Энергия океана

Рассмотрение экологически чистой и неиссякаемой энергии океана как заменителя ископаемых видов топлива. Анализ использования разницы температур, приливов и отливов, колебаний волн в качестве альтернативных источников энергии. Выделение газов из воды.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 16.04.2014
Размер файла 26,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

«Белгородский Государственный Технологический Университет

им. В.Г. Шухова»

Кафедра «Энергетика теплотехнологий»

Реферат

по дисциплине «Нетрадиционные и возобновляемые источники электроэнергии»

по теме: «Энергия океана»

Выполнил:

Студент группы ЭТ - 32

Мусаев А.З.

Принял: доц.

Васильев Б.П.

Белгород, 2014

Известно, что запасы энергии в Мировом океане колоссальны. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 10^26 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 10^18 Дж. Однако, пока что люди умеют утилизировать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Однако происходящее весьма быстрое истощение запасов ископаемых топлив (прежде всего нефти и газа), использование которых к тому же связано с существенным загрязнением окружающей среды (включая сюда также и тепловое "загрязнение", и грозящее климатическими последствиями повышение уровня атмосферной углекислоты), резкая ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляет ученых и инженеров уделять все большее внимание поискам возможностей рентабельной утилизации обширных и безвредных источников энергии и не только перепадов уровня воды в реках, но и солнечного тепла, ветра и энергии в Мировом океане.

Широкая общественность, да и многие специалисты еще не знают, что поисковые работы по извлечению энергии из морей и океанов приобрели в последние годы в ряде стран уже довольно большие масштабы и что их перспективы становятся все более обещающими.

Наиболее очевидным способом использования океанской энергии представляется постройка приливных электростанций (ПЭС). С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт*ч. Советский инженер Бернштейн разработал удобный способ способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт в Мезенском заливе на Баренцевом море.

Неожиданной возможностью океанской энергетики оказалось выращивание с плотов в океане быстрорастущих гигантских водорослей келп, легко перерабатываемых в метан для энергетической замены природного газа. По имеющимся оценкам, для полного обеспечения энергией каждого человека - потребителя достаточно одного гектара плантаций келпа.

Большое внимание приобрела "океанотермическая энергоконверсия" (ОТЭК), т.е. получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосом глубинными океанскими водами, например при использовании в замкнутом цикле турбины таких легкоиспаряющихся жидкостей как пропан, фреон или аммоний. В какой-то мере аналогичными, но как пока кажется, вероятно, более далекими представляются перспективы получения электроэнергии за счет различия между соленой и пресной, например морской и речной водой.

Уже немало инженерного искусства вложено в макеты генераторов электроэнергии, работающих за счет морского волнения, причем обсуждаются перспективы электростанций с мощностями на многие тысячи киловатт. Еще больше сулят гигантские турбины на таких интенсивных и стабильных океанских течениях, как Гольфстрим.

Представляется, что некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время. Вместе с тем следует ожидать, что творческий энтузиазм, искусство и изобретательность научно-инженерных работников улучшить существующие и создадут новые перспективы для промышленного использования энергетических ресурсов Мирового океана. Думается, что при современных темпах научно-технического прогресса существенные сдвиги в океанской энергетике должны произойти в ближайшие десятилетия.

Океан наполнен внеземной энергией, которая поступает в него из космоса. Она доступна и безопасна, и не загрязняет окружающую среду, неиссякаема и свободна.

Из космоса поступает энергия Солнца. Она нагревает воздух и образует ветры, вызывающие волны. Она нагревает океан, который накапливает тепловую энергию. Она приводит в движение течения, которые в то же время меняют свое направление под воздействием вращения Земли.

Из космоса же поступает энергия солнечного и лунного притяжения. Она является движущей силой системы Земля-Луна и вызывает приливы и отливы.

Океан - это не плоское, безжизненное водное пространство, а огромная кладовая беспокойной энергии. Здесь плещут волны, рождаются приливы и отливы, пересекаются течения, и все это наполнено энергией.

Бакены и маяки, использующие энергию волн, уже усеяли прибрежные воды Японии. В течение многих лет бакены - свистки береговой охраны США действуют благодаря волновым колебаниям. Сегодня вряд ли существует прибрежный район, где не было бы своего собственного изобретателя, работающего над созданием устройства, использующего энергию волн.

Начиная с 1966 года два французских города полностью удовлетворяют свои потребности в электроэнергии за счет энергии приливов и отливов. Энергоустановка на реке Ранс (Бретань), состоящая из двадцати четырех реверсивных турбогенераторов, использует эту энергию. Выходная мощность установки 240 мегаватт - одна из наиболее мощных гидроэлектростанций во Франции.

В 70-х годах ситуация в энергетике изменилась. Каждый раз, когда поставщики на Ближнем Востоке, в Африке и Южной Америке поднимали цены на нефть, энергия приливов становилась все более привлекательной, так как она успешно конкурировала в цене с ископаемыми видами топлива.

Вскоре за этим в Советском Союзе, Южной Корее и Англии возрос интерес к очертаниям береговых линий и возможностям создания на них энергоустановок. В этих странах стали всерьез подумывать об использовании энергии приливов волн и выделять средства на научные исследования в этой области, планировать их.

Не так давно группа ученых океанологов обратила внимание на тот факт, что Гольфстрим несет свои воды вблизи берегов Флориды со скоростью 5 миль в час. Идея использовать этот поток теплой воды была весьма заманчивой.

Возможно ли это? Смогут ли гигантские турбины и подводные пропеллеры, напоминающие ветряные мельницы, генерировать электричество, извлекая энергию из течений и воли? "Смогут" - таково в 1974 году было заключение Комитета Мак-Артура, находящегося под эгидой Национального управления по исследованию океана и атмосферы в Майами (Флорида). Общее мнение заключалось в том, что имеют место определенные проблемы, но все они могут быть решены в случае выделения ассигнований, так как "в этом проекте нет ничего такого, что превышало бы возможности современной инженерной и технологической мысли".

Один из ученых, наиболее склонный к прогнозам на будущее, предсказал, что электричество, полученное при использовании энергии Гольфстрима, может стать конкурентоспособным уже в 80-е годы.

В океане существует замечательная среда для поддержания жизни, в состав которой входят питательные вещества, соли и другие минералы. В этой среде растворенный в воде кислород питает всех морских животных от самых маленьких до самых больших, от амебы до акулы. Растворенный углекислый газ точно так же поддерживает жизнь всех морских растений от одноклеточных диатомовых водорослей до достигающих высоты 200-300 футов (60-90 метров) бурых водорослей.

Морскому биологу нужно сделать лишь шаг вперед, чтобы перейти от восприятия океана как природной системы поддержания жизни к попытке начать на научной основе извлекать из этой системы энергию.

При поддержке военно-морского флота США в середине 70-х годов группа специалистов в области исследования океана, морских инженеров и водолазов создала первую в мире океанскую энергетическую ферму на глубине 40 футов (12 метров) под залитой солнцем гладью Тихого океана вблизи города Сан-Клемент. Ферма была небольшая. По сути своей, все это было лишь экспериментом. На ферме выращивались гигантские калифорнийские бурые водоросли.

По мнению директора проекта доктора Говарда А. Уилкокса, сотрудника Центра исследования морских и океанских систем в Сан-Диего (Калифорния), "до 50 % энергии этих водорослей может быть превращено в топливо - в природный газ метан. Океанские фермы будущего, выращивающие бурые водоросли на площади примерно 100 000 акров (40 000 га), смогут давать энергию, которой хватит, чтобы полностью удовлетворить потребности американского города с населением в 50 000 человек".

Океан всегда был богат энергией волн, приливов и течений. В древние времена, наблюдая движение водных потоков, рыбаки ничего не знали о "приливной энергии" или о "выращивании бурых водорослей", однако они знали, что выходить в море легче во время отлива, а возвращаться обратно - во время прилива. Им, конечно, было известно и о том, что иногда волны тяжело и страшно бьют о берег, выбрасывая камни на его скалы, и о "морских реках", которые всегда выносили их к нужным островам, и о том, что они всегда смогут прокормиться моллюсками, ракообразными, рыбой и съедобными водорослями, растущими в океане.

В наши дни, когда возросла необходимость в новых видах топлива, океанографы, химики, физики, инженеры и технологи обращают все большее внимание на океан как на потенциальный источник энергии.

В океане растворено огромное количество солей. Может ли соленость быть использована, как источник энергии?

Может. Большая концентрация соли в океане навела ряд исследователей Скриппского океанографического института в Ла-Колла (Калифорния) и других центров на мысль о создании таких установок. Они считают, что для получения большого количества энергии вполне возможно сконструировать батареи, в которых происходили бы реакции между соленой и несоленой водой.

Температура воды океана в разных местах различна. Между тропиком Рака и тропиком Козерога поверхность воды нагревается до 82 градусов по Фаренгейту (27 C). На глубине в 2000 футов (600 метров) температура падает до 35,36,37 или 38 градусов по Фаренгейту (2-3.5 С). Возникает вопрос: есть ли возможность использовать разницу температур для получения энергии? Могла бы тепловая энергоустановка, плывущая под водой, производить электричество?

Да, и это возможно. В далекие 20-е годы нашего столетия Жорж Клод, одаренный, решительный и весьма настойчивый французский физик, решил исследовать такую возможность. Выбрав участок океана вблизи берегов Кубы, он сумел-таки после серии неудачных попыток получить установку мощностью 22 киловатта. Это явилось большим научным достижением и приветствовалось многими учеными.

Используя теплую воду на поверхности и холодную на глубине и создав соответствующую технологию, мы располагаем всем необходимым для производства электроэнергии, уверяли сторонники использования тепловой энергии океана. "Согласно нашим оценкам, в этих поверхностных водах имеются запасы энергии, которые в 10 000 раз превышают общемировую потребность в ней".

"Увы, - возражали скептики, - Жорж Клод получил в заливе Матансас всего 22 киловатта электроэнергии. Дало ли это прибыль?" Не дало, так как, чтобы получить эти 22 киловатта, Клоду пришлось затратить 80 киловатт на работу своих насосов.

Сегодня профессор Скриппского института океанографии Джон Исаакс делает вычисления более аккуратно. По его оценкам, современная технология позволит создавать энергоустановки, использующие для производства электричества разницу температур в океане, которые производили бы его в два раза больше, чем общемировое потребление на сегодняшний день. Это будет электроэнергия, производимая электростанцией, преобразующей термальную энергию океана (ОТЕС).

Конечно, это - прогноз ободряющий, но даже если он оправдается, результаты не помогут разрешению мировых энергетических проблем. Разумеется, доступ к запасам электроэнергии ОТЕС предоставляет великолепные возможности, но (по крайней мере, пока) электричество не поднимает в небо самолеты, не будет двигать легковые и грузовые автомобили и автобусы, не поведет корабли через моря.

Однако самолеты и легковые автомобили, автобусы и грузовики могут приводиться в движение газом, который можно извлекать из воды, а уж воды-то в морях достаточно. Этот газ - водород, и он может использоваться в качестве горючего. Водород - один из наиболее распространенных элементов во Вселенной. В океане он содержится в каждой капле воды. Помните формулу воды? Формула HOH значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода. Извлеченный из воды водород можно сжигать как топливо и использовать не только для того, чтобы приводить в движение различные транспортные средства, но и для получения электроэнергии.

Все большее число химиков и инженеров с энтузиазмом относится к "водородной энергетике" будущего, так как полученный водород достаточно удобно хранить: в виде сжатого газа в танкерах или в сжиженном виде в криогенных контейнерах при температуре 423 градуса по Фаренгейту (-203 С). Его можно хранить и в твердом виде после соединения с железо-титановым сплавом или с магнием для образования металлических гидридов. После этого их можно легко транспортировать и использовать по мере необходимости.

Еще в 1847 году французский писатель Жюль Верн, опередивший свое время, предвидел возникновение такой водородной экономики. В своей книге "Таинственный остров" он предсказывал, что в будущем люди научатся использовать воду в качестве источника для получения топлива. "Вода, - писал он, - представит неиссякаемые запасы тепла и света".

Со времен Жюля Верна были открыты методы извлечения водорода из воды. Один из наиболее перспективных из них - электролиз воды. (Через воду пропускается электрический ток, в результате чего происходит химический распад. Освобождаются водород и кислород, а жидкость исчезает.)

В 60-е годы специалистам из НАСА удалось столь успешно осуществить процесс электролиза воды и столь эффективно собирать высвобождающийся водород, что получаемый таким образом водород использовался во время полетов по программе "Аполлон".

Таким образом, в океане, который составляет 71 процент поверхности планеты, потенциально имеются различные виды энергии - энергия волн и приливов; энергия химических связей газов, питательных веществ, солей и других минералов; скрытая энергия водорода, находящегося в молекулах воды; энергия течений, спокойно и нескончаемо движущихся в различных частях океана; удивительная по запасам энергия, которую можно получать, используя разницу температур воды океана на поверхности и в глубине, и их можно преобразовать в стандартные виды топлива.

Такие количества энергии, многообразие ее форм гарантируют, что в будущем человечество не будет испытывать в ней недостатка. В то же время не возникает необходимости зависеть от одного-двух основных источников энергии, какими, например, являются давно использующиеся ископаемые виды топлива и ядерного горючего, методы получения которого были разработаны недавно.

Более того, в миллионах прибрежных деревень и селений, не имеющих сейчас доступа к энергосистемам, будет тогда возможно улучшить жизненные условия людей.

Жители тех мест, где на море бывает сильное волнение, смогут конструировать и использовать установки для преобразования энергии волн.

Живущие вблизи узких прибрежных заливов, куда во время приливов с ревом врывается вода, смогут использовать эту энергию.

Для всех остальных людей энергия океана в открытом водном пространстве будет преобразовываться в метан, водород или электричество, а затем передаваться на сушу по кабелю или на кораблях.

И вся эта энергия таится в океане испокон веков. Не используя ее, мы тем самым попросту ее расточаем.

Разумеется, трудно даже представить себе переход от столь привычных, традиционных видов топлива - угля, нефти и природного газа - к незнакомым, альтернативным методам получения энергии.

Разница температур? Водород, металлические гидриды, энергетические фермы в океане? Для многих это звучит как научная фантастика.

И, тем не менее, несмотря на то, что извлечение энергии океана находятся на стадии экспериментов и процесс ограничен и дорогостоящ, факт остается фактом, что по мере развития научно-технического прогресса энергия в будущем может в значительной степени добываться из моря. Когда - зависит от того, как скоро эти процессы станут достаточно дешевыми. В конечном итоге дело упирается не в возможность извлечения из океана энергии в различных формах, а в стоимость такого извлечения, которая определит, насколько быстро будет развиваться тот или иной способ добычи.

Когда бы это время ни наступило, переход к использованию энергии океана принесет двойную пользу: сэкономит общественные средства и сделает более жизнеспособной третью планету Солнечной системы - нашу Землю.

Впервые удар по общественному карману был нанесен в 1973 году подъемом цен на ископаемые виды топлива. Особенно возросли цены на нефть - основной вид топлива в XX веке, используемый в промышленности, сельском хозяйстве, для отопления. Вслед за этим произошло повышение уровня инфляции, а поскольку научные исследования и эксперименты тоже требуют ассигнований, поиски новых видов топлива подняли цены еще выше.

Ископаемые виды топлива истощаются, мы вынуждены их экономить и увеличивать энергообеспечение за счет строительства ядерных реакторов, которые требуют значительных финансовых затрат и вызывают опасения у людей, живущих вблизи. Конечно, энергопотребление снизится, если быть более экономными. В США, население которых составляет 5,3 % от общемирового и где используется 35 % всех видов ископаемого топлива и гидроэлектроэнергии мира, потребление энергии может быть легко снижено до 30-32 %, а то и до 25 %. Существует даже мнение, что по справедливости Соединенные Штаты должны снизить потребление энергии до 5,3 %.

Экономика, однако, лишь одна сторона дела. Другая сторона относится к странам развивающимся, которые стараются достичь уровня жизни промышленно развитых стран, определяющегося использованием большого количества энергии. Сегодня народы Азии, Африки и Латинской Америки стремятся перейти от общества, в котором используется в основном физический труд, к обществу с развитой индустрией.

Для того чтобы удовлетворить потребность в равноправном распределении дешевой энергии между всеми странами, потребуется такое ее количество, которое, возможно, в тысячи раз превысит сегодняшний уровень потребления, и биосфера уже не справится с загрязнением, вызываемым использованием обычных видов топлива. Тем не менее президент Института исследований в области электроэнергии в Пало Альто (Калифорния) Чонси Старр полагает: "Необходимо признать, что мировое потребление энергии будет развиваться именно в этом направлении и так быстро, как только позволят политические, экономические и технические факторы".

Так как соревнование за обладание истощающимися видами топлива обостряется, расход общественных средств будет расти. Рост этот продолжится, так как необходимо бороться с загрязнением воздуха и воды, теплотой, выделяющейся при сгорании ископаемых видов топлива.

Но стоит ли волноваться в поисках новых источников ископаемого топлива? Зачем дискутировать по вопросу о строительстве ядерных реакторов? Океан наполнен энергией, чистой, безопасной и неиссякаемой. Она там, в океане, только и ждет высвобождения. И это - преимущество номер один.

Второе преимущество заключается в том, что использование энергии океана позволит Земле быть в дальнейшем обитаемой планетой. А вот альтернативный вариант, предусматривающий увеличение использования органических и ядерных видов топлива, по мнению некоторых специалистов, может привести к катастрофе: в атмосферу станет выделяться слишком большое количество углекислого газа и теплоты, что грозит смертельной опасностью человечеству.

"Пустяки, - усмехаются скептики. - Мы постоянно совершенствуем воздушные фильтры и очистные сооружения. Еще год-два - и фабричные дымовые трубы будут выпускать практически чистый воздух. Разве мы не очищаем выхлопные газы автомобилей? Скоро вы вообще забудете, что такое пары двуокиси серы".

Тем не менее, углекислый газ и теплота, выделяемые в атмосферу дымовыми трубами фабрик и других промышленных предприятий, а иногда и большими многоквартирными комплексами, которые используют ископаемые виды топлива, внушают большое беспокойство.

Но кто заметит, что в воздухе стало больше углекислого газа? Он бесцветен и не имеет запаха. Он пузырится в прохладительных напитках. А кто заметит постепенное, медленное повышение атмосферной температуры Земли на один, два или три градуса по Фаренгейту? Заметит планета, когда углекислый газ через некоторое время окутает ее подобно одеялу, которое перестанет пропускать избыточное тепло в космос.

Жак Кусто, пионер освоения и исследования океана, считает: "Когда концентрация углекислого газа достигнет определенного уровня, мы окажемся как будто в парнике". Это значит, что теплота, выделяемая Землей, будет задерживаться под слоем стратосферы. Накапливающееся тепло повысит общую температуру. А увеличение ее даже на один, два или три градуса по Фаренгейту приведет к таянию ледников. Миллионы тонн растаявшего льда поднимут уровень морей на 60 метров. Города на побережье и в долинах больших рек окажутся затопленными.

По данному вопросу, как и по многим другим, ученые разделились на два лагеря. В одном лагере считают, что утолщающееся одеяло углекислого газа вызовет повышение температуры и приведет к таянию ледников, то есть, по определению доктора Говарда Уилкокса, превратить Землю в парник. Сторонники другого лагеря полагают, что то же самое одеяло будет преграждать путь теплу, излучаемому солнцем, что станет причиной наступления новой эры оледенения.

Итак, что же человечество должно делать? Будем ли мы истощать остатки ископаемого топлива, строить все большее число ядерных реакторов, рискуя изменить температуру атмосферы, или же обратимся к океану - кладезю неиссякаемой энергии - и будем искать способ извлечения этой энергии для достижения наших целей - вот в чем заключается вопрос.

Накануне вступления в 21 век ученые-океанологи призывают прекратить пустые дискуссии и отказаться от надежды на то, что "технологическое развитие разрешит все проблемы на суше". Они хотят обратить внимание общества на океан, который заряжается энергией внеземного происхождения, энергией доступной, не загрязняющей окружающую среду и возобновляемой.

океан экология топливо энергия

Список литературы

1. В. Володин, П. Хазановский "Энергия, век двадцать первый".

2. А. Голдин "Океаны энергии".

3. Л.С. Юдасин "Энергетика: проблемы и надежды".

Размещено на Allbest.ru

...

Подобные документы

  • Загрязнение экосистемы продуктами переработки топлива. Увеличение глобального спроса на энергию. "Традиционные" виды альтернативной энергии - энергия воды, солнца, ветра, морских волн, приливов и отливов. Характеристика альтернативных источников энергии.

    реферат [43,4 K], добавлен 14.04.2011

  • Источники энергии в Мировом океане. Основные формы энергии морей и океанов. Особенности энергии волн, приливно-отливных движений воды, течений. Использование температурного градиента, ресурсы тепловой энергии океана. Соленая энергия морей и океанов.

    реферат [43,2 K], добавлен 10.07.2011

  • Причины перехода на возобновляемые источники энергии. Возможные источники энергии. Энергия воды. Солнечная энергия. Энергия ветра. Другие источники энергии (биомасса).

    реферат [65,2 K], добавлен 21.12.2002

  • Нетрадиционные и возобновляемые источники энергии (солнечная, ветровая и геотермальная энергию, энергию морских приливов и волн). Их плюсы и минусы. Как может осуществляться альтернативное использование солнечной энергии при эксплуатации зданий.

    реферат [23,7 K], добавлен 26.12.2010

  • Понятие геотермальной энергии как энергии внутренних областей Земли. Перспективы использования геотермальных источников энергии, характеристика их преимуществ. Развитие и совершенствование геотермальных технологий. Экологические фонды: назначение, виды.

    реферат [202,7 K], добавлен 15.01.2014

  • Подводная окраина материков. Стык материковых глыб и океанических платформ. Ложе океана. Температура воды, льды. Состав воды Мирового океана. Экологическая классификация объектов морского промысла, используемых в пищу.

    контрольная работа [38,4 K], добавлен 01.12.2006

  • Анализ возможности применения энергии солнца и ветра как совместно с традиционным источником энергии, так и автономного энергоснабжения совместного использования энергии солнца и ветра. Сравнение по более экономному использованию энергии ветра и солнца.

    контрольная работа [474,9 K], добавлен 03.11.2013

  • Физико-географическая характеристика Мирового океана. Химическое и нефтяное загрязнение океана. Истощение биологических ресурсов Мирового океана и уменьшение биоразнообразия океана. Захоронение опасных отходов – дампинг. Загрязнение тяжелыми металлами.

    реферат [40,1 K], добавлен 13.12.2010

  • Сущность альтернативных способов получения энергии, которые представляют интерес из-за выгодности их использования при низком экологическом риске. Особенности биотоплива, использования ветровой, солнечной, геотермальной, водородной и гидроэнергетики.

    реферат [51,8 K], добавлен 25.01.2013

  • Гидросфера как водная среда, которая включает поверхностные и подземные воды. Характеристика источников загрязнения мирового океана: водный транспорт, захоронение на морском дне радиоактивных отходов. Анализ биологических факторов самоочищения водоема.

    презентация [320,4 K], добавлен 16.12.2013

  • Элементы структуры Мирового океана, его единство и ресурсы. Шельф, материковый склон и ложе Мирового океана. Материковые и океанические морские осадки на дне океана. Части Мирового океана, их соединение проливами и общая площадь. Проблемы Мирового океана.

    курсовая работа [44,3 K], добавлен 29.10.2010

  • Источники радиоактивного загрязнения. Экологические проблемы тепловой энергетики и гидроэнергетики. Приливные электростанции и их экологическая оценка. История использования энергии ветра. Экологическая оценка использования лучистой энергии Солнца.

    реферат [50,8 K], добавлен 02.12.2014

  • Получение ценных видов органического топлива. Аэробная переработка отходов в сельском хозяйстве. Получение экологически чистой энергии. Переработка отходов сельского хозяйства в анаэробных условиях. Получение биогаза в процессе метанового брожения.

    контрольная работа [21,3 K], добавлен 10.04.2010

  • Значение Мирового океана для человека и всего живого. Важнейшая палеогеографическая роль Мирового океана. Деятельность человека, влияющая на состояние вод океанов. Нефть и пестициды как главное бедствие для Мирового океана. Охрана водных ресурсов.

    контрольная работа [32,2 K], добавлен 26.05.2010

  • Сущность популяционной системы. Анализ европейского рынка экологически чистой продукции. Направления продвижения биопродуктов на рынке Евросоюза. Обзор украинского рынка экологически чистых продуктов. Анализ экологически чистой продукции в США и Канаде.

    реферат [73,2 K], добавлен 11.05.2012

  • Количество загрязняющих веществ в океане. Опасности нефтяного загрязнения для обитателей моря. Цикл воды в биосфере. Значение воды для жизнедеятельности человека и всего живого на планете. Основные пути загрязнения гидросферы. Охрана Мирового океана.

    презентация [3,0 M], добавлен 09.11.2011

  • Ресурсы Мирового океана. Проблемы Мирового океана. Охрана морей и океанов. Исследования Мирового океана. Охрана океана является одной из глобальных проблем человечества. Мертвый океан - мертвая планета, а значит, и все человечество.

    реферат [21,0 K], добавлен 22.06.2003

  • Мировой океан, запасы воды на Земле. Уязвимые звенья экологической системы Мирового океана. Нефть и нефтепродукты. Сточные воды промышленных предприятий. Тепловое загрязнение водных ресурсов. Радиоактивное загрязнение и ядовитые вещества.

    курсовая работа [26,7 K], добавлен 06.05.2006

  • Закономерности варьирования содержания химических элементов в земной коре. Формирование химического состава Мирового океана, этапы данного процесса и факторы, на него повлиявшие. Аэральная миграция химических элементов из океана на сушу и наоборот.

    контрольная работа [40,7 K], добавлен 30.01.2014

  • Понятие о Мировом океане. Богатства Мирового океана. Минеральные, энергетические и биологические виды ресурсов. Экологические проблемы Мирового океана. Загрязнения сточными водами промышленности. Нефтяные загрязнения морских вод. Методы очистки вод.

    презентация [3,4 M], добавлен 21.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.