с секционной загрузкой насадки: 1 - корпус; 2 - распределитель жидкости; 3 - насадка; 4 -опорные решетки; 5 - перераспределитель жидкости; 6 - гидравлические затворы; в - эмульгационная насадочная колонна: 1 - насадка; 2 - сетка, фиксирующая насадку; 3 - гидравлический затвор; 4 - опорная решетка; 5 - распределитель газа

В насадочной колонне 1 (рис. 3.3, а, б) насадка 3 укладывается на опорные решетки 4, имеющие отверстия или щели для прохождения газа и стока жидкости, которая достаточно равномерно орошает насадку 3 с помощью распределителя 2 и стекает по поверхности насадочных тел в виде тонкой пленки вниз. Однако равномерное распределение жидкости по всей высоте насадки по сечению колонны обычно не достигается, что объясняется пристеночным эффектом. Вследствие этого жидкость имеет тенденцию растекаться от центральной части колонны к ее стенкам и практически полностью оттесняется от места ввода абсорбента к периферии колонны на расстоянии, равном четырем-пяти ее диаметрам. Поэтому часто насадку в колонну загружают секциями высотой в четыре-пять диаметров (но не более 3…4 метров в каждой секции), а между секциями (слоями насадки) устанавливают перераспределители жидкости 5 (рис. 3.3, б), назначение которых состоит в направлении жидкости от периферии колонны к ее оси.

Рассмотрим гидродинамические режимы в противоточных насадочных колоннах, используя графическую зависимость гидравлического сопротивления орошаемой насадки от скорости газа в колонне (рис. 3.5).

Первый режим - пленочный - наблюдается при небольших плотностях орошения на малых скоростях газа. В этом режиме отсутствует влияние газового потока на скорость стекания по насадке жидкой пленки и, следовательно, на количество задерживаемой в насадке жидкости. Пленочный режим заканчивается в первой переходной точке А на рис. 2.5, называемой точкой подвисания.

Второй режим - режим подвисания (или торможения}. После точки А повышение скорости газа приводит к заметному увеличению сил трения о жидкость на поверхности контакта фаз и подтормаживанию жидкости газовым потоком. Вследствие этого скорость течения пленки жидкости уменьшается, а ее толщина и количество удерживаемой жидкости в насадке увеличиваются. В режиме подвисания с повышением скорости газа нарушается спокойное течение пленки жидкости, появляются завихрения, брызги, увеличивается смоченная поверхность насадки и соответственно интенсивность процесса массопередачи. Этот режим заканчивается в точке В.

Третий режим - режим эмульгирования -- возникает при превышении скорости, соответствующей точке В. В результате происходит накопление жидкости в свободном объеме насадки до тех пор, пока сила трения междустекающей жидкостью и поднимающимся по колонне газом не уравнове сит силу тяжести жидкости, находящейся в насадке. При этом наступает обращение, или инверсия, фаз (жидкость становится сплошной фазой, а газ - дисперсной). Образуется газожидкостная дисперсная система, по внешнему виду напоминающая барботажный слой (пену) или азожидкостную эмульсию. Режим эмульгирования начинается в самом узком сечении насадки, плотность засыпки которой неравномерна по сечению колонны. Путем тщательного регулирования подачи газа режим эмульгирования может быть установлен по всей высоте насадки .

Четвертый режим (от точки С на рис. 3.5 и выше) - режим уноса, или обращенного движения жидкости, выносимой из аппарата газом. Этот режим в технике не используется

Если необходимо провести глубокое разделение газовой смеси, требующее большого числа единиц переноса, то в этом случае рациональнее использовать мелкую насадку. Мелкая насадка предпочтительнее при про ведении абсорбции под повышенным давлением, так как при этом потеря напора в абсорбере составит малую долю от общего давления газовой смеси.

Насадочные абсорберы должны работать с максимально возможными скоростями газового потока, при которых насадка не захлебывается. Обычно эта скорость превышает половину скорости захлебывания. Для колец Рашига ее можно принимать до 60...80%, для седлообразных насадок - до 60...85%, для насадок Теллера - до 75...90% от скорости захлебывания. Параметры начала захлебывания определяют по эмпирическим соотношениям.

В случае загрязненных сред целесообразно применять регулярные насадки, в том числе при работе под повышенным давлением. Для этих сред можно использовать также так называемые абсорберы с плавающей насадкой. В качестве насадки в таких абсорберах обычно применяют легкие полые шары из пластмассы, которые при достаточно высоких скоростях газа переходят во взвешенное состояние. Вследствие их интенсивного взаимодействия такая насадка практически не загрязняется.

В абсорберах с плавающей насадкой возможно создание более высоких скоростей, чем в колоннах с неподвижной насадкой. При этом увеличение скорости газа приводит к расширению слоя шаров, что способствует снижению скорости газа в слое насадки. Поэтому существенное увеличение скорости газового потока в таких аппаратах (до 3…5 м/с) не приводит к значительному возрастанию их гидравлического сопротивления.

К основным достоинствам насадочных колонн следует прежде всего отнести простоту устройства и низкое гидравлическое сопротивление, а к недостаткам - сложность отвода теплоты, плохую смачиваемость насадки при низких плотностях орошения, большие объемы насадки вследствие недостаточно высокой ее эффективности (по сравнению с тарельчатыми аппаратами).

Вывод

Необходимо отметить следующие основные источники загрязнения окружающей среды, при рассмотрении АБЗ: дымовая труба, загрузочная и разгрузочная коробки сушильного барабана, места загрузки, разгрузки, грохочения сухих минеральных материалов, помимо этого выделение отработавших газов при работе автомобильной базы завода и при сгорании топлива, используемого в технологическом процессе приготовления асфальтобетонной смеси.

Природоохранные мероприятия на подобных объектах должны реализовываться при разработке плана производства таким образом, чтобы рост производственных мощностей выпуска продукции сопровождался соответствующим ростом производительности очистных сооружений, повышением качества очистки.

В качестве сооружения для защиты атмосферного воздуха от загрязнений, выделяемых АБЗ, используют аппараты сухой и мокрой очистки отходящих газов и запыленного вентиляционного воздуха. К первым относятся циклоны, а ко вторым - скрубберы Вентури в комплексе с каплеуловителями.

В данной расчетной работе была разработана система очистки газов на АБЗ, в которую вошли группа циклонов марки ЦН-11 в прямоугольной компоновке, скруббер Вентури типа СВ 210/120-1200 с производительностью 7-2 тыс.м3/ч.

Размещено на Allbest.ru

...

Подобные документы

  • Безотходная и малоотходная технология. Очистка газовых выбросов от вредных примесей. Очистка газов в сухих механических пылеуловителях. Промышленные способы очистки газовых выбросов от парообразных токсичных примесей. Метод хемосорбции и адсорбции.

    контрольная работа [127,3 K], добавлен 06.12.2010

  • Загрязнение атмосферы. Виды загрязнения гидросферы. Загрязнение океанов и морей. Загрязнение рек и озер. Питьевая вода. Актуальность проблемы загрязнения водоемов. Спуск сточных вод в водоемы. Методы очистки сточных вод.

    реферат [47,3 K], добавлен 06.10.2006

  • Общая характеристика проблемы загрязнения гидросферы отбросами производственной деятельности. Рассмотрение основных источников загрязнения. Изучение механических, физических и биологических способов очистки сточных вод. Описание последствий загрязнения.

    презентация [2,4 M], добавлен 09.11.2015

  • Производства, влияющие на окружающую среду. Пути загрязнения атмосферы при строительстве. Меры защиты атмосферы. Источники загрязнения гидросферы. Санирование и очистка территорий. Источники сверхнормативного шума, связанные со строительной техникой.

    презентация [11,7 K], добавлен 22.10.2013

  • Основные загрязнители атмосферного воздуха и глобальные последствия загрязнения атмосферы. Естественные и антропогенные источники загрязнения. Факторы самоочищения атмосферы и методы очистки воздуха. Классификация типов выбросов и их источников.

    презентация [468,7 K], добавлен 27.11.2011

  • Характеристика основных источников загрязнения атмосферного воздуха в индустриальных странах: промышленность, бытовые котельные, транспорт. Анализ вредных примесей пирогенного происхождения. Аэрозольное загрязнение атмосферы, фотохимический туман (смог).

    реферат [25,2 K], добавлен 01.06.2010

  • Количество вредных веществ, выделяемых в атмосферу. Подразделение атмосферы на слои в соответствии с температурой. Основные загрязнители атмосферы. Кислотные дожди, влияние на растения. Уровни фотохимического загрязнения воздуха. Запыленность атмосферы.

    реферат [29,8 K], добавлен 18.01.2009

  • Виды и источники загрязнения атмосферного воздуха, основные методы и способы его очистки. Классификация газоочистного и пылеулавливающего оборудования, работа циклонов. Сущность абсорбции и адсорбции, системы очистки воздуха от пыли, туманов и примесей.

    курсовая работа [1,1 M], добавлен 09.12.2011

  • Загрязнение атмосферы в результате антропогенной деятельности, изменение химического состава атмосферного воздуха. Природное загрязнение атмосферы. Классификация загрязнения атмосферы. Вторичные и первичные промышленные выбросы, источники загрязнения.

    реферат [24,1 K], добавлен 05.12.2010

  • Биотические факторы среды. Охрана атмосферы и вод. Каталитическая очистка. Пути снижения и полной ликвидации загрязнения атмосферы. Эффективность работы очистных сооружений. Безотходная технология. Правовая охрана атмосферы. Загрязнение водных ресурсов.

    контрольная работа [29,3 K], добавлен 13.10.2008

  • Речной сток как основа водных ресурсов России. Принципы использования воды для хозяйственных целей. Характеристика источников загрязнения внутренних водоёмов. Экологические последствия загрязнения океана и вообще всей гидросферы нефтью и нефтепродуктами.

    доклад [2,8 M], добавлен 07.12.2009

  • Последствия загрязнения приземной атмосферы. Отрицательное влияние загрязненной атмосферы на почвенно-растительный покров. Состав и расчет выбросов загрязняющих веществ. Трансграничное загрязнение, озоновый слой Земли. Кислотность атмосферных осадков.

    реферат [547,7 K], добавлен 12.01.2013

  • Важнейшие экологические функции атмосферы. Характеристика антропогенного загрязнения воздушной среды России. Динамика выбросов загрязняющих веществ. Анализ состояния воздушной среды Оренбургской области. Основные последствия загрязнения атмосферы.

    дипломная работа [2,4 M], добавлен 30.06.2008

  • Источники загрязнения атмосферы, гидросферы и литосферы. Методы их защиты от химических примесей. Системы и аппараты пылеулавливания, механические методы очистки запыленного воздуха. Эрозионные процессы. Нормирование загрязнений в почвенном покрове.

    курс лекций [71,0 K], добавлен 03.04.2015

  • Распределение вклада различных источников в загрязнение нефтью Мирового океана. Источники загрязнения гидросферы нефтяными углеводородами. Биологические и физические изменения, обусловленные загрязнением гидросферы. Токсичность отдельных фракций нефти.

    презентация [4,9 M], добавлен 07.03.2014

  • Основные источники загрязнения атмосферы в сульфат-целлюлозном производстве. Метрологический учет сточных вод. Содержание пылевого уноса в дымовых газах. Основные источники загрязнения гидросферы. Сбросы в реки и почву. Применение гидролизного лигнина.

    реферат [399,8 K], добавлен 17.02.2011

  • Инвентаризация источников выбросов, определение доминирующих вредностей. Расчёт рассеивания вредных веществ и установление предельно допустимых выбросов. Определение размера санитарно-защитной зоны и экологического ущерба от загрязнения атмосферы.

    курсовая работа [2,7 M], добавлен 27.08.2012

  • Характеристика технологического оборудования котельной как источника загрязнения атмосферы. Расчет параметров выбросов загрязняющих веществ в атмосферу. Использование критериев качества атмосферного воздуха при нормировании выбросов вредных веществ.

    курсовая работа [290,1 K], добавлен 18.02.2013

  • Загрязнение атмосферы, гидросферы и почвы техногенного и антропогенного происхождения. Источники и масштабы опасных и вредных производственных факторов. Взаимодействие и трансформация загрязнений. Действие ядерного, химического и биологического оружия.

    презентация [584,6 K], добавлен 28.11.2013

  • Состояние гидросферы, литосферы, атмосферы Земли и причины их загрязнения. Методы утилизации отходов предприятий. Способы получения альтернативных источников энергии, не наносящих вреда природе. Влияние загрязнений окружающей среды на здоровье человека.

    реферат [28,0 K], добавлен 02.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.