Загрязнение азотсодержащими веществами продукции и определение нитритов в питьевой воде

Азотсодержащие соединения и их влияние на организмы. Этапы оценки уровня экологической безопасности продукции для обнаружения нитритов. Методы качественного и количественного определения ионов. Определение нитритов в питьевой воде фотометрическим методом.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 16.04.2014
Размер файла 59,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

Введение

1. Обзор литературы

1.1 Азотсодержащие соединения и их влияние на организмы

2. Специальная часть

2.1 Этапы оценки уровня экологической безопасности продукции, в том числе питьевой воды, с целью обнаружения нитритов

2.2 Методы качественного и количественного определения нитрит-ионов

2.3 Определение нитритов в питьевой воде фотометрическим методом (приготовление реактива Грисса)

Выводы

Список использованной литературы и источников

Введение

азотосодержащий экологический нитрит вода фотометрический

Вода - ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания.

Рост городов, бурное развитие промышленности, интенсификация сельского хозяйства, значительное расширение площадей орошаемых земель, улучшение культурно-бытовых условий и ряд других факторов все больше усложняет проблемы обеспечения водой.

Чистая вода - это один из тех факторов, на которых покоится наше здоровье и сама жизнь (вода, еда, воздух). Все труды по поддержанию здоровья (правильные упражнения, питание, практики) в отсутствии чистой воды на определенном этапе могут пойти прахом.

Средняя норма потребления воды на разные нужды в день на человека от 150 до 400 литров в день. И лишь 1.5-4 литров из них принимается внутрь. Всё остальное, «обогащенное» мылом, грязью поступает на централизованную или локальную переработку. И это в лучшем случае и в развитых странах.- Весомой частью сюжета некоторых русских (и не только) фильмов и мультфильмов была сточная труба, сбрасывающая в реку (море, океан) отработанную в химическом (металлургическом, фармакологическом, животноводческом и т.д.) производстве воды. И далеко не всегда эта вода, особенно в прошлом, проходила хоть какие-либо циклы очистки. А сколько всего этих стоков было, есть и будет можно судить хотя бы по тому, например, что при производстве 1 тонны стали расходуется 400 тонн воды. Что бывало (и случается сейчас) с теми местами, где скапливались все заводские остатки, подчас просто затруднительно описать.

Актуальность данной темы заключается в следующем: большинство граждан мира рождаются горожанами; в начале третьего тысячелетия в городах проживает пять с половиной миллиардов из семи миллиардов людей; урбанизация влияет на экологическое состояние окружающей среды. Современное сельское хозяйство не может обойтись без внесения в почву различных удобрений, в том числе и азотистых, и пестицидов. Загрязняя почву они также попадают и в воду.

Цель курсовой работы: изучение вопросов практической организации проведения анализов и оценки экологической безопасности воды, в частности на содержание нитритов .

Основные задачи курсовой работы:

- раскрыть актуальность оценки воды на содержание нитритов;

- изучить этапы оценки воды на наличие нитритов;

- изучить методы определения питьевой воды на содержание нитритов;

- выбрать наиболее подходящий способ определения нитритов в питьевой воде.

1. Обзор литературы

Актуальность проблемы безопасности продуктов питания с каждым годом возрастает, поскольку именно обеспечение безопасности продовольственного сырья и продуктов питания, является одним из основных факторов, определяющих здоровье людей и сохранение генофонда. Под безопасностью продуктов питания, следует понимать отсутствие опасности для здоровья человека при их употреблении, как с точки зрения общего негативного воздействия (пищевые отравления и пищевые инфекции), так и с точки зрения опасности последствий отравлений (канцерогенное, мутагенное и тератогенное действие). Иными словами, безопасными можно считать продукты питания, не оказывающее вредного, неблагоприятного воздействия на здоровье настоящего и будущего поколения. Поэтому остро стоят проблемы, связанные с повышением ответственности за эффективность и объективность контроля качества продуктов, гарантирующих их безопасность для здоровья потребителя.

В обобщенном виде оценка состояния продовольственной безопасности населения определяется:

- физической доступностью продовольствия - наличие продуктов питания на всей территории страны в каждый момент времени и в необходимом ассортименте;

- экономической доступностью продовольствия - уровень доходов независимо от социального статуса и места жительства гражданина, который позволяет приобретать продукты питания, по крайней мере, на минимальном уровне потребления;

- безопасностью продовольствия для потребителей - предотвращение производства, реализации и потребления некачественных пищевых продуктов, способных нанести вред здоровью населения.

1.1 Азотсодержащие соединения и их влияние на организмы

Соли азотной кислоты, нитраты, являются элементом питания растений и естественным компонентом пищевых продуктов растительного происхождения. Их высокая концентрация в почве абсолютно не токсична для растений, напротив, она способствует усиленному росту надземной части растений, более активному протеканию процесса фотосинтеза, лучшему формированию репродуктивных органов и в конечном итоге - более высокому урожаю. Например, если в период вегетации в растениях салата и шпината нитратов будет меньше 2000 мг/кг, то высокого урожая не жди: листья будут мелкие, грубые, непригодные для реализации. Во время массового образования кочанов и черешков листьев капусты нитратов должно быть 2000-3000 мг/кг. Поскольку в органические соединения растений включается только аммонийный азот, нитрат-анионы, поглощенные растением, должны восстановиться в клетках до аммиака. Образованием аммиака завершается и распад органических веществ - аминокислот, амидов, белков. По образному выражению академика Д.Н.Прянишникова, аммиак «есть альфа и омега в обмене азотистых веществ у растений». Аммиак, поступивший в растение извне, образовавшийся при восстановлении нитратов или в процессе фиксации молекулярного азота, далее усваивается растениями с образованием различных аминокислот и амидов. Таким образом, нитраты являются естественным азотистым компонентом растительного организма. В то же время у животных и человека высокие дозы нитратов могут вызвать отравление и даже привести к смерти. Токсическое действие нитратов связано с восстановлением их до нитритов, аммиака, гидроксиламина под влиянием микрофлоры пищеварительного тракта и тканевых ферментов. Если в организм человека поступают высокие дозы нитратов, через 4-6 ч появляются тошнота, одышка, посинение кожных покровов, диарея. Одновременно ощущается общая слабость, головокружение, боли в затылке и сердцебиение. Первой медицинской помощью при этом является обильное промывание желудка, прием активированного угля и солевых слабительных. Употребление в течение долгого времени пищи и воды с высоким содержанием нитратов вызывает также аллергию, нарушение деятельности щитовидной железы, приводит к возникновению многочисленных болезней в результате нарушения обмена веществ, опорно-двигательного аппарата и нервной системы. Чем же обусловлено такое токсическое действие на организм нитратов? Дело в том, что нитраты, превратившись в желудочно-кишечном тракте в нитриты, попадают в кровь и окисляют двухвалентное железо гемоглобина в трехвалентное. При этом образуется метгемоглобин, не способный переносить кислород к тканям и органам, в результате чего может наблюдаться удушье. Угрозой для жизни является накопление в крови 20% и более метгемоглобина (HbFe3+). Наибольшая же опасность повышенного содержания нитратов в организме заключается в способности нитрит-иона участвовать в реакции нитрозирования аминов и амидов, в результате которой образуются нитрозосоединения, обладающие канцерогенным и мутагенным действием[1].

Образование нитрозосоединений происходит при взаимодействии азотистой кислоты с вторичными аминами как в продуктах питания в процессе их кулинарной обработки, так и внутри организма:

(R2)NH + НNO2 = (R)2N-NO + Н2О.

Их можно разделить на два класса с различными свойствами: нитрозамины, где R1 и R2 - алкильные или арильные группы, и нитрозамиды, где R1 - алкильная или арильная группа, R2 - ацильная группа. Проведенные на животных опыты показали, что N-нитрозосоединения способствуют образованию опухолей во всех органах, кроме костей. Чаще всего контролируют наличие в продуктах N-нитрозодиметиламина (НДМА) и N-нитрозодиэтиламина (НДЭА). Допустимое суточное потребление нитратов для человека не должно превышать 5 мг на 1 кг массы тела, т. е. не более 350 мг в сутки для человека массой 70 кг. В организм человека нитраты поступают (в %): с овощами - 70, с водой - 20, с мясными, молочными и консервированными продуктами - 6. Наиболее опасно отравление нитратами, растворимыми в воде, т. к. это увеличивает скорость всасывания их в кровь, поэтому содержание нитрат-аниона в воде не должно превышать 45 мг/л[2].

Содержание нитратов и нитритов в продуктах животноводства невелико, например в молоке и молочных продуктах их содержится не более 10 мг/кг. Нитраты и нитриты используют как консерванты при производстве сыров, и их суммарное содержание не превышает 50 мг/кг. При изготовлении ветчинно-колбасных изделий нитраты и нитриты добавляют не только для подавления деятельности болезнетворных бактерий, но и для того, чтобы придать мясным изделиям красно-коричневый оттенок. Содержание этих веществ в мясной продукции также не представляет опасности для здоровья людей (нитраты - 1-5 мг/кг, нитриты - 0,8-2,2 мг/кг).

Больше всего нитратов в организм человека поступает с овощами и картофелем. Это послужило причиной того, что во многих странах мира, в том числе и в нашей, в 1988 г. были разработаны предельно допустимые концентрации (ПДК) нитратов в сельскохозяйственной продукции. ПДК нитратов в овощной продукции разных стран колеблются в значительных пределах, причем у нас установлены самые низкие ПДК по сравнению с зарубежными странами[6.]

Следует отметить, что содержание нитратов в разных частях растений неодинаково. Больше всего нитратов в тех частях растения, которые содержат большое количество тканей, служащих для проведения воды и минеральных солей к листьям и органам (ксилемные ткани). В жилках листьев, листовых черешках, стеблях нитратов больше, чем в мякоти листьев и плодах; в кожице и поверхностных слоях плодов они преобладают над внутренними слоями; в генеративных органах (органы полового размножения растений) эти вещества отсутствуют или имеются в меньших количествах, чем в вегетативных.

Меняется содержание нитратов в растениях и в течение суток. Это объясняется интенсивностью восстановления нитрат-ионов до аммиака. Ночью и рано утром активность ферментов, участвующих в восстановлении NО3-, низка, что ведет к их накоплению. С повышением температуры и интенсивности освещения активность этих ферментов, в первую очередь нитратредуктазы, возрастает, что ведет к снижению содержания нитратов. В связи с этим сбор овощей лучше вести днем, когда содержание NО3- уменьшается на 30-40% по сравнению с утренними часами[7].

Уменьшается количество нитратов и при хранении овощей и фруктов. Например, во время зимнего хранения содержание нитратов в картофеле снижается на 20%. В первый период хранения происходит послеуборочное дозревание, и нитрат-анионы, восстановившись до аммиака, включаются в состав органического вещества. Во второй период хранения, когда клубень выходит из состояния покоя и начинает прорастать, нитраты расходуются на построение новых органов (листья, корни).

Агробиологи насчитывают около 30-40 факторов, влияющих на накопление нитратов в растениях, основным из которых является чрезмерное внесение удобрений, особенно их нитратных форм (аммиачная, калийная, натриевая селитра). Подкармливать растения лучше амидными или аммонийными формами удобрений (карбамид или мочевина, сульфат аммония), т. к. аммиачный азот поглощается растениями и сразу включается в аминокислоты и белки без накопления нитратов.

Увеличение количества нитратов в продукции можно получить и при избыточном удобрении почвы органикой. Важный фактор регулирования содержания NО3- - совместное применение органических и минеральных удобрений. Уменьшение содержания нитрат-ионов при этом связано с тем, что органические удобрения обогащают почвы полезной микрофлорой, которая временно поглощает лишний азот, стимулируя тем самым замедление процесса нитрификации в почве в начальный период развития растений[5].

Подкормка азотом незадолго (за 1-2 недели) до уборки урожая также ведет к увеличению содержания нитратов в растительной продукции. Наоборот, чем больше срок между внесением удобрений и уборкой урожая, тем меньше NО3- содержится в растении. Наиболее эффективны подкормки азотом в период интенсивного роста растений. В это время азот быстро вовлекается в процесс роста и поэтому не накапливается в виде нитратов. При снижении интенсивности роста, вызванном старением растения или действием неблагоприятных внешних факторов, азот перестает вовлекаться в обмен веществ и накапливается в виде NО3--ионов.

Хороший эффект дает применение медленно действующих форм азотных удобрений (карбамидформ урамик, оксамид, уреа-Z и др.), которые, постепенно растворяясь, обеспечивают более равномерное азотное питание растений.

Наряду c азотом для нормального роста и развития растений необходимы фосфор и калий. При дефиците этих питательных элементов затормаживается образование органического вещества в процессе фотосинтеза, в результате чего снижается расход поступившего азота на процессы роста. Это приводит к увеличению концентрации нитратного азота в органах растений. Следует избегать одностороннего преобладания минерального азота: его надо использовать с учетом обеспеченности растений фосфором, калием и другими элементами[3].

Из микроэлементов наиболее важным для предотвращения накопления нитратов является молибден, т. к. этот металл входит в состав нитратредуктазы и, следовательно, принимает участие в восстановлении нитратов.

Из остальных агротехнических факторов выращивания растений немаловажное влияние на концентрацию нитратов оказывают освещенность, влагообеспеченность, температура выращивания и сроки уборки урожая.

При слабой освещенности нитраты не полностью превращаются в аминокислоты, особенно в листовых овощах, редисе, огурцах, выращиваемых в закрытом грунте. При посадке овощных культур не следует заглушать посевы, необходимо следить за правильным формированием растений, не допуская избыточной листовой массы.

В засушливые годы при внесении высоких доз азотных удобрений в почву растения накапливают больше нитратов, поэтому необходим регулярный полив овощей, чтобы азотное питание было умеренным и равномерным[8].

Температурный фактор особенно влияет на содержание нитратов у растений, выращенных в условиях короткого светового дня (редис, салат, шпинат, лук). Если в теплице поддерживается умеренная температура (13-23 °С), то овощи содержат меньше нитратов, чем при более низкой (8-18 °С) или более высокой (20-28 °С) температуре.

Помните, что в недозрелых овощах содержание нитратов значительно выше, чем в спелых. Однако не следует допускать и перезревания овощей. Часто переросшие корнеплоды столовой свеклы, кабачки содержат повышенное количество нитратов. У моркови лучшее качество корнеплода отмечено при массе его 100-200 г[1].

Накопление нитратов различными культурами имеет наследственно закрепленный характер, т. е. они обладают сортовой спецификой, которая выявлена у ряда овощных культур. Сортовые различия могут быть обусловлены разной реакцией на условия окружающей среды и режимом минерального питания, а также генетически закрепленным уровнем активности нитратредуктазы, разной продолжительностью вегетационного периода сортов. Безусловно, каждый сорт любой культуры уникален по своим характеристикам, в том числе и по способности накапливать нитраты. Однако можно выделить некоторые общие тенденции:

- ранние сорта овощей содержат больше нитратов, чем поздние;

- овощи закрытого грунта склонны к большему накоплению нитратов, чем открытого;

- пчелоопыляемые гибриды огурца накапливают нитратов вполовину меньше, чем партенокарпические (самоопыляемые);

- из партенокарпических гибридов огурца короткоплодные накапливают нитратов примерно на 17% больше, чем длинноплодные;

- более ярко окрашенные сорта корнеплодов (в частности, морковь) содержат NO3- меньше, чем бледно окрашенные;

- сорта зеленой стручковой фасоли склонны к накоплению большего количества нитратов, чем желтой.

От избытка нитратов в овощной продукции можно избавиться и после сбора урожая. При варке, бланшировании, консервировании, солении, квашении и очистке уровень нитратов в овощах и фруктах значительно снижается. Так, очистка картофеля от кожуры снижает концентрацию NO3- примерно на 30-40%. При приготовлении овощей в пищу, особенно при употреблении их в свежем виде, места концентрации нитратов (кожура, плодоножки, сердцевины корнеплодов, черешки, места переходов корнеплодов в корни, кочерыги) надо удалять.

Квашение, консервирование, соление, маринование имеют свою специфику в случае изменения уровня нитрат-ионов в овощах. Первые 3-4 дня идет усиленный процесс восстановления нитратов до нитритов, поэтому нельзя употреблять свежезасоленные капусту, огурцы и другие овощи раньше, чем через 10-15 дней. При длительном (в течение 2 ч) вымачивании листовых овощей из них вымывается 15-20% NO3-. Чтобы снизить на 25-30% содержание нитратов в корнеплодах и капусте, достаточно в течение часа подержать их в воде, предварительно нарезав на небольшие кусочки. При варке картофель теряет NO3- до 80%, морковь, капуста, брюква - до 70%, столовая свекла - до 40%. Наличие повышенного содержания нитратов в зелени обезвреживается значительным количеством в ней аскорбиновой кислоты (витамин С), поэтому полезно вводить свежую зелень в состав овощных блюд. Салаты и плодоовощные соки желательно употреблять свежеприготовленными. Хранение их не очень длительное время даже в холодильнике способствует размножению в них микрофлоры, восстанавливающей NO3- -ионы до опасных для человека NO2- -ионов[2].

2. Специальная часть

2.1 Этапы оценки уровня экологической безопасности продукции, в том числе питьевой воды, с целью обнаружения нитритов

Оценка экологичности продукции проводится с целью предотвращения выпуска и поставки потребителю продукции, не отвечающей требованиям экологичности (экологической безопасности и экологической чистоты).

Основными этапами проведения оценки являются:

сбор и анализ необходимой информации;определение видов, характера и объектов (направлений) воздействия рассматриваемой продукций на окружающую среду;

подготовка данных для прогнозирования изменения состояния окружающей среды;

оценка экологических последствий в результате выпуска продукции в планируемом объеме;

обобщение и реализация результатов оценки.

Для проведения оценки используют информацию, характеризующую рассматриваемую продукцию (назначение и область применения, эксплуатационные характеристики, состав и характеристики исходных материалов) и состояние окружающей среды в регионах производства продукции и ее предполагаемого потребления.

В результате анализа информации устанавливают наличие свойств продукции, оказывающих вредное воздействие на окружающую среду, объекты (направления) воздействия, виды и характер воздействия.

Для определения конкретных видов воздействия, по которым должна проводиться оценка, рекомендуется предварительно провести изучение ("поиск") патентной информации по рассматриваемой продукции, подбор и анализ информации об экологических последствиях в результате выпуска аналогов и предшественников (заменяемых вариантов) продукции.

Выявленные воздействия оценивают по географическому охвату и направлениям воздействия (границам воздействия), интенсивности изменения уровня воздействующих факторов уровня загрязнения воды, воздуха, почвы, уровня шума и т.д.), длительности действия (кратковременное, непрерывное, периодическое, аварийное), характеру действия (прямое, косвенное, кумулятивное и т.п.), уровню опасности.

При оценке степени опасности воздействия учитывают следующие группы факторов: реальную и потенциальную опасность использования продукции, включая токсикологическую опасность примесей, образующихся в процессе производства продукции, а также опасность побочных продуктов, образующихся при ее эксплуатации, их трансформации, разложении или взаимодействии с элементами окружающей среды; условия распределения и распространения токсичных примесей и/или побочных продуктов в регионах (зонах) применения продукции - подвижность, миграция, стойкость, стабильность, время существования; условия трансформации, распада (разложения) побочных продуктов в окружающей среде; масштабы и продолжительность контактов побочных продуктов (в том числе после трансформации или распада) с окружающей средой; возможность и реальность контроля распространения и обнаружения в окружающей среде побочных продуктов; отрицательные экологические последствия попадания побочных продуктов в окружающую среду, степень изученности побочных продуктов и их аналогов.

Для оценки изменения состояния окружающей среды в районах (зонах) потребления продукции как источника дополнительных воздействий предварительно выполняют прогнозную (расчетную) оценку характеристик разрабатываемой продукции с учетом условий предполагаемого потребления продукции в заданных режимах, а также при возможных отклонениях технологических режимов от нормы и в возможных аварийных ситуациях.

При этом для машин и оборудования, приборов и средств связи рассматривают следующие основные параметры продукции:

балансы участвующих в технологическом цикле потребления продукции веществ (ингредиентов) с выделением отходов, выбросов, сбросов, разделением их по видам, физическому и химическому составу, определением по массе объему, по классам токсичности, биостойкости, взрывоопасности;

расчетные и экспериментальные характеристики источников выбросов и сбросов (объемы газовоздушных смесей, загрязненных сточных вод, температура, скорость прохождения смесей, концентрация, массы, диаметры и конфигурация источников выбросов и сбросов и т.п.);

расчетные и экспериментальные уровни шума, вибраций, электромагнитных, ионизирующих и тепловых излучений, видов воздействий на почвенный покров; расчеты и модели возможных аварийных ситуаций, сопровождающихся выбросами (сбросами) вредных веществ и другими вредными воздействиями, а также способы и схемы предотвращения и ликвидации аварийных ситуаций и ликвидации их последствий;

расчетные удельные величины отходов, выбросов вредных веществ, тепловых и электрических нагрузок, потребляемых природных ресурсов на единицу продукции или ее стоимостную характеристику.

Для материалов и веществ учитывают:

- расчетные физические характеристики;

- биологические характеристики;

- расчетные величины по степени токсичности, биостойкости взрывоопасности;

- классы опасности.

Оценку экологических последствий проводят для всего периода производства и потребления продукции, всего объема выпуска и всех возможных сфер потребления.

При оценке экологических последствий учитывают:

вероятные аварийные ситуации и их последствия при потреблении продукции;

возможности снижения (предупреждения) отрицательных воздействий продукции на окружающую среду и эффективность методов контроля остаточных воздействий.

По результатам оценки экологичности продукции разрабатывают рекомендации по изменению (дополнению, ужесточению) требований, подготавливаемых к установлению или установленных в стандартах, а также в необходимых случаях рекомендации производителям и потребителям по улучшению продукции и условий ее потребления.

2.2 Методы качественного и количественного определения нитрит-ионов

Качественное обнаружение нитрит-ионов

Кислоты разлагают все нитриты с образованием газообразного NO2, окрашенного в бурый цвет. Иодид калия в присутствии H2SO4 окисляется нитритами до свободного J2 (так же действуют и другие окислители: MnO4-, CrO42-, AsO43-).

Уксуснокислый раствор бензидина в присутствии ионов NO2- образует желтоокрашенное соединение. Сульфаниловая кислота и 1-нафтиламин (реактив Грисса-Илосвая) в уксуснокислой среде образуют с нитрит-ионами окрашенный азокраситель. Предложена микрокристаллоскопическая реакция для обнаружения нитрит-ионов: крупинку исследуемого вещества вносят в каплю раствара, содержащего ацетат калия, свинца и меди (ІІ) и подкисленного CH3COOH. Выделяются черные кристаллы K2Pb[Cu(NO2)6]. Этим способом удается открыть до 0,75 мг/мл NO2-. Предельное разбавление 1: 1500. Присутствие ионов NO3- не мешает реакции. Реакция образования K3[Co(NO2)6]. При смешивании испытуемого раствора с растварами Co(NO3)2, разбавленной уксусной кислоты и KCl в присутствии NO2- появляется желтый кристаллический осадок. Перманганат калия обесцвечивается в кислой среде при нагревании в присутствии нитрит-ионов в результате восстановления марганца до Mn2+.

Гравиметрические методы определения нитрит-ионов

Для количественного определения нитрит-ионов гравиметрические методы имеют меньшее значение по сравнению с другими методами определения. Азотистая кислота образует с 2,4-диамино-6-оксипиримидином труднорастворимое в воде нитросоединение. Но точных гравиметррических методов на основе этой реакции не разработано.

Косвенные гравиметрические методы основаны на весовом определении продуктов реакций, протекающих количественно с нитритами. Такой реакцией может быть взаимодействие бромата серебра с азотистой кислотой; после проведения этой реакции образующийся в результате восстановления бромид серебра может быть взвешен.

Подкисленная уксусной кислотой проба, содержащая нитриты, обрабатывается горячим раствором бромата серебра и получающийся бромид серебра взвешивается.

Параллельные определения выполняются с воспроизводимостью в пределах + 0,1%. Галогениды реагируют подобным образом. Их содержание должно быть определено отдельно и вычтено.

Можно обрабатывать нитритный раствор амидосульфоновой кислотой и образующуюся при этом серную кислоту осаждать в виде сульфата бария или определять взвешиванием возникшую потерю в весе. Для анализа образцов простого состава с содержанием определяемого компонента более 1% относительная ошибка гравиметрического определения составляет примерно 0.1 - 1%, с содержанием определяемого компонента 0,1-1% - порядка 5%, для содержаний ниже 0,1% метод фактически непригоден.

Титриметрические методы определения нитрит-ионов

При определении содержания нитритов методы окислительно-восстановительного титрования могут быть основаны как на окислении нитрита сильнодействующим агентом, так и на восстановлении его до ряда продуктов в зависимости от природы восстановителя. Правда, восстановление нитрита в аналитической практике используется редко.

Окисление гипохлоритом кальция применяется для косвенного определения нитритов. Прямое титрование растворов нитритов затруднено из-за малой скорости реакции. Рекомендуемый метод заключается в окислении нитрит-ионов раствором гипохлорита, прибавлении избытка раствора Na3AsO3 и титровании последнего раствором NaOCl в присутствии бромтимолового синего как индикатора до зеленовато-желтого окрашивания. Ошибка определения NO2- меньше 0,2%.

Окисление броматом калия проводят в среде HCl без добавления бромида. Избыток раствора бромата обрабатывают иодидом калия и титруют раствором тиосульфата до КТТ по крахмалу.

Можно обработать раствор, содержащий нитрит, бромом (в извытке) в присутствии пиридина, который ускоряет реакцию. После выдерживания раствора следует добавить иодид калия и оттитровать образовавшийся иод тиосульфатом.

Окисление перманганатом проводится только в кислом растворе. Прямое титрование приводит к неудовлетворительному результату. Поэтому рекомендуется обработка нейтрального или щелочного раствора нитрита избытком перманганата, подкисление полученного раствора и последующее иодометрическое титрование.

Другой косвенный метод определения нитрита титрованием перманганатом включает нагревание раствора (1-5 моль/л по HNO3) с избытком KМnO4 и обратное титрование раствором KNO2.

Для прямого и косвенного оксидиметрического определения нитрита применяют титрование раствором перекиси водорода. Полученные этим методом результаты хорошо согласуются с данными иодометрического определения NO2-.

Количественные результаты могут быть получены обработкой раствора нитритов раствором сульфата церия в кислой среде и последующим обратным титрованием избытка последнего стандартным раствором оксалата натрия.

Нитрит можно количественно оттитровать раствором тетраацетата свинца (IV), который получают растворением Pb3O4 (красный свинец) в ледяной уксусной кислоте при умеренной температуре.

Титрование феррицианидом проводится в нейтральном растворе:

NO2- +2Fe(CN)63- +H2O = NO3- +2Fe(CN)64- +2H+.

Полученный по реакции ферроцианид титруется стандартным раствором сульфата церия.

Вольтамперометрия

Нитрит-ионы можно определять в присутствии нитрат-ионов вольтамперометрически с применением платинового электрода для концентраций NO2- в пределах 10-6-10-3 моль/л при рН 0 - 8. При рН 3,5 - 8 потенциал полуволны не зависит от рН, причем на электродах протекает реакция NO2- = NO2+ e; при рН 0 - 3 протекает реакция HNO2 = NO2+H++e .

В случае окисления нитрит-иона на вращающемся микродисковом Pt-аноде высота волны пропорциональна концентрации ионов и реакция необратима. Описан модифицированный метод полярографического определения нитрита в присутствии восстановленной формы аскорбината на фоне, содержащем комплекс Cr3+ с глицерином, при рН 6,0-7,0. Определяется концентрация NO2- до 20 ppm.

Достаточно быстрый (10 мин) и точный (ошибка порядка 1%) косвенный полярографический метод определения нитрита основан на восстановлении 4-нитрозо-2,6-ксиленола, образующегося при реакции NO2- с 2,6-ксиленолом в смеси (5:4:1) H2SO4 с водой и уксусной кислотой. Предельный ток, измеряемый при -0,15в, пропорционален концентрации нитрит-ионов в интервале 0 - 14 мкг/мл. 100-кратный избыток NO3- опрелелению NO2- не мешает.

Определение нитрит-иона основано на измерении тока окисления NO2- при использовании различных окислителей (сулфаминовой кислоты, перманганата калия, хлорамина Т и др.), а также на использовании вращающегося платинового электрода, на применении поляризуемого Рt- микроэлектрода и Ag/AgCl-электрода для чёткого определения точки эквивалентности. Пределы определяемых концентраций нитрит-ионов составляют 10-5-10-2 моль/л. Ошибка определения в интервале 10-2-10-3 моль/л составляет в среднем 1%; при концентрации NO2- 10-4-10-5 моль/л она возрастает до 2-3%. Ионы NO3- не мешают определению.

Потенциометрическое титрование

Нитриты можно определять ацидиметрически, используя титрование в неводных растворителях. Достаточно хорошая воспроизводимость результатов была достигнута при титровании нитрита в смеси этиленгликоля и пропанола (или хлороформа). Титрантом являлся раствор 0,1 моль/л хлорной кислоты в той же смеси. КТТ устанавливали визуально (с внутренним индикатором тимоловым голубым) или потенциометрически со стеклянным и каломельным электродами. С теми же электродами нитрит-ионы могут быть определены (и в присутствии нитратов) потенциометрическим титрованием гидроокисью тетрабутиламмония в бензолметаноловой смеси (10:1). Точность определения +0.5%.

Разработаны методы определения нитратов, нитритов и их смесей титрованием в неводных растворах. Эти методы основаны на различном поведении нитрат- и нитрит-ионов при титровании в неводных средах. Определение NO2- основано на прямом потенциометрическом титровании в среде метанола (или смеси метанола с ацетоном) неводными растворами кислот, в частности метаноловым или метилэтилкетоновым раствором HСlO4. Точность определения +10%.

Кулонометрическое титрование

Разработаны условия кулонометрического титрования нитрит-ионов с помощью электрогенерированного брома. Рабочий электрод - Pt-пластинка с поверхностью около 8 см2; противоэлектрод - Pt-спираль - отделён от исследуемого раствора перегородкой из пористого стекла.

Микроколичества нитрит-ионов определяют кулонометрически посредством окисления NO2- избытком электролитически генерированного Mn3+ и обратного кулонометрического титрования последнего электролитически генерированным Fe2+. Генерирование проводят на платиновом или угольном электроде. Кислород предварительно удаляют из раствора продуванием инертного газа. При определении 0,3 - 65 мкг/мл NO2- стандартное отклонение равно 0,2 - 1,6%.

Нитрит-ион определяется высокочастотным титрованием в среде 30% этанола 0,1М раствором HCl. КТТ измеряется при 130 Мгц и соответствует образованию неионизованной азотистой кислоты. На точность определения 10-50 мг/мл нитрит-иона (около 2%) не влияет присутствие пятикратного избытка нитрата.

Спектрофотометрическое определение нитрит-ионов

Чаще всего для определения нитрит-ионов используют методики, основанные на образовании азокрасителей. Нитрит реагирует с первичными ароматическими аминами в кислом растворе с образованием промежуточной диазониевой соли, которая после обработки соединением, содержащим аминогруппу или гидроксил-ион, образует соответствующий азокраситель, пригодный как для визуального, так и для фотометрического определения.

Кроме того, для фотометрического определения нитритов используется реакции образования солей диазония, нитрозосоединений, комплексных соединений, ионных ассоциатов с красителями.

Образование азокрасителей

Образуется 1-(4-аминонафтилазо)-бензол-4-сульфоновая кислота - краситель красного цвета. Реакция весьма специфична и чувствительна, позволяет обнаружить 3 мкг/л NO2-. Условия проведения этих реакций: диазотирование должно проводится в сильнокислых растворах на холоду, сочетание должно быть проведено только после того, как полностью закончится диазотирование и при возможно более низкой кислотности. Это должно быть учтено при подготовке реактивов (сульфаниловой кислоты и 1-нафтиламина). Точное установление рН для реакции сочетания достигается использованием раствора ацетата натрия. Оптическую плотность образовавшегося красителя измеряют при 520 нм в кювете с толщиной слоя 1см.

2.3 Определение нитритов в питьевой воде фотометрическим методом (приготовление реактива Грисса)

Метод определения нитритов основан на фотометрическом измерении интенсивности окраски азотосоединения розово-малинового цвета, образующегося при реакции нитритов альфанафтиламином и сульфаниловой кислотой (реактив Грисса) в кислой среде после водного извлечения их из исследуемых проб.

Метод заключается в способности нитритов диазотировать сульфаниловую кислоту и на образовании красно-фиолетового красителя диазосоединения с 1-Нафтиламином. Интенсивность окраски, пропорциональная содержанию нитритов, измеряется на фотоколориметре при длине волны 520 нм.

Нижний предел обнаружения 0,003 мг/дм3 нитритов. При содержании в воде нитритов более 0,3 мг/дм3 пробу следует разбавлять. Относительная ошибка определения ±5 %.

Мешающее влияние мутности и цветности воды устраняют осветлением пробы гидроокисью алюминия.

Подготовка к анализу

Приготовление основного стандартного раствора

1,497 г азотистокислого натрия NaNO2, взвешенного с погрешностью не более 0,0005 г, растворяют в мерной колбе вместимостью 1 дм3 в небольшом количестве дистиллированной воды и доводят этой водой до метки. В 1 см3 раствора содержится 1 мг нитритов. Раствор консервируют добавлением 1 см3 хлороформа, хранят в склянке темного стекла в течение нескольких месяцев, если нет помутнения, хлопьев, осадка.

Приготовление рабочего стандартного раствора

1 см3 основного стандартного раствора помещают в мерную колбу вместимостью 1 дм3 и доводят до метки дистиллированной водой. В 1 см3 этого раствора содержится 0,001 мг нитритов. Раствор применяют свежеприготовленным.

Приготовление реактива Грисса, раствора в уксусной кислоте

10 г сухого реактива Грисса, взвешенного с погрешностью не более 0,1 г, растворяют в 100 см3 12 %-ного раствора уксусной кислоты. При отсутствии сухого реактива Грисса его готовят по ГОСТ 4517-75.

Приготовление уксусной кислоты, 12 %-ного раствора

25 см3 ледяной уксусной кислоты разбавляют дистиллированной водой до 200 см3.

Проведение анализа

Мутную и цветную воду перед анализом обесцвечивают, как указано в п. 3.3.

К 50 см3 исследуемой или осветленной пробы (или к меньшему объему, содержащему не более 0,3 мг нитритов, разбавленному дистиллированной водой до 50 см3) прибавляют 2 см3 раствора реактива Грисса, перемешивают. Через 40 мин (или через 10 мин при помещении пробы в водяную баню при температуре 50 - 60 °С) фотометрируют при длине волны 520 нм по отношению к раствору сравнения (дистиллированной воде, в которую добавлен реактив Грисса).

Массовую концентрацию нитритов находят по градуировочному графику или рассчитывают по уравнению регрессии.

Построение градуировочного графика

В мерные колбы вместимостью 50 см3 вносят 0; 0,1; 0,2; 0,5; 1,0; 2,0; 5,0; 10,0; 15,0 см3 рабочего стандартного раствора и доводят объем до метки дистиллированной водой. Получают растворы с содержанием 0; 0,002; 0,004; 0,01; 0,02; 0,04; 0,10; 0,20; 0,30 мг/дм3 нитритов. Далее проводят анализ и фотометрируют, как при исследовании пробы (см. п. 4.3). По полученным результатам рассчитывают уравнение регрессии или строят градуировочный график, откладывая по оси абсцисс массовые концентрации нитритов в мг/дм3, а по оси ординат соответствующие им значения оптической плотности. График должен быть прямолинейным.

Обработка результатов

Массовую концентрацию нитритов (Х1) в мг/дм3 вычисляют по формуле

где С - массовая концентрация, найденная по градуировочному графику или рассчитанная по уравнению регрессии, мг/дм3 NO2;

V - объем пробы, взятый для анализа, см3;

50 - объем стандартного раствора, см3.

За окончательный результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 10 %

Выводы

Вода - это великая ценность для человечества, и в век информационных технологий, развитой промышленности и постоянного роста численности населения не пора ли задуматься о том, что все природные блага мы не получаем в наследство от своих предков, а берем взаймы у своих потомков. И от качества той питьевой воды, которая течет из под крана напрямую зависит здоровье нас и наших детей.

Вода же исключительно важна для человеческой, а равно и для всей животной и растительной жизни. Способов для воспроизводства воды не существует, не существует также и заменителей воды, поэтому необходимо обращаться с самым ценным природным ресурсом с величайшей осторожностью. В то же время запасы воды на Земле неисчерпаемы для всех практических нужд, и ни одна капля воды не исчезает в круговороте природы. Тем не менее, проблема снабжения питьевой водой в нужных количествах и необходимого качества постоянно усложняется. В то время как свежая природная вода подвергается все возрастающему загрязнению, потребности в водопроводной воде постоянно возрастают, требуя приложения все больших усилий для превращения сырой воды в питьевую.

Проведя анализ литературных источников, способов определения нитритов, можно сделать вывод о том, что для анализа питьевой воды наиболее достоверным методом является фотометрический метод с приготовлением реактива Грисса.

В целях развития производства качественных и безопасных продуктов, рекомендуем данный метод к использованию.

Список использованной литературы и источников

1. Акимова, Т.А. Экология. Человек - Экономика - Биота - Среда:Учеб. для вузов-М.: ЮНИТИ-ДАНА,2007-495 с.

2. Алексеев, В.С. Экология: Учеб. пособие-М.:РИОР,2005-160 с.

3. Гавриленков, А. М. Экологическая безопасность пищевых производств: Учеб. пособие-СПб.: Гиорд, 2006-272 с.

4. Николайкин, Н.И. Экология: Учеб. для вузов-М.: Дрофа, 2006-622 с.

5. Соколова, Л.П. Экология: Учеб.-М.: Приор-издат,2004-256 с.

6. Степановских, А.С. Экология: Учеб. для вузов - Курган: Зауралье, 2000-704 с.

7. Хотунцев, Ю.Л. Экология и экологическая безопасность: Учеб. пособие-М.: Академия, 2004-480 с.

8. Экологическая экспертиза:Учеб. пособие для вузов/Под ред. проф. В.М. Питулько-М.: Академия, 2006-480 с.

Размещено на Allbest.ru

...

Подобные документы

  • Нитраты в продуктах питания. Исследователи проблемы повышенного содержания нитратов и нитритов в овощах и фруктах. Способы снижения количества этих веществ в продуктах растениеводства. Анализ методики определения нитратов и нитритов в овощах и фруктах.

    курсовая работа [4,6 M], добавлен 03.11.2013

  • Влияние минерализации, нитратов, нитритов, фенолов, тяжелых металлов питьевой воды на здоровье населения. Нормативные требования к ее качеству. Общая технологическая схема водоподготовки. Обеззараживание воды: хлорирование, озонирование и облучение.

    дипломная работа [153,9 K], добавлен 07.07.2014

  • Содержание нитратов и нитритов в продуктах питания. Влияние нитратов и нитритов на организм человека. Пестициды: понятие, классификация, их воздействие на окружающую среду. Способы снижения количества нитратов, нитритов и пестицидов в продуктах питания.

    реферат [28,9 K], добавлен 18.05.2015

  • Физико-химическая характеристика питьевой воды. Гигиенические требования к качеству питьевой воды. Обзор источников загрязнения воды. Качество питьевой воды в Тюменской области. Значение воды в жизни человека. Влияние водных ресурсов на здоровье человека.

    курсовая работа [50,2 K], добавлен 07.05.2014

  • Роль воды в жизни человека. Исследование качества водопроводной воды в в деревне Уть, источники загрязнения. Результаты исследования проб воды. Влияние химических примесей в воде на здоровье человека. Пути решения данной экологической проблемы.

    практическая работа [332,8 K], добавлен 18.01.2011

  • Отбор и подготовка проб воды. Определение общего числа сапрофитных микроорганизмов в воде. Методы выявления и определения грамотрицательных аэробных и факультативно анаэробных палочковидных бактерий. Гигиенические показатели качества питьевой воды.

    контрольная работа [115,5 K], добавлен 15.02.2016

  • Качество нецентрализованного водоснабжения и научное обоснование гигиенических нормативов. Воздействие нитритов и нитратов на организм человека. Анализ качества воды колодцев Гомельской области по микробиологическим и санитарно-химическим показателям.

    курсовая работа [59,6 K], добавлен 28.02.2014

  • Показатели, характеризующие уровень антропогенного воздействия на окружающую природную среду. Критерии качества окружающей среды. Требования к питьевой воде. Предельно допустимые концентрации химических веществ в почве. Индексы загрязнения атмосферы.

    презентация [29,4 K], добавлен 12.08.2015

  • Сравнительный анализ степени токсичности и патогенеза металлов. Определение некоторых показателей качества питьевой воды в различных районах г. Южно-Сахалинска и их сравнительный анализ. Подготовка проб питьевой воды. Расчет индекса загрязнения вод.

    дипломная работа [112,5 K], добавлен 10.07.2010

  • Нитраты, нитриты и пути снижения их содержания в овощах, азотсодержащие соединения и их влияние на организмы. Сорта и гибриды овощей, отличающиеся содержанием нитратов в период сбора урожая. Изучение лабораторных методов обнаружения нитратов в растениях.

    курсовая работа [2,3 M], добавлен 18.02.2011

  • Исследование годовой динамики загрязнения воды в Верхне-Тобольском водохранилище. Методы санитарно-бактериологического анализа. Основные методы очистки вод непосредственно в водоеме. Сравнительный анализ загрязнений питьевой воды города Лисаковска.

    курсовая работа [63,3 K], добавлен 21.07.2015

  • Особенности состава и загрязнения природной воды. Требования к питьевой воде, которая должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства. Методы очистки воды.

    реферат [19,1 K], добавлен 03.03.2011

  • Проблема питьевого водоснабжения. Гигиенические задачи обеззараживания питьевой воды. Реагентные и физические методы обеззараживания питьевой воды. Ультрафиолетовое облучение, электроимпульсный способ, обеззараживание ультразвуком и хлорирование.

    реферат [36,0 K], добавлен 15.04.2011

  • Анализ показателей качества питьевой воды и ее физико-химическая характеристика. Изучение гигиенических требований к качеству питьевой воды и основные источники ее загрязнения. Значение воды в жизни человека, влияние водных ресурсов на его здоровье.

    курсовая работа [52,6 K], добавлен 17.02.2010

  • Качество питьевой воды, доступ к чистой воде городского и сельского населения. Основные пути и источники загрязнения гидросферы, поверхностных и подземных вод. Проникновение загрязняющих веществ в круговорот воды. Методы и способы очистки сточных вод.

    презентация [3,1 M], добавлен 18.05.2010

  • Основные источники загрязнения водных объектов. Физико-химические, бактериологические и паразитологические, радиологические показатели качества воды, методы очистки. Влияние химического состава питьевой воды на здоровье и условия жизни населения.

    реферат [459,5 K], добавлен 28.11.2011

  • Свойства воды и ее роль в жизни человека. Питьевой режим и баланс воды в организме. Влияние водных ресурсов на здоровье. Основные источники загрязнения питьевой воды. Этапы водоподготовки, гарантирующие ее качество: характеристика способов ее очистки.

    контрольная работа [42,1 K], добавлен 14.01.2016

  • Пробоотбор питьевой воды в различных районах г. Павлодара. Химический анализ качества питьевой воды по шести показателям. Проведение сравнительного анализа показателей качества питьевой воды с данными Горводоканала, рекомендации по качеству водоснабжения.

    научная работа [30,6 K], добавлен 09.03.2011

  • Очистка и обесцвечивание природной воды коагулянтами и флокулянтами. Условия применения флокулянтов для очистки воды. Методы определения показателей качества питьевой воды. Исследование флоккулирующих свойств новых сополимеров акриламида в воде.

    дипломная работа [577,3 K], добавлен 30.07.2010

  • Физико-химическая характеристика питьевой воды, ее основные источники, значение в жизни и здоровье человека. Главные проблемы, связанные с питьевой водой, и пути их решения. Биологические и социальные аспекты взаимодействия человека со средой обитания.

    контрольная работа [26,7 K], добавлен 07.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.