Экология, окружающая среда и человек
Биосфера как ключевой объект изучения экологии, большой круговорот веществ в биосфере. Эндогенные и экзогенные геологические процессы и их взаимодействие. Типы связей между организмами в экосистемах. Антропогенные загрязнения атмосферы, кислотные осадки.
Рубрика | Экология и охрана природы |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 18.04.2014 |
Размер файла | 39,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Содержание
1. Большой круговорот веществ в биосфере.
2. Эндогенные и экзогенные процессы
3. Типы связей между организмами в экосистемах
4. Антропогенные загрязнения атмосферы
5. Кислотные осадки
6. Виды очистки сточных вод
1. Большой круговорот веществ в биосфере
Ключевым объектом изучения экологии является биосфера. Создателем современного учения о биосфере является выдающийся русский ученый академик В.И. Вернадский. Для того что бы разобрать поставленный перед нами вопрос разберемся что же такое биосфера.
Биосфера -- сложная наружная оболочка Земли, в которой содержится вся совокупность живых организмов и та часть вещества планеты, которая находится в процессе непрерывного обмена с этими организмами. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.
Земля состоит из концентрических оболочек (геосфер) как внутренних, так и внешних. К внутренним относятся ядро и мантия, а к внешним: литосфера - каменная оболочка Земли, включая земную кору толщиной от 6 км (под океаном) до 80 км (горные системы); гидросфера - водная оболочка Земли; атмосфера -- газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли.
На высоте от 10 до 50 км расположен слой озона, с максимальной его концентрацией на высоте 20-25 км, защищающий Землю от чрезмерного ультрафиолетового излучения, гибельного для организма. Сюда же (к внешним геосферам) относится и биосфера.
Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км. Особенность этих частей состоит в том, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы -- воздуха, воды, горных пород и органического вещества - биоты обусловило формирование почв и осадочных пород.
Все доступные для живых организмов химические соединения в биосфере ограничены. Исчерпаемость пригодных для усвоения химических веществ часто тормозит развитие тех или иных групп организмов в локальных участках суши или океана. По выражению академика В.Р. Вильямса, единственный способ придать конечному свойства бесконечного состоит в том, чтобы заставить его вращаться по замкнутой кривой. Следовательно, устойчивость биосферы поддерживается благодаря круговороту веществ и потокам энергии. Все вещества на нашей планете находятся в состоянии постоянного круговорота. Солнечная энергия вызывает на Земле два круговорота веществ: один, большой, охватывающий всю биосферу, называется биосферным, а другой -- малый -- протекает внутри экосистемы и называется биологическим.
Большим круговоротом называется и круговорот воды между гидросферой, атмосферой и литосферой, который движется энергией Солнца. Вода испаряется с поверхности водоемов и суши и затем вновь поступает на Землю в виде осадков. Над океаном испарение превышает осадки, над сушей наоборот. Эти различия компенсируют речные стоки. В глобальном круговороте воды немаловажную роль играет растительность суши. Транспирация растений на отдельных участках земной поверхности может составить до 80-90% выпадающих здесь осадков, а в среднем по всем климатическим поясам -- около 30%. В отличие от большого малый круговорот веществ происходит лишь в пределах биосферы.
В отличие от энергии, которая однажды использована организмом, превращается в тепло и теряется, вещества в биосфере циркулируют, создавая биогеохимические круговороты. Из девяноста с лишним элементов, встречающихся в природе, живым организмам нужно около сорока. Наиболее важные для них требуются в больших количествах -- углерод, водород, кислород, азот. Круговороты элементов и веществ осуществляются за счет саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах ее развития. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимичес
кого круговорота. Еще большее влияние на биогеохимический круговорот оказывает Человек. Но его роль проявляется в противоположном направлении (круговороты становятся незамкнутыми). Основу биогеохимического круговорота веществ составляют энергия Солнца и хлорофилл зеленых растений. Другие наиболее важные круговороты -- воды, углерода, азота, фосфора и серы -- связаны с биогеохимическим и способствуют ему. Биосфера действует как единая сложная система, в которой происходят различные круговороты веществ. Главным двигателем этихкруговоротов является живое вещество планеты, все живые организмы, обеспечивающие процессы синтеза, трансформации и разложения органического вещества.
2. Эндогенные и экзогенные процессы
На протяжении всего времени своего существования Земля прошла длинный ряд изменений. В сущности она никогда не была такой, как в предыдущий момент. Она изменяется непрерывно. Изменяются ее состав, физическое состояние, внешний вид, положение в мировом пространстве и взаимоотношение с другими членами Солнечной системы.
Известно, что в ходе геологического развития происходили многократные изменения состава, состояния вещества, облика поверхности Земли и строения земной коры. Эти преобразования связаны с различными геологическими процессами и их взаимодействием.
Среди них выделяются две группы:
1) эндогенные (греч. "эндос" - внутри), или внутренние,связанные с тепловым воздействием Земли, напряжениями, возникающими в ее недрах, с гравитационной энергией и ее неравномерным распределением;
2) экзогенные (греч. "экзос" - снаружи, внешний), или внешние,вызывающие существенные изменения в поверхностной и приповерхностной частях земной коры. Эти изменения связаны с лучистой энергией Солнца, силой тяжести, непрерывным перемещением водных и воздушных масс, циркуляцией воды на поверхности и внутри земной коры, с жизнедеятельностью организмов и другими факторами. Все экзогенные процессы тесно связаны с эндогенными, что отражает сложность и единство сил, действующих внутри Земли и на ее поверхности[2]. Геологические процессы видоизменяют земную кору и ее поверхность, приводя к разрушению и одновременно созданию горных пород. Экзогенные процессы обусловлены действием силы тяжести и солнечной энергии, а эндогенные -влиянием внутреннего тепла Земли и гравитации. Все процессы взаимосвязаны между собой, а их изучение позволяет использовать метод актуализма для познания геологических процессов далекого прошлого.
Экзогенные процессы - геологические процессы, происходящие на поверхности Земли и в самых верхних частях земной коры (выветривание, эрозия, деятельность ледников и др.); обусловлены главным образом энергией солнечной радиации, силой тяжести и жизнедеятельностью организмов. биосфера экология экосистема загрязнение
Эрозия (от лат. erosio - разъедание) - разрушение горных пород и почв поверхностными водными потоками и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.
Часто, особенно в зарубежной литературе, под эрозией понимают любую разрушительную деятельность геологических сил, таких, как морской прибой, ледники, гравитация; в таком случае эрозия выступает синонимом денудации. Для них, однако, существуют и специальные термины: абразия (волновая эрозия), экзарация (ледниковая эрозия), гравитационные процессы, солифлюкция и т. д. Такой же термин (дефляция) используется параллельно с понятием ветровая эрозия, но последнее гораздо более распространено.
По скорости развития эрозию делят на нормальную и ускоренную. Нормальная имеет место всегда при наличии сколько-либо выраженного стока, протекает медленнее почвообразования и не приводит к заметным изменением уровня и формы земной поверхности. Ускоренная идет быстрее почвообразования, приводит к деградации почв и сопровождается заметным изменением рельефа. По причинам выделяют естественную и антропогенную эрозию. Следует отметить, что антропогенная эрозия не всегда является ускоренной, и наоборот.
Работа ледников - рельефообразующая деятельность горных и покровных ледников, состоящая в захвате частиц горных пород движущимся ледником, переносе и отложении их при таянии льда.
Эндогенные процессы - геологические процессы, связанные с энергией, возникающей в недрах твердой Земли. К эндогенным процессам относятся тектонические процессы, магматизм, метаморфизм, сейсмическая активность.
Тектонические процессы - образование разломов и складок.
Магматизм - термин, объединяющий эффузивные (вулканизм) и интрузивные (плутонизм) процессы в развитии складчатых и платформенных областей. Под магматизмом понимают совокупность всех геологических процессов, движущей силой которых является магма и её производные.
Магматизм является проявлением глубинной активности Земли; он тесно связан с ее развитием, тепловой историей и тектонической эволюцией.
Выделяют магматизм:
геосинклинальный
платформенный
океанический
магматизм областей активизации
По глубине проявления:
абиссальный
гипабиссальный
поверхностный
По составу магмы:
ультраосновной
основной
кислый
щелочной
В современную геологическую эпоху магматизм особенно развит в пределах Тихоокеанского геосинклинального пояса, срединно-океанических хребтов, рифовых зон Африки и Средиземноморья и др. С магматизмом связано образование большого количества разнообразных месторождений полезных ископаемых.
Сейсмическая активность - это количественная мера сейсмического режима, определяемая средним числом очагов землетрясений в некотором диапазоне энергетической величины, которые возникают на рассматриваемой территории за определенное время наблюдения.
3. Типы связей между организмами в экосистемах
Экосистема - основное понятие экологии. Это совокупность сосуществующих видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей их средой обитания таким образом, что такое сообщество может сохраняться и функционировать на протяжении длительного периода геологического времени. Сообщества взаимодействующих живых организмов представляют собой не случайный набор видов, а вполне определенную систему, достаточно устойчивую, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов. Такие системы принято называть биотическими сообществами, или биоценозами (от лат. - "биологическое сообщество"), а системы, включающие совокупность живых организмов и среду их обитания, - экосистемами. Термин "биогеоценоз", также обозначает совокупность биологического сообщества и среды его обитания, но в несколько ином контексте. Биотическое сообщество состоит из сообщества растений, сообщества животных, сообщества микроорганизмов. Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга - биосферу. Биосфера также обладает устойчивостью и другими свойствами экосистемы.
Экология рассматривает взаимодействие живых организмов и неживой природы. Это взаимодействие, во-первых, происходит в рамках определенной системы (экологической системы, экосистемы) и, во-вторых, оно не хаотично, а определенным образом организовано, подчинено законам.
Экосистемой называют совокупность продуцентов, консументов и детритофагов, взаимодействующих друг с другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени. Таким образом, для естественной экосистемы характерны три признака:
1) экосистема обязательно представляет собой совокупность живых и неживых компонентов
2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие;
3) экосистема сохраняет устойчивость в течение длительного времени, что обеспечивается определенной структурой биотических и абиотических компонентов.
Взаимосвязи между организмами можно разделить на межвидовые и внутривидовые.
Внутривидовые связи -- биотические связи между особями одного вида. Примеры: конкуренция между самцами из-за самки, борьба особей из-за лидерства в группе, забота родителей о потомстве, охрана самцами молодых животных и самок.
Межвидовые связи обычно классифицируются по “интересам”, на базе которых организмы строят свои отношения:
1) пищевые (трофические) связи - формируют трофическую структуру экосистемы, которую мы уже рассмотрели ранее; помимо отношений, когда одни организмы служат пищей другим, сюда же можно отнести отношения между растениями и насекомыми-опылителями цветов, конкурентные отношения из-за похожей пищи и др.; это самый распространенный тип связей;
2) топические связи (от греческого слова топос - место) - основаны на особенностях местообитания, например, отношения между деревьями и гнездящимися на них птицами, живущими на них насекомыми, отношения между организмами и их паразитами и т.п.;
3) форические связи (от латинского слова форас - наружу) - отношения по распространению семян, плодов и т.п.;
4) фабрические связи (от латинского слова фабрикато - изготовление) - использование растений, пуха, шерсти для постройки гнезд, убежищ и т.п.
Воздействие популяций двух видов друг на друга теоретически можно выразить в виде следующих комбинаций символов:
(0,0), (-,-), (+,+), (+,0), (-,0), (+,-).
Здесь «0» - отсутствие какого-либо воздействия, «+» - положительное воздействие одного вида на другой, «-» - отрицательное воздействие. В результате мы получаем следующие основные виды взаимодействий.
1. Симбиоз (протокооперация и мутуализм) - (+,+)
Эти отношения взаимовыгодны для обоих партнеров. Подобные ассоциации между разными видами очень распространены в природе и играют крайне важную роль в эволюции разрозненного сообщества живых организмов в целостную надсистему вплоть до единого живого организма. Именно в этих отношениях формируется наибольшее количество синергетических эффектов, перерастающих в конечном итоге в ярко выраженные эмерджентные свойства надсистемы.
В симбиозе оба партнера оказываются взаимозависимыми друг от друга. Степень этой взаимозависимости может быть самой разной: от протокооперации, когда каждый из партнеров вполне может существовать самостоятельно при разрушении симбиоза, до мутуализма, когда оба партнера настолько взаимозависимы, что удаление одного из партнеров приводит к неминуемой гибели их обоих.
Примером протокооперации могут служить отношения крабов и кишечнополостных, которые прикрепляются к крабам, маскируя и защищая их своими стрекательными клетками. В то же время они используют крабов как транспортные средства и поглощают остатки их пищи.
Ярким примером мутуализма являются лишайники. Долгое время было непонятно, относить ли лишайники к грибам или к водорослям. Оказалось, что лишайник - это симбиотическая система гриба и водоросли, функциональная и морфологическая связь которых настолько тесна, что их можно рассматривать как особого рода организм, не похожий ни на один из слагающих его компонентов. Поэтому лишайники обычно классифицируют не как симбиозы двух видов, а как отдельные виды живых организмов. Водоросль поставляет грибу продукты фотосинтеза, а гриб, будучи редуцентом, поставляет для водоросли минеральные вещества и, кроме того, является субстратом, на котором она живет. Это позволяет существовать лишайникам в крайне суровых условиях.
Случаи мутуализма чаще всего встречаются у организмов именно с разными потребностями. Очень часто, например, такие отношения возникают между автотрофами и гетеротрофами. При этом они как бы взаимодополняют друг друга. То есть в мутуализме наиболее полно проявляется принцип дополнительности, как наиболее фундаментальный закон природы. Ущербная в каком-то отношении биосистема стремится найти партнера, способного «закрыть» эту ущербность, но по-своему тоже ущербного, чья ущербность закрывается первым партнером. Это еще не мутуализм, а протокооперация. Совместная эволюция таких партнеров способствует более узкой специализации каждого из них, при этом их изначальная ущербность становится еще более явной. Но это энергетически более выгодно для системы в целом, поэтому такая система приобретает большую жизнеспособность. Однако каждый из компонентов в отдельности становится крайне уязвимым.
Подобные механизмы в природе не редкость. Протон объединяется с электроном, обнуляя тем самым общий электрический заряд получаемого в результате атома водорода. Атомы двух разных химических элементов сливаются в молекулу, объединяя свои внешние электронные оболочки, чтобы создать одну общую оболочку с полным комплектом электронов. Мужчина и женщина, являясь полными противоположностями друг другу, объединяются в семью, которая, как правило, гораздо более гармонична, чем каждый из людей в отдельности. В таких системах количество взаимодействий с внешним миром гораздо меньше, чем в разобщенном состоянии. То есть такие системы более независимы от внешнего мира. Именно минимум напряжений в отношениях с внешним миром отличает состояние гармонии, то есть наиболее устойчивое состояние, энергетически наиболее выгодное. Таким образом, объединение противоположных в каких-то отношениях живых существ в симбиозы есть прямое следствие принципа оптимальности.
Именно по пути укрепления симбиозов эволюционировали многие исходные формы жизни, прежде чем они становились едиными живыми организмами. Например, микроорганизмы, населяющие пищевой тракт жвачных животных, вовсе не являются частью организма коровы. Но только они способны образовывать из клетчатки, съеденной коровой, жирные кислоты, которые корова может ассимилировать. Непосредственно клетчатку коровы переваривать не могут, и поэтому они погибнут от голода, если стерилизовать их пищевой тракт, даже если кругом изобилие трав. Бактерии в свою очередь в пищевом тракте коровы обеспечиваются стабильной средой с постоянной температурой.
Очень богаты симбиотическими отношениями экосистемы. Общеизвестны, например, отношения мутуализма между корнями деревьев и грибницей (микроза), без которого не может быть северного леса (этот пример мы рассматривали раньше). Такая мутуалистическая система, как сосна-микроза, способна выжить даже на почвах, разрушенных интенсивным возделыванием сельскохозяйственных монокультур. Особо сложные симбиотические отношения сложились во влажных тропических лесах, что делает практически невозможным их восстановление после сплошных рубок, например, в бассейне Амазонки.
2. Комменсализм - (+,0)
Это слово произошло от французского слова комменсал - сотрапезник. Отношения комменсализма положительны для одного партнера и безразличны для другого. Частные случаями комменсализма:
нахлебничество - один организм питается остатками пищи другого, например, взаимоотношения львов и гиен, акул и рыб-прилипал и т.п.;
сотрапезничество - потребление разных частей или веществ одной и той же пищи или последовательная переработка одного и того же вещества; примером могут служить отношения между сапротрофами, разлагающими органику до минеральных веществ, и высшими растениями, которые потребляют эти вещества; другими примером являются копрофаги, питающиеся экскрементами других животных;
квартирантство (сожительство) - одни организмы используют другие как убежища или транспорт, например, рыба горчак откладывает икру в мантию двустворчатого моллюска, не принося ему вреда, многие насекомые обитают в гнездах птиц и норах грызунов, и т.п.
Комменсализм является наиболее простым типом положительных взаимодействий, являющимся, по-видимому, первым шагом к симбиозу.
3. Хищничество и паразитизм - (+,-)
Эти отношения положительны для одного вида и отрицательны для другого. Несмотря на кажущиеся отличия между хищниками и паразитами, их объединяет главное - они на кого-то отрицательно воздействуют, получая от этого выгоду. Отличия состоят лишь в том, что в отношениях хищник-жертва оба организма постоянно совершенствуются, а в отношениях паразит-хозяин адаптации паразита часто направлены на упрощение внутренней организации и приспособление к конкретному местообитанию на теле или в теле хозяина. Наверное, поэтому хищники нам более симпатичны, чем паразиты, но суть их одна и та же. Сам человек поставил себя в роли хищника по отношению практически ко всем видам живых организмов, но по отношению к биосфере в целом человек является, по-видимому, типичным паразитом (чем выше развитие цивилизации, тем более деградирует сам человек, «высокоцивилизованный» человек «один на один» с природой не выживет).
Понятие хищник в экологии гораздо шире, чем в общепринятом понимании. По большому счету, любого консумента можно отнести к хищникам. В частности растительноядные животные являются хищниками в отношении растений. Поэтому взаимоотношения эти очень разнообразны. Например, одним из частных случаев подобных отношений является аллелопатия, или антибиоз, когда одна популяция продуцирует вещества - ингибиторы, подавляющие жизнедеятельность конкурирующей популяции. Так кусты черной смородины выделяют летучие вещества, подавляющие рост вишни, которая способна затенить и лишить влаги черную смородину, что случается, если высадить молодые смородиновые кусты в вишневые заросли. Однако сильные заросли черной смородины настолько сильно воздействуют на вишневые деревья, что они даже изгибаются в обратную сторону. Типичным примером антибиоза среди микроорганизмов является образование пенициллина плесневыми грибками, являющегося бактериальным ингибитором.
Хищничество и паразитизм играют важную роль в жизни экосистем, регулируя плотность соответствующих популяций на достаточно низком уровне, сдерживая катастрофические вспышки из численности, одновременно не подавляя их полностью. Обычно в системе отношений хищник-жертва со временем устанавливаются постоянные незатухающие колебания численности хищников и жертв. Отсутствие хищника для какой-либо популяции может вызвать «взрыв» численности популяции «жертв», который подрывает кормовую базу данной популяции и вызывает к жизни какие-то иные механизмы корректировки численности, чаще всего в виде болезней или таких поведенческих механизмов, которые связаны с пренебрежением к жизни каждой отдельной особи. Подробней об этом будем говорить при изучении динамики популяций.
Действие принципа оптимальности приводит к тому, что со временем отрицательные взаимодействия ослабевают, достигая некоторого устойчивого равновесия, соответствующего минимуму внутренних напряжений. Наиболее разрушительные последствия возникают лишь там, где контакт жертв и хищников установлен сравнительно недавно. Это в последнее время связано, в первую очередь, с деятельностью человека, перемещающего различные виды организмов с одного континента или острова на другой. Достаточно вспомнить катастрофическую вспышку численности колорадского жука на наших картофельных полях, поначалу уничтожавших практически весь урожай картофеля, пока человек не взял на себя роль хищника по отношению к данному насекомому. Рано или поздно эти отношения стабилизируются, но иногда экосистема вынуждена полностью перестроиться. Например, заболевание американского каштана, который ранее был важным компонентом лесов на востоке Северной Америки, паразитическим грибом, привезенным случайно из Китая, привело к гибели все крупные деревья, в силу чего каштан утратил свое доминирующее положение в этих лесах.
В ходе эволюции отношения хищник-жертва, а особенно паразит-хозяин, часто перерастают в мутуалистические отношения, которые энергетически наиболее выгодны по сравнению с хищничеством. Так в случае лишайников, гриб изначально был паразитом по отношению к водоросли. У некоторых более примитивных лишайников гриб фактически проникает в клетки водорослей, паразитируя на них. У более развитых видов мицелий гриба не проникает в клетки водоросли, и оба организма живут в полной гармонии. Отношения хищник-жертва привели к образованию скотоводства, которое также является примером симбиоза. В природе подобные случаи также нередки, например, отношения муравьев и тлей.
4. Конкуренция - (-,-)
Эти взаимоотношения невыгодны обоим партнерам. Они возникают обычно между организмами, претендующими на один и тот же ресурс. То есть конкуренция абсолютно противоположна симбиозу, возникающему, как правило, на почве противоположных потребностей. Конкуренция может возникать по поводу пространства, пищи или биогенных элементов, света, зависимости от хищников, подверженности болезням и т.д. Любая конкуренция приводит к тому, что в виду одинакового взаимного неприятия партнеров, они стремятся отдалиться друг от друга.
Особенно сильна внутривидовая конкуренция, так как особи одного и того же вида максимально близки друг к другу. Эти противоречия частично снимаются внутривидовыми механизмами, подробнее о которых будем говорить при изучении динамики популяций. Внутривидовая конкуренция способствует расширению сферы жизни вида (разбегание).
Отличие межвидовой конкуренции состоит в том, что ввиду специфической индивидуальности отношений каждого вида к факторам среды, популяции разных видов, населяющих одну экосистему, наоборот, стремятся сузить диапазон своего местообитания до зоны оптимальных условий, в которых он обладает какими-либо преимуществами по сравнению с конкурентами. Если же межвидовая конкуренция выражена слабо, то под влиянием внутривидовой конкуренции данный вид будет стремиться к экспансии как можно большего жизненного пространства.
Тенденция к экологическому разделению видов получила название принципа конкурентного исключения Г.Ф. Гаузе: если два вида с близкими требованиями к среде вступают в конкурентные отношения, то один из них должен либо погибнуть, либо изменить свой образ жизни. Если близкородственные виды живут в одном месте, то они, как правило, либо используют разные ресурсы, например, питаются в разных ярусах леса, либо активны в разное время. В любом случае их жизнедеятельность не должна пересекаться.
Поэтому случаи жесткой конкуренции в природе крайне редки и непродолжительны. Как и в случае хищничества, конфронтация видов характерна для экосистем только в переходные периоды, когда, например, по воле человека или каким-то другим причинам в экосистему внедряется новый вид, претендующий на кем-то используемые уже ресурсы. В этом случае выживает, как правило, только один из конкурирующих видов, лучше удовлетворяющий требованиям данного местообитания, проигравший либо погибает, либо мигрирует из данной экосистемы (если, конечно, вмешательство человека не даст дополнительные преимущества менее приспособленному виду). Есть еще один выход, по которому часто идет природа: переадаптация, изменение своих требований, например, переход на новый вид пищи. Таким путем обычно создаются новые виды. Иногда достаточно просто сменить время питания или найти новое местообитание. В любом случае острота конкуренции обязательно снимается, то есть экосистема опять приходит в гармоничное состояние, характеризующееся минимумом конфронтаций.
5. Аменсализм - (-,0)
Слово аменсализм происходит от латинского слова аменс - безрассудный. Эти отношения отрицательны для одного вида, который угнетается другими видом, для которого эти отношения безразличны. Примером могут служить отношения между светолюбивыми растениями, случайно попавшими под полог елового леса, растение может погибнуть, деревьям же такое соседство безразлично.
6. Нейтрализм - (0,0)
Это такой вид отношений, когда организмы практически не влияют друг на друга, например, отношения белок и лосей в лесу. По большому счету, чистого нейтрализма в природе не бывает, так как все в природе взаимосвязано, и все мы косвенно как-то влияем друг на друга.
Ни один организм в природе не существует вне связей с условиями внешней среды, представленными абиотическими факторами и другими организмами, т.е. в составе экосистем. Эти связи - основное условие жизни организмов и их сообществ. Через них осуществляется образование цепей питания, регулирование численности организмов и их популяций, реализация механизмов устойчивости систем и другие явления. В процессе взаимосвязей происходит поглощение и рассеивание энергии и, в конечном счёте, осуществляется круговорот веществ, а также важнейшие, особенно для современного периода, средообразующие, средоохранные и средостабилизирующие функции живого вещества, организованного в системы.
4. Антропогенные загрязнения атмосферы
Вопрос о воздействии человека на атмосферу находится в центре внимания специалистов и экологов всего мира. И это не случайно, так как крупнейшие глобальные экологические проблемы современности -- «парниковый эффект», нарушение озонового слоя, выпадение кислотных дождей, связаны именно с антропогенным загрязнением атмосферы.
Охрана атмосферного воздуха -- ключевая проблема оздоровления окружающей природной среды. Атмосферный воздух занимает особое положение среди других компонентов биосферы. Значение его для всего живого на Земле невозможно переоценить. Человек может находиться без пищи пять недель, без воды -- пять дней, а без воздуха всего лишь пять минут. При этом воздух должен иметь определенную чистоту и любое отклонение от нормы опасно для здоровья.
Атмосферный воздух выполняет и сложнейшую защитную экологическую функцию, предохраняя Землю от абсолютно холодного Космоса и потока солнечных излучений. В атмосфере идут глобальные метеорологические процессы, формируются климат и погода, задерживается масса метеоритов.
Атмосфера обладает способностью к самоочищению. Оно происходит при вымывании аэрозолей из атмосферы осадками, турбулентном перемешивании приземного слоя воздуха, отложении загрязненных веществ на поверхности земли и т. д. Однако в современных условиях возможности природных систем самоочищения атмосферы серьезно подорваны. Под массивным натиском антропогенных загрязнений в атмосфере стали проявляться весьма нежелательные экологические последствия, в том числе и глобального характера. По этой причине атмосферный воздух уже не в полной мере выполняет свои защитные, терморегулирующие и жизнеобеспечивающие экологические функции.
Наибольшее количество загрязнений антропогенного происхождения попадает в атмосферу в результате сжигания различных видов топлива, основу которого составляют органические вещества -- нефть и нефтепродукты, каменный и бурый угли, горючие сланцы, газ, дрова, торф. Кроме основных горючих компонентов -- восстановленных углерода и водорода, дающих при соединении с кислородом в процессе горения углекислый газ и воду, все они, кроме газа, содержат негорючие минеральные примеси, образующие при сгорании топлива пылевые частицы различного состава, или горючие вещества, например серу, дающие окислы, которые в больших концентрациях могут быть достаточно опасны. Кроме того, в высокотемпературном пламени частично окисляется азотвоздуха, добавляя к выбросам окислы азота. Наиболее чистое топливо -- газ, как природный, так и получаемый при переработке нефти или в процессах метанового брожения органических веществ. Больше всего минеральных частиц образуется при сжигании горючих сланцев, бурого угля и торфа. Использующие эти виды топлива тепловые электростанции выбрасывают в атмосферу особенно много загрязнений.
Для уменьшения концентрации вредных примесей в приземном слое воздуха котельные тепловых электростанций и крупных промышленных предприятий оборудуют высокими, до 100-200 и более метров, дымовыми трубами. Чем в более высокие слои воздуха выбрасываются загрязнения, тем ниже их концентрация в приземном слое, но на тем большую площадь они рассеиваются. Крупные промышленные центры создают сверхфоновую концентрацию взвешенных частиц, окислов серы и азота, окиси углерода на десятки километров вокруг себя, а при устойчивом ветре постоянного направления -- и на сотни километров.
Кроме создания концентрации загрязнений, многократно превышающей фоновую для природных примесей, промышленность и транспорт выбрасывают в воздух множество веществ, вообще не встречающихся в природных примесях. К таким веществам у живых организмов нет выработанных эволюцией механизмов обезвреживания или использования. Некоторые из них высокотоксичные, например многие промежуточные продукты химических производств. Аварийный выброс одного из таких веществ, диоксана, на химическом заводе в городе Бхопал в Индии в начале 80-х годов привел к гибели и серьезным отравлениям нескольких тысяч человек. Постоянные выбросы производственной пыли, содержащей бактериальные белки, на некоторых биохимических производствах приводили к распространению среди живущего поблизости населения острейших аллергических заболеваний.
Десятки миллионов двигателей внутреннего сгорания, работающих на всех видах транспорта, выбрасывают в атмосферу огромные количества окислов азота и серы, особенно дизельные двигатели, использующие дешевое «тяжелое» топливо. Автомобильные моторы выбрасывают также много продуктов неполного сгорания углеводородов, многие из которых обладают высокой канцерогенной активностью, и окиси углерода -- угарного газа. В больших городах и вблизи автомагистралей основной источник загрязнения приземных слоев воздуха -- автотранспорт.
Вклад сельского хозяйства в загрязнение воздуха относительно невелик, хотя в тех случаях, когда не налажена переработка отходов животноводства, в воздух попадает значительное количество летучих органических соединений азота и серы, которые создают устойчивый неприятный запах и небезразличны для здоровья людей. Но если эти загрязнения оказываются существенными только в отдельных местах, то загрязнения от промышленности, энергетики и транспорта настолько значительны по объему, что влияют не только на сугубо местные условия, но иногда способны изменить весь ход биосферных процессов.
Антропогенные выбросы загрязняющих веществ в больших концентрациях и в течение длительного времени наносят большой вред не только человеку, но отрицательно влияют на животных, состояние растений и экосистем в целом.
5. Кислотные осадки
Атмосферные осадки -- вода в жидком или твёрдом состоянии, выпадающая из облаков или осаждающаяся из воздуха на земную поверхность и различные предметы.
Выпадающие из облаков осадки: дождь, морось, град, снег, крупа.
Различают: обложные осадки, связанные преимущественно с тёплыми фронтами;ливневые осадки, связанные с холодными фронтами.
Осаждающиеся из воздуха осадки: роса, иней, изморозь, гололёд. Осадки измеряются толщиной слоя выпавшей воды в миллиметрах. В среднем на земном шаре выпадает около 1000 мм осадков в год, а в пустынях и в высоких широтах -- менее 250 мм в год.
Измерение осадков выполняется дождемерами, осадкомерами, плювиографами на метеорологических станциях, а для больших площадей -- с помощью радиолокации.
Осадки -- одно из звеньев влагооборота на Земле. Многолетнее, среднемесячное, сезонное, годовое количество осадков, их распределение по земной поверхности, годовой и суточный ход, повторяемость, интенсивность являются определяющими характеристиками климата, имеющими существенное значение для сельского хозяйства и многих других отраслей народного хозяйства.
Кислотными называют любые осадки - дожди, туманы, снег, кислотность которых выше нормальной. К ним относят выпадение из атмосферы сухих кислых частиц, иногда называемых кислотными отложениями. В результате на обширных территориях нашей страны, Европы, США, Канады и др. промышленных зон мира выпадают осадки, кислотность которых превышает в 10 -1000 раз допустимую.
Кислотные осадки, дождь, снег или дождь со снегом, имеющие повышенную кислотность. Кислотные осадки возникают главным образом из-за выбросов оксидов серы и азота в атмосферу при сжигании ископаемого топлива (угля, нефти и природного газа). Растворяясь в атмосферной влаге, эти оксиды образуют слабые растворы серной и азотной кислот и выпадают в виде кислотных дождей.
Кислотные свойства обусловлены присутствием активных ионов Н+ и выражается в единицах pH=-lg[H+]. В отсутствие любых загрязнителей у дождевой воды обычно слабокислая реакция рН=5,6 (т.к. в ней растворен СО2 из воздуха). Кислыми называют любые осадки, у которых рН ?5,5.
Относительная кислотность раствора выражается индексом рН (кислотность определяется наличием свободных ионов водорода Н+; рН -- это показатель концентрации ионов водорода). При рН = 1 раствор представляет собой сильную кислоту (как электролит в аккумуляторной батарее); рН = 7 означает нейтральную реакцию (чистая вода), а рН = 14 -- это сильная щелочь (щелок). Поскольку рН измеряется в логарифмической шкале, водная среда с рН = 4 в десять раз более кислая, чем среда с рН = 5, и в сто раз более кислая, чем среда с рН = 6.
В восточных районах США кислотность атмосферных осадков приблизительно на 65% определяется присутствием серной кислоты (H2SO4), на 30% -- азотной кислоты (HNO3) и на 5% -- соляной кислоты (HCl). Главными источниками оксидов серы (SO2 и SO3), обусловливающих образование серной кислоты, являются тепловые электростанции, работающие на нефти и угле, а также металлургические заводы. Оксид азота (NO) и диоксид азота (NO2), из которых образуется азотная кислота, поступают в атмосферу примерно в равных количествах от тепловых электростанций, работающих на нефтепродуктах и угле, и с выхлопными газами автомобильных двигателей. Сравнительно небольшое количество соляной кислоты в атмосферных осадках образуется в результате аккумуляции газообразного хлора от различных природных и промышленных источников. Кислотные дожди могут также выпадать при поступлении в атмосферу серной кислоты и азотсодержащих газов (диоксида азота NO2 и аммиака NH3) от естественных источников (например, при извержении вулканов).
Кислотные осадки по-разному воздействуют на экосистемы. От рН зависит деятельность всех ферментов, гормонов и белков в организме, регулирующих их рост и развитие, при уменьшении рН на единицу по сравнению с оптимумом организмы испытывают сильный стресс и погибают. У пресноводных озер, ручьев и прудов рН ~ 6-7 и организмы адаптированы к этому уровню. Когда среда водных экосистем подкислена, все организмы быстро вымирают, прежде всего из-за невозможности размножения. Влияние кислотных осадков на экосистемы иногда усиливается в период таяния снегов, т.к. накопившиеся за зиму кислотные осадки устремляются в ручьи и реки как раз в период размножения организмов. Дополнительный ущерб возникает, когда кислотные осадки просачиваются в почву и выщелачивают алюминий (Al) и тяжелые металлы. Присутствие металлов в почве не создает проблем, т.к. они находятся в виде водонерастворимых солей или защищены оксидной пленкой, однако при понижении рН металлы переходят в водорастворимую форму и оказывают сильное влияние на растения и животных. Наряду с гибелью озер становится очевидной и деградация лесов, т.к. обнаружено влияние кислотных осадков на растительность:
1. Нарушение растений при прямом контакте;
2. Вымывание биогенов;
3. Мобилизация (превращение в водорастворимую соль) алюминия, свинца и др. токсичных элементов.
Многие районы получают примерно одинаковое количество кислотных осадков, но последствия их выпадения различны. Одни участки остаются без изменений, а другие деградируют. Объяснить это явление может понятие буферной емкости. Известно, что защитить систему от изменений рН при добавлении кислоты можетбуфер. Так называют вещество, способное поглощать (или высвобождать) ионы Н+. При добавлении кислоты в систему, содержащую буфер, дополнительные ионы Н+ поглощаются и рН не меняется.
Многие водоемы и почвы в качестве буфера содержат СаСО3(известняк). Реакция Н+ с СО3-І дает воду и углекислый газ. Поэтому в сельском хозяйстве для нейтрализации кислых почв используют известь, а на садовых участках вносят в почву яичную скорлупу. Однако, возможности любого буфера ограничены, поэтому вводится понятие буферной емкости. Когда она исчерпана, дополнительные ионы Н+ остаются в почвенном растворе. К сожалению, невозможно известковать все почвы. Поэтому главную борьбу с кислотными осадками необходимо направлять на сокращение выбросов кислотообразующих веществ. Поскольку 50% всех кислотообразующих веществ выбрасывается в атмосферу угольными электростанциями. Стратегия борьбы с выбросами направлена на эти источники, главным образом, на уменьшение выбросов оксидов серы и азота.
Для уменьшения выбросов оксидов азота используются технологические и сорбционные методы. Для уменьшения выбросов оксидов серы используют низкосернистый уголь или проводят очистку топлива (измельчение и химическую очистку угля), сжигание топлива в «псевдоожиженном» слое (такие печи целесообразно устанавливать на новых ЭС), но лучшим способом является установка скрубберов (жидких фильтров), в которых газовоздушная смесь пропускается через распыленный водный раствор извести. Кроме того, целесообразно осуществлять энергосбережение и строительство альтернативных источников энергии (АЭС, ветровых и солнечных ЭС).
6. Виды очистки сточных вод
В реках и других водоемах происходит естественный процесс самоочищения воды.
Однако он протекает медленно. Пока промышленно-бытовые сбросы были невелики, реки сами справлялись с ними. В наш индустриальный век в связи с резким увеличением отходов водоемы уже не справляются со столь значительным загрязнением. Возникла необходимость обезвреживать, очищать сточные воды и утилизировать их.
Очистка сточных вод - обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения - сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода).
Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические, когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным.
Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.
Сущность механического метода состоит в том, что из сточных вод путем отстаивания и фильтрации удаляются механические примеси. Грубодисперсные частицы в зависимости от размеров улавливаются решетками, ситами, песколовками, септиками, навозоуловителями различных конструкций, а поверхностные загрязнения - нефтеловушками, бензомаслоуловителями, отстойниками и др. Механическая очистка позволяет выделять из бытовых сточных вод до 60-75% нерастворимых примесей, а из промышленных до 95%, многие из которых как ценные примеси, используются в производстве.
Химический метод заключается в том, что в сточные воды добавляют различные химические реагенты, которые вступают в реакцию с загрязнителями и осаждают их в виде нерастворимых осадков. Химической очисткой достигается уменьшение нерастворимых примесей до 95% и растворимых до 25%.
При физико-химическом методе обработки из сточных вод удаляются тонко дисперсные и растворенные неорганические примеси и разрушаются органические и плохо окисляемые вещества, чаще всего из физико-химических методов применяется коагуляция, окисление, сорбция, экстракция и т.д. Широкое применение находит также электролиз. Он заключается в разрушении органических веществ в сточных водах и извлечении металлов, кислот и других неорганических веществ.
Электролитическая очистка осуществляется в особых сооружениях - электролизерах.
Очистка сточных вод с помощью электролиза эффективна на свинцовых и медных предприятиях, в лакокрасочной и некоторых других областях промышленности.
Загрязненные сточные воды очищают также с помощью ультразвука, озона, ионообменных смол и высокого давления, хорошо зарекомендовала себя очистка путем хлорирования.
Среди методов очистки сточных вод большую роль играет биологический метод, основанный на использовании закономерностей биохимического и физиологического самоочищения рек и других водоемов. Есть несколько типов биологических устройств по очистке сточных вод: биофильтры, биологические пруды и аэротенки.
В биофильтрах сточные воды пропускаются через слой крупнозернистого материала, покрытого тонкой бактериальной пленкой. Благодаря этой пленке интенсивно протекают процессы биологического окисления. Именно она служит действующим началом в биофильтрах.
В биологических прудах в очистке сточных вод принимают участие все организмы, населяющие водоем.
Аэротенки - огромные резервуары из железобетона. Здесь очищающее начало - активный ил из бактерий и микроскопических животных. Все эти живые существа бурно развиваются в аэротенках, чему способствуют органические вещества сточных вод и избыток кислорода, поступающего в сооружение потоком подаваемого воздуха.
Бактерии склеиваются в хлопья и выделяют ферменты, минерализующие органические загрязнения. Ил с хлопьями быстро оседает, отделяясь от очищенной воды.
Инфузории, жгутиковые, амебы, коловратки и другие мельчайшие животные, пожирая бактерии, неслипающиеся в хлопья, омолаживают бактериальную массу ила.
Сточные воды перед биологической очисткой подвергают механической, а после нее для удаления болезнетворных бактерий и химической очистке, хлорированию жидким хлором или хлорной известью. Для дезинфекции используют также другие физико-химические приемы (ультразвук, электролиз, озонирование и др.)
Биологический метод дает большие результаты при очистке коммунально-бытовых стоков. Он применяется также и при очистке отходов предприятий нефтеперерабатывающей, целлюлозно-бумажной промышленности, производстве искусственного волокна.
Список литературы:
1. Душина Д., Ерюшкина Л.Е., Ястребова О.Н. Изучение влияния техногенного воздействия на живые организмы / Биология для школьника, 1, 2007 с 34 - 41.
2. Карюхина Т.А., Чурбанова И.Н. "Контроль качества воды" Охрана производственных сточных вод и утилизация осадков Под редакцией В.Н. Соколова М: Стройиздат, 1992г
3. Маршалкович А.С., М.И. Афонина, Т.А. Алешина. «ЭКОЛОГИЯ» - Конспект лекций. Москва 2009
4. Новиков Ю.В. Экология, окружающая среда и человек. Уч. пособие для вузов. - М., Дом Гранд; Фаир-Пресс, 2000.
5. Протасов В.Ф. Экология, здоровье и охрана окружающей среды в России. Уч. справочное пособие. - М., «Финансы и статистика» 2000.
6. Стадницкий Г.В. Экология. - С.-Петербург. Химиздат. 2001.
Размещено на Allbest.ru
...Подобные документы
Предмет и задачи экологии. Учение Вернадского о биосфере. Классификация экологических факторов. Абиотические факторы наземной среды. Лучистая энергия солнца. Влажность атмосферного воздуха, атмосферные осадки. Газовый состав атмосферы. Давление атмосферы.
лекция [141,8 K], добавлен 01.01.2009Биосфера как одна из оболочек Земли, ее состав и границы. Источники и основные группы загрязняющих веществ атмосферы России. Роль животных в самоочистке воды и водных экосистемах. Виды мониторинга окружающей среды. Первые договоры по охране природы.
контрольная работа [30,1 K], добавлен 19.02.2011Понятие, структура и виды экосистем. Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах. Особенности циркуляции солнечной энергии. Биосфера как глобальная экосистема; взаимодействие живого и неживого, биогенная миграция атомов.
курсовая работа [67,1 K], добавлен 10.07.2015Характеристика задач и методов экологии, как науки изучающей условия существования живых организмов и взаимосвязи между организмами и средой, в которой они обитают. Особенности современных экологических проблем, обзор видов загрязнения окружающей среды.
реферат [210,0 K], добавлен 21.02.2010Динамические и статические свойства популяций. Круговорот веществ и поток энергии в экосистеме. Основные положения учения о биосфере и ноосфере. Стратегия устойчивого развития цивилизации. Антропогенные факторы возникновения неустойчивости в биосфере.
курс лекций [91,2 K], добавлен 16.10.2012Из каких частей состоит биогеохимический круговорот веществ? Какие опасные ущербообразующие геохимические процессы Вы знаете? Что общего можно найти между функциональной структурой экологической системы и организацией хозяйства.
контрольная работа [30,2 K], добавлен 05.01.2003Кругооборот химических веществ из неорганической среды. Сущность большого (геологического) круговорота. Описание циркуляции веществ в биосфере на примере углерода, азота, кислорода, фосфора и воды. Антропогенные воздействия на окружающую природную среду.
реферат [201,9 K], добавлен 17.12.2011Предмет и задачи экологии. Аутэкология, синэкология и популяция в экологии. Круговорот веществ и поток энергии в экосистемах. Охрана природы и концепция устойчивого развития, рациональное природопользование и современные экологические проблемы.
курс лекций [99,6 K], добавлен 26.10.2012Экология - наука о взаимоотношениях живых организмов с окружающей средой. Круговорот воды в биосфере. Тепловое загрязнение как один из видов загрязнения водоемов. Источники загрязнения природных вод, проблемы, возникающие в связи с деятельностью человека.
презентация [1,1 M], добавлен 23.11.2011Структура современной экологии, основные экологические понятия и термины. Учение В.И. Вернадского о биосфере, биогеохимические циклы. Антропогенный фактор в биосфере и основы социоэкологии. Последствия загрязнения атмосферного воздуха и водных ресурсов.
курс лекций [60,7 K], добавлен 15.02.2012Философский образ природы от древности до современности. Основы системы: природа – биосфера – человек. Современные проблемы экологии. Явления и объекты природы. Представления о биосфере как о космическом явлении. Человек как универсальная сила природы.
реферат [21,2 K], добавлен 05.09.2009Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.
методичка [66,2 K], добавлен 07.01.2012Экологические проблемы загрязнения воздуха в мире в целом, а также в Казахстане в частности. Состояние воздушного бассейна. Транспорт как источник загрязнения атмосферы. Экология Семея. Способы и перспективы улучшения состояния экологии атмосферы.
курсовая работа [295,0 K], добавлен 17.04.2014Учение о биосфере. Круговорот веществ в биосфере. Воздействие общества на биосферу. Проблемы биосферы. Химическое загрязнение атмосферы. Химическое загрязнение природных вод. Загрязнение мирового океана. Загрязнение почвы.
реферат [235,3 K], добавлен 05.10.2006Человек и окружающая среда: история взаимодействия. Физические, химические, информационные и биологические загрязнения, нарушающие процессы круговорота и обмена веществ, их последствия. Источники загрязнения гидросферы и литосферы в Нижнем Новгороде.
реферат [53,8 K], добавлен 03.06.2014Исходные теоретические концепции экологии. Структура и эволюция биосферы. Экология популяций и сообществ. Среды жизни человека и формы его адаптации к ним. Проблема роста народонаселения. Глобальные последствия загрязнения атмосферы. Охрана почв и земель.
учебное пособие [2,8 M], добавлен 14.02.2013Экология как наука о взаимоотношениях между организмами и средой их обитания. Знакомство с историей образования биосферы, этапы развития. Общая характеристика основных принципов функционирования экосистем. Рассмотрение глобальных экологических проблем.
курсовая работа [816,8 K], добавлен 06.09.2013Экология как наука. Описание ее основных методов. Сущность и разновидности экосистем, их классификация на основе биомов, структура и функции. Особенности формирования потока вещества и энергии в экосистемах. Термин "биосфера", основные идеи Вернадского.
контрольная работа [278,5 K], добавлен 09.01.2015Пути миграции углекислого газа в биосфере Земли. Процессы, возмещающие потери азота. Особенности миграции углекислого газа. Организмы биосферы участвующие в круговороте веществ. Формы проявления серы в почве. Роль фотосинтеза в круговороте веществ.
презентация [667,7 K], добавлен 17.02.2013Глобальные проблемы окружающей среды. Междисциплинарный подход в исследовании экологических проблем. Содержание экологии как фундаментального подразделения биологии. Уровни организации живого как объекты изучения биологии, экологии, физической географии.
реферат [16,3 K], добавлен 10.05.2010