Водопроводные сооружения производительностью 10000 куб.м/сут

Поверхностные и подземные источники водоснабжения. Осветление и обесцвечивание воды коагулированием. Классификация взвешенных веществ. Устройства и расчет осветлителей. Основные положения процесса фильтрования. Фильтрующие материалы и типы фильтров.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 11.05.2014
Размер файла 94,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
ТЕХНОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ
КАФЕДРА КОМПЛЕКСНОГО ИСПОЛЬЗОВАНИЯ И ОХРАНЫ ВОДНЫХ РЕСУРСОВ

«Водопроводные сооружения производительностью 10000м3/сут.»

Курсовой проект

280302.02КП25. 000ПЗ

Выполнила:

Студентка гр. 08-КИ

Железная А.А.

Проверил:

Руководитель проекта

Д.Т.Н. Потапов В.В.

ПЕТРОПАВЛОВСК - КАМЧАТСКИЙ

2010 г.

Камчатский государственный технический университет

Технологический факультет

Кафедра комплексного использования и охраны водных ресурсов

Задание

на курсовой проект

Железная Анна Александровна

1.Тема «Водопроводные сооружения производительностью 10000 м3/сут.»

2. Основание для разработки: задание на проектирование

3. Цель разработки: проект очистного водопроводного сооружения производительностью 10000 м3/сут.

4. Источники разработки:

4.1 Документация:

4.1.1 СниП 2.04.02 - 84 Водоснабжение, наружные сети и сооружения. - М.; Госстрой России, ГУП ЦПП, 2000;

4.1.2.Сан ПиН 2.1.4.559 - 96 Питьевая вода. - М.; инф.изд Центр Госкомсанэпиднадзора России, 1996;

4.2 Литература:

4.2.1. Абрамов Н. Н., Поспелова М. М. Расчет водопроводных сетей. М, Строй-пздат, 1962.

4.2.2 Абрамов Н. Н Теория и методика расчета систем подачи и распределения воды. М., Стройиздат, 1972.

4.2.3 АндрияшевМ М. Гидравлические расчеты водоводов и водопроводных сетей. М, Стройиздат, 1964

4.2.4 Пособие по проектированию сооружений для очистки и подготовки воды. СниП 2.04.02 - 84 - М.; Центральный институт типового проектирования, 1989;

4.2.5 Серебряков Н.Б. Проектирование водопроводных сооружений - М.; Стройиздат, 1984;

4.2.6 Карюхина Т.А., Чуранова И.Н. Контроль качества воды, Учебник, -М.; Стройиздат, 1986;

4.2.7 Фрог Б.И., Левченко А.П. Водоподготовка. - М.; изд. МГУ, 1996

4.2.8 Николадзе Г.И., Солов М.А. Водоснабжение. - М.; Стройиздат, 1995;

4.2.9 Николадзе Г.И. Технология очистки природных вод. - М.; Высш. шк.,1987;

4.2.10 Оводов В.С. Сельскохозяйственное водоснабжение и обводнение. - М.; Колос, 1984;

4.2.11 Кульский Л.А., Строкач П.П. Технология очистки природных вод. Киев; Высш. шк., 1981;

4.2.12 Клячко В.А., Апельнин И.Э. Очистка природных вод. Изд. лит. По строительству. - М.; 1979.

5. Требования к разработке: обеспечение необходимого качества питьевой воды для бытового и промышленного пользования.

6. Перечень текстового и графического материала:

6.1 Пояснительная записка.

Задание принял к исполнению студент Железная Анна Александровна.

Реферат

Реферат курсового проекта по специальности «Комплексное использование и охрана водных ресурсов» по теме «Водопроводные сооружения производительностью 10000м3/сут.»

Дипломный проект содержит: пояснительная записка - 41 с., 1 рисунков, 2 таблицы, список литературы из 11 источников;

СИСТЕМА ВОДОСНАБЖЕНИЯ, ВОДОЗАБОРНЫЕ СООРУЖЕНИЯ, ВОДОПОЪЁМНЫЕ СООРУЖЕНИЯ, СМЕСИТЕЛИ, КАМЕРА РЕАКЦИИ, ОТСТОЙНИКИ, ФИЛЬТРЫ ЗАГРУЗКИ, ОСВЕТЛИТЕЛИ, ПОДДЕРЖИВАЮЩИЕ СЛОИ.

Целью настоящего курсового проекта является проект водопроводного очистного сооружения производительностью 10000м3/сут.

Задачи курсового проекта - описать систему водоподачи к очистным сооружениям, перечислить методы очистки воды и рассчитать очистное сооружения производительностью 10000м3/сут.

При курсовом проектировании были изучены основные физико-химические процессы, протекающие при очистки питьевой воды, выбран метод водоподготовки, рассчитаны основные элементы очистного сооружения.

Введение

Общее количество воды на земле оценивается в 14000 млн.км3. Однако стационарные запасы пресных вод, пригодных для использования составляют всего 0,3 % объема гидросферы ( около 4 млн.км3 ). Вода на нашей планете находится в состоянии круговорота. Под действием солнечной энергии вода испаряется с поверхности мирового океана и суши, а затем выпадает в виде атмосферных осадков. С поверхности мирового океана испаряется около 412 тысяч км3 в год, а количество атмосферных осадков, выпадающих на поверхность морей и океанов, составляют около 310 тыс. км3 в год. Разница и представляет собой речной сток с суши в моря и океаны.

Единовременный запас воды во всех реках земного шара составляет примерно 1200 км3, причем этот объем возобновляется примерно каждые 12 суток. В природе не существует воды, которая не содержала бы примесей. Даже атмосферные осадки содержат до 100 мг / л различных загрязнителей. По степени минерализации вода делится на маломинерализованную (до 200 мг / л солей), среднеминерализованную (200 - 500 мг / л ) и сильноминерализованную(до 1000 мг/л). Природные воды содержат также коллоидные, мелкодисперсные газы - кислород, диоксид углерода (СО2 ) и другие.

Система водоснабжения представляет собой комплекс сооружений для обеспечения определенной (данной) группы потребителей (данного объекта) водой в требуемых количествах и требуемого качества. Кроме того, система водоснабжения должна обладать определенной степенью надежности, т е обеспечивать снабжение потребителей водой без недопустимого снижения установленных показателей своей работы в отношении количества или качества подаваемой воды (перерывы или снижение подачи воды или ухудшение ее качества в недопустимых пределах).

Система водоснабжения

Система водоснабжения (населенного места или промышленного предприятия) должна обеспечивать получение воды из природных источников, ее очистку, если это вызывается требованиями потребителей, и подачу к местам потребления. Для выполнения этих задач служат следующие сооружения, входящие обычно в состав системы водоснабжения:

· водоприемные сооружения, при помощи которых осуществляется прием воды из природных источников,

· водоподъемные сооружения, т е насосные станции, подающие воду к местам ее очистки, хранения или потребления,

· сооружения для очистки воды,

· водоводы и водопроводные сети, служащие для транспортирования и подачи воды к местам ее потребления,

· башни и резервуары, играющие роль регулирующих и запасных емкостей в системе водоснабжения

Выбор источника является одной из наиболее ответственных задач при проектировании системы водоснабжения, так как он определяет в значительной степени характер самой системы, наличие в ее составе тех или иных сооружений, а следовательно, стоимость и строительства и эксплуатации.

Практически все используемые для целей водоснабжения природные источники воды могут быть отнесены к двум основным группам:

· поверхностные источники -- реки (в естественном состоянии или зарегулированные) и озера;

· подземные источники -- грунтовые и артезианские воды и родники.

По своему дебиту средние и крупные реки могут удовлетворить потребности в воде большинства обычных объектов водоснабжения.

Системы водоснабжения могут классифицироваться по ряду основных признаков:

§ По назначению различают системы водоснабжения (водопроводы) населенных мест (городов, поселков); системы производственного водоснабжения (производственные водопроводы), которые, в свою очередь, различают по отраслям промышленности (водопроводы тепловых электростанций, водопроводы металлургических заводов и т. д.); системы сельскохозяйственного водоснабжения.

§ По характеру используемых природных источников различают водопроводы, получающие воду из поверхностных источников (речные, озерные и т.д.); водопроводы, основанные на подземных водах (артезианские, родниковые и т.п.); водопроводы смешанного питания---при использовании источников различных видов.

§ По способу подачи воды различают водопроводы самотечные (гравитационные); водопроводы с механической подачей воды (с помощью насосов), а также зонные водопроводы, где вода подается в отдельные районы отдельными насосными станциями

Кроме того, в соответствии со сказанным выше системы производственного водоснабжения можно различать по способу (кратности) использования воды: системы прямоточного водоснабжения (с однократным использованием воды); системы оборотного водоснабжения; системы с повторным использованием воды.

Водозаборные сооружения

водоснабжение осветлитель фильтр взвешенный

Водозаборные сооружения -- сооружения для забора воды из источника, состоящие из ряда основных инженерных объектов:

· водозаборного устройства со станцией первого подъема (обычно это погружные насосы);

· узел учета воды из водосчетчиков -- расходомеров;

· водоподготовки для доведения качества воды до норм питьевой воды;

· резервуара чистой воды (РЧВ);

· резервуара пожарного запаса (пожарный резервуар);

· насосной станции второго подъема для поддержания давления и подачи воды потребителю в требуемом объёме;

· водонапорной башни (альтернатива насосной станции второго подъема);

· станция пожаротушения (пожарные насосы);

· дренажная система выполняет отвод вод при аварийном переполнении резервуаров, подтоплении водозаборных сооружений.

· контрольно-измерительные приборы и автоматика (сокр. КИПиА или КИПиС) следят за работоспособностью оборудования, регулируют расходы воды, ведут журналы изменений характеристик: уровней, расхода воды, аварийных ситуация и т. п., выполняет автоматическое обслуживание оборудования, например, автоматическая промывка станции водоподготовки. Полный перечень выполняемых автоматически действий зависит от конкретных требований технического задания Заказчика к объекту водозаборного узла;

Большие (перекачивающие свыше 10 000 куб.м/сут) водозаборные сооружения могут иметь собственную инфраструктуру: электрическую подстанцию, газораспределительную подстанцию (ГРП), котельную, диспетчерский пункт с возможностью нести вахту, лабораторию для контроля качества воды и прочее.

Место для размещения водозаборного сооружения, так называемый землеотвод, должно быть согласовано с государственным органом санитарно-эпидемиологического надзора и удовлетворять санитарно-эпидемиологическим (СанПиН) и строительным нормам (СНиПам).

Из водоразборных приспособлений специального назначения следует упомянуть:

а) питьевые колонки или фонтанчики, устанавливаемые для общественного пользования в летнее время в садах, парках, на бульварах, площадях и т. п.;

б) краны для поливки зеленых насаждений, представляющие собой

обычно простые стояки из стальных труб с запорными вентилями; на зиму всю поливочную сеть выключают и воду из нее спускают.

Для поливки улиц, тротуаров, заводских дворов и проездов служат чаще всего ответвления от внутренних водопроводов, расположенные в специальных нишах в стенах зданий. Автоцистерны для поливки площадей и широких улиц наполняют обычно через пожарные гидранты.

Подземные источники водоснабжения

Подземные воды, согласно п.5.3. СНиП 2.04.02-84* «Водоснабжение. Наружные сети и канализация.», водоприемные сооружения (чаще употребим: подземный источник водоснабжения) подразделяются на:

· Водозаборные скважины (чаще употребим термин: артезианская скважина) для добычи артезианской воды;

· Шахтные колодцы для добычи по большей части грунтовых вод;

· Горизонтальные водозаборы, которые в свою очередь подразделяются на:

· траншейные сооружения используются для сравнительно небольшого водопотребления при малой глубине залегания подземных вод;

· галерейные (собственно галереи и штольни), которые применяются для постоянного водоснабжения относительно крупных водопотребителей, сооружаемые при значительной глубине залегания водоносных горизонтов;

· кяризы -- примитивно устроенные водозаборные сооружения, применяемые для сельскохозяйственного водоснабжения и орошения небольших земельных участков в полупустынных районах с невыдержанным залеганием водоносных горизонтов;

· Комбинированные водозаборы;

· Лучевые водозаборы применяются для более полного захвата подземной воды -- комбинация шахтного колодца с горизонтальными буровыми скважинами, заложенными в разные стороны водоносного пласта;

· Каптажи родников;

Поверхностные источники водоснабжения

Поверхностные источники для водоснабжения подразделяются на:

· Речные -- водоотбор из реки;

· Водохранилищные -- водоотбор из водохранилища;

· Озерные -- водоотбор из озера;

· Морские -- водоотбор из моря.

Для поверхностных источников выделяют, следующие виды водозаборных сооружений:

· Береговые водозаборные сооружения применяемяется при относительно крутых берегах реки, представляет собой бетонный или железобетонный колодец большого диаметра, вынесенный передней стенкой в реку. Вода поступает в него через отверстия, защищенные решётками, а затем проходит через сетки, осуществляющие грубую механическую очистку воды.

· Русловые водозаборные сооружения применяются обычно при пологом береге, имеют оголовок, вынесенный в русло реки. Конструкции оголовков весьма разнообразны. Из оголовка вода подаётся по самотёчным трубам к береговому колодцу; последний часто совмещен с насосной станцией первого подъёма.

· Плавучие водозаборные сооружения -- это понтон или баржа, на которых устанавливаются насосы, забирающие воду непосредственно из реки. На берег вода подаётся по трубам (с подвижными стыками), уложенным на соединительном мостике.

· Ковшовые водозаборные сооружения. Вода поступает из реки сначала в расположенный у берега ковш (искусственный залив), в конце которого размещается собственно В. с. Ковш используется для осаждения наносов, а также для борьбы с ледовыми помехами -- шугой и глубинным льдом. Для защиты водоприемных устройств водозаборов от шуги рекомендуется применять ограждения камерного типа или шпунтовые, шугоотбойные запани, дырчатые или щелевые короба, каменную наброску, ковши-шугоотстойники и т. п.

Водоподъёмные установки

Насосные станции являются важнейшим элементом современных систем водопровода и канализации. Именно через них жидкости сообщается энергия, необходимая для поднятия ее на большую высоту или транспортирования на значительные расстояния. Насосные станции представляют собой сложный комплекс сооружений и оборудования. Правильный выбор технико-экономических параметров этого комплекса во многом определяет надежность и экономическую эффективность подачи или отведения воды.

Для индивидуальных систем водоснабжения следует, как правило, применять автоматизированные водоподъемные устройства, включающие в себя насос, регулирующую емкость и приборы автоматического регулирования, при которых насос периодически подает или прекращает подачу воды в регулирующую емкость в зависимости от уровня воды в безнапорном (открытом) баке или давления в напорном гидропневматическом баке.

Работа водоподъемной установки характеризуется частотой включения насоса в единицу времени, зависящей от регулирующего объема бака. Безнапорный (открытый) бак размещается в высшей точке системы на отметке, обеспечивающей необходимый напор в системе. В напорном гидропневмобаке необходимый напор создается давлением сжатого воздуха, передающимся на воду через эластичную мембрану. Гидропневмобаки обычно входят в комплект автоматизированных водоподъемных установок; безнапорные баки чаще всего поставляются по отдельной заявке как нестандартизированное оборудование.

Тип водоподъемного оборудования зависит от вида водозаборного сооружения, глубины водоносного горизонта (его динамического уровня), дебита водоисточника, а также условий водопотребления (расхода воды и свободного напора).

Для автономных систем водоснабжения могут применяться насосы различных типов - консольные, консольные моноблочные, вихревые, погружные, бытовые, а также комплектные водоподъемные установки, включающие в себя насос, гидропневматический бак, арматуру и средства автоматизации.

Для подъема воды из шахтных колодцев и водозаборных скважин при устойчивой глубине динамического уровня воды не более 56 м рекомендуется применение горизонтальных центробежных насосов. Насосы могут размещаться в обособленном помещении первого этажа (подвала) жилого дома, в шахтном колодце или в подземной камере.

Размещение насосов в помещении жилого дома допускается при условии, что уровень шума в жилых помещениях при работе насоса не превысит 35 дБа.

Для подъема воды из глубоких шахтных колодцев и водозаборных скважин, как правило, применяются погружные насосы.

Работу насосов следует принимать в повторно-кратковременном режиме совместно с регулирующей емкостью.

Производительность насосов при этом должна составлять не менее максимального часового расхода воды, для которого проектируется автономная система водоснабжения.

Очистные сооружения. Обработка воды

На примере типовой схемы очистной станции водопровода показан комплекс составляющих ее элементов (рис. 1.1 Приложение 1)

На станциях меньшей производительности применяют вертикальные отстойники, состоящие из двух цилиндров, вложенных один в другой. Диаметр внешнего цилиндра -- не больше 12 м. Отношение диаметра к высоте отстойника (D/H) принимают в пределах 1,2...2. Вода поступает во внутренний цилиндр, в котором находится камера реакции, опускается вниз, затем осветляется, поднимаясь в вертикальном направлении вверх по среднему кольцевому пространству со скоростью 0,5...0,75 мм/с. Осветленная вода через отводящие желоба отводится трубой или по каналу на фильтр.

Радиальные отстойники диаметром от 5 до 60 м занимают среднее положение между горизонтальными и вертикальными отстойниками. Вода попадает в центральную часть отстойника и, постепенно уменьшая скорость, движется в радиальном направлении к лотку, расположенному вдоль периферийной части, из которого отводится.

Дно отстойника устраивают с уклоном к грязевому приямку или лотку, откуда выпавший осадок непрерывно или периодически удаляется насосом или самотеком сбрасывается в водосток.

Осветлители, конструкция которых в основном не отличается от конструкции вертикального отстойника, дают значительный эффект осветления, позволяя при этом снизить расход коагулянта и сократить размер сооружений. Осветляемая вода проходит в восходящем движении слой осадка высотой 2...2,5 м, находящегося во взвешенном состоянии (так называемая суспензионная сепарация). В процессе работы осветлителя происходит укрупнение хлопьев коагулянта, задерживающих часть взвеси.

В настоящее время осветлители широко применяют как в городских, так и в промышленных водопроводах. В некоторых случаях вертикальные отстойники переоборудуют на осветлители.

В настоящее время осветлители широко применяют как в городских, так и в промышленных водопроводах. В некоторых случаях вертикальные отстойники переоборудуют на осветлители.

Фильтрование состоит в пропуске воды через фильтр 6, заполненный фильтрующим материалом (обычно кварцевым песком), уложенным слоями возрастающей сверху вниз крупности. Вода поступает на поверхность фильтра, движется сквозь слои фильтрующего материала и дренажным устройством отводится в резервуар чистой воды. В процессе работы фильтр заполнен водой до уровня 1...1.5 м над поверхностью фильтрующего материала.

Фильтры делаются открытыми безнапорными и закрытыми напорными. Напорные фильтры представляют собой закрытые стальные резервуары.

В применяемых в настоящее время скорых фильтрах скорость прохождения водой фильтрующего материала, или скорость фильтрации, равна 6...7 м/ч в отличие от громоздких медленных фильтров, применявшихся ранее, в которых скорость фильтрации была меньше в 50...60 раз.

В предложенных институтом Вод-гео двухслойных фильтрах поверх слоя кварцевого песка укладывают слой дробленого антрацита, что позволяет увеличить скорость фильтрации до 9... 10 м/ч и соответственно удлинить рабочий период фильтра.

Количество фильтров на очистной станции -- не менее двух. Площадь одного фильтра от 10...20 м2 на малых и средних станциях, до 100 м2 и более -- на больших.

Очистные сооружения являются одним из составных элементов системы водоснабжения и тесно связаны с ее остальными элементами.

Вопрос о месте расположения очистной станции решается при выборе схемы водоснабжения объекта. Часто очистные сооружения располагают вблизи источника водоснабжения и, следовательно, в незначительном удалении от насосной станции первого подъема.

Наибольшее распространение в практике водоочистки (особенно з городских водопроводах) имеют схемы очистных сооружений с самотечным движением воды. Вода, поданная насосами станции первого подъема, самотеком проходит последовательно все очистные сооружения и поступает в сборный резервуар (резервуар чистой воды), из которого забирается насосами станции второго подъема.

Таким образом, резервуар чистой воды непосредственно связан с комплексом очистных сооружений и должен быть расположен вблизи от них, так же как и насосная станция второго подъема.

Решению вопроса о компоновке очистных сооружений должны предшествовать выбор схемы технологического процесса очистки воды, а также установление типа, числа и размеров отдельных сооружений (отстойников, фильтров и др.)- Этот выбор производится на основе результатов технологических анализов воды источника и в зависимости от требований потребителей к качеству воды. Выбор схемы очистки воды, типа сооружений и их компоновки должен быть сделан на основании технико-экономических сравнений возможных вариантов.

Очистные станции водопроводов населенных мест могут осуществляться по одноступенчатым или двухступенчатым схемам (в зависимости от качества воды источника).

Для схемы с самотечным движением воды в очистных сооружениях следует наиболее целесообразно использовать рельеф местности в целях уменьшения строительной стоимости их (путем уменьшения требуемого заглубления отдельных сооружений и, следовательно, объема земляных работ, снижения стоимости фундаментов и т. п.). Поэтому при проектировании очистных сооружений предварительно составляют так называемую «высотную схему станции», уточняемую в дальнейшем. Высотная схема устанавливает взаимосвязь между уровнями воды и характерными отметками .отдельных элементов очистной станции. Схему составляют, задавшись отметкой наивысшего уровня в резервуаре чистой воды. Приближенно принимая обычные (по опыту) потери напора в отдельных сооружениях и в соединяющих их трубах, вычисляют требуемые отметки уровней воды в остальных сооружениях.

В отдельных случаях приведенная основная схема очистных сооружений хозяйственно-питьевых водопроводов может быть дополнена устройствами для устранения запахов и привкусов воды, для ее умягчения и др.

Некоторые виды обработки воды допускают использование схемы подачи воды через очистные сооружения под напором. При такой схеме отпадает необходимость в насосной станции второго подъема, и вода после очистки под оставшимся напором может поступать к потребителю. В этом достоинство напорных схем.

Однако сопряженные с применением таких схем усложнение и удорожание конструкций очистных сооружений ограничивают их применение и делают их экономически оправданными обычно лишь при относительно небольших расходах очищаемой воды.

Комплекс очистных сооружений должен быть запроектирован на расчетный расход, включающий максимальное суточное водопотребление снабжаемого объекта и собственные нужды станции.

Очистные сооружения рассчитывают, как правило, на равномерную подачу воды в течение суток.

Часть операций по обработке воды может быть отнесена к процессам собственно очистки воды: устранение мутности, цветности, удаление планктона, бактерий и избыточного количества растворенных солей. Но такие операции, как стабилизация воды, поддержание требуемого значения рН и т. п., имеющие целью придание воде свойств, необходимых для предотвращения коррозии трубопроводов, успешного протекания коагулирования воды и т. п., уже не могут быть отнесены к процессам очистки воды. Таким образом, понятие «обработка» воды является более общим, чем понятие «очистка» воды. Очистка воды -- это частный случай ее обработки.
Решение всех поставленных перед очистными сооружениями задач может проводиться путем использования различных технологических приемов. Так, осветление воды может быть достигнуто путем отстаивания и фильтрования ее. Причем отстаивание может быть простым механическим, когда очищаемая вода проходит через специальные бассейны (отстойники) с весьма малой скоростью. Время осаждения взвешенных частиц зависит от их размеров. Чем мельче частицы, тем больше времени потребуется для их осаждения. При этом коллоидные частицы могут находиться во взвешенном состоянии неопределенно долгое время. Для их осаждения, а также вообще для ускорения процесса осаждения взвеси применяют коагулирование. В воду, подлежащую осветлению, вводят химические реагенты (коагулянты), способствующие связыванию частиц, обусловливающих мутность, в крупные хлопья, что ускоряет их выпадение в отстойниках.

В ряде случаев воду для глубокого осветления после отстойников направляют на фильтры, где она дополнительно осветляется, проходя через слои фильтрующего материала. Такая двухступенчатая система осветления широко применяется при очистке речной воды, используемой для питьевого водоснабжения.

Для задержания находящихся в воде взвешенных веществ применяют также специальный метод осветления, при котором вода после коагулирования пропускается через слой взвешенных хлопьев (выпадающих в результате в осадок). Коагулирование одновременно способствует повышению эффективности процесса фильтрования воды. Наиболее часто применяемыми реагентами при коагулировании (коагулянтами) в настоящее время являются: сернокислый алюминий А1г (SO4b, железный купорос FeSO4 и хлорное железо FeCl3). При введении в осветляемую воду сернокислого алюминия происходит его диссоциация. Далее имеет место ионный обмен катионов алюминия на катионы, сорбированные содержащимися в воде глинистыми частицами. В результате гидролиза оставшихся в избытке катионов алюминия происходит образование выпадающей в осадок гидроокиси алюминия Хорошие результаты дает также применение железного купороса с одновременным хлорированием воды. Введение хлора облегчает процесс коагуляции и способствует окислению закисного железа. Сернокислый алюминий выпускается нашей промышленностью двух сортов: очищенный и неочищенный. Первый содержит не менее 40%, а второй -- не менее 35,5% безводного А12. Этот коагулянт требует применения устройств, интенсифицирующих процесс его растворения. Коагулирование воды с последующим ее отстаиванием и фильтрованием позволяет осуществить также и обесцвечивание воды.

Для некоторых производств, не требующих прозрачной воды, оказывается достаточным освобождение ее лишь от наиболее крупных взвешенных частиц, а также плавающих предметов. В этих случаях применяют грубую механическую очистку воды -- процеживание, большей частью осуществляемое в водоприемных сооружениях, где для этой цели устанавливаются решетки и сетки.

Попутно с осветлением вода при коагулировании и фильтровании в значительной степени освобождается от бактерий, благодаря чему повышается ее качество с санитарной точки зрения.

Специальной операцией по уничтожению содержащихся в воде бактерий, в частности болезнетворных, является обеззараживание (дезинфекция) воды.

Для обеззараживания применяют хлорирование или озонирование, а также бактерицидное облучение воды.

Для улучшения качества воды применяют также и другие операции: умягчение, обессоливание, дегазацию и др.

В практике очистки воды осаждение взвеси осуществляется в специальных сооружениях -- отстойниках.

Под отстаиванием в строгом смысле слова понимается осаждение взвеси из воды, находящейся в покое. Осуществление такого процесса («периодического отстаивания») в практике очистки воды крайне неудобно, так как требует периодического наполнения и опорожнения отстойных бассейнов. Поэтому применяют так называемое непрерывное отстаивание, при котором осветляемая вода непрерывно проходит с малыми скоростями через отстойники, в которых происходит осаждение взвеси.

В настоящее время применяют отстойники трех типов, различаемые по направлению движения воды в них: горизонтальные, вертикальные и радиальные.

Горизонтальный отстойник обычно представляет собой бассейн прямоугольной формы в плане. Вода, подлежащая осветлению, подводится к одной из его торцовых стенок, проходит вдоль отстойника до противоположной торцовой стенки и там отводится. В отстойнике следует различать его рабочую часть, где происходит осаждение взвеси, -- зону осаждения и нижнюю часть, где собирается выпавший осадок, -- зону накопления и уплотнения осадка. В вертикальных отстойниках осветляемая вода движется вертикально-- снизу вверх. Отстойник представляет собой круглый (иногда квадратный) в плане бассейн с центральной цилиндрической трубой и конической (или пирамидальной) нижней частью. Центральная труба -- это встроенная в отстойник камера хлопьеобразования водоворотного типа. Вода подается в нее по трубе, проходит камеру сверху вниз и через гаситель поступает в нижнюю часть зоны осаждения отстойника. Далее вода движется вверх и отводится через сборный желоб 6 и отводную трубу . Осадок скапливается в нижней конической части отстойника 3, откуда он периодически удаляется по трубе .

Особенностью работы радиальных отстойников является изменение скорости движения воды от максимального значения в их центре до минимального значения у периферии.

К преимуществам радиальных отстойников относится их незначительная глубина (даже при больших производительностях). В настоящее время радиальные отстойники получили применение и для осветления мутных речных вод (без коагулирования или с коагулированием). При значительном количестве осадка возможность непрерывного его удаления является большим достоинством радиальных отстойников.

Осветление и обесцвечивание воды коагулированием. Классификация взвешенных веществ. Устройства и расчет осветлителей

Обработка воды коагулянтами применяется для очистки воды от взвешенных веществ, снижения цветности, а также для интенсификации осаждения карбоната кальция и гидроокиси магния при реагентом умягчении воды.

Наиболее часто обработка коагулянтами производится для очистки воды открытых водоемов. При этом наряду с освобождением воды от взвеси достигается удаление из воды коллоидных веществ, обусловливающих цветность воды, планктонных организмов, существенно снижается бактериальная загрязненность воды.

Нередко при обработке коагулянтом уменьшаются также запахи и привкусы воды.

В водах открытых водоемов взвешенные вещества чаще всего представляют собой частицы песка, глины, ила, планктонные организмы, продукты разрушения растений и т. п.

Взвешенные частицы, удельный вес которых больше единицы, стремятся осаждаться на дно сосуда. Однако наиболее мелкие частицы суспензий размерами от 3 - 4 до 0,1 мк и коллоидные частицы размерами от 0,1 до 0,001 мк практически не осаждаются, оставаясь в воде во взвешенном состоянии.

С приемлемой для техники отстаивания скоростью осаждаются только частицы крупнее 30 - 50 мк т.е не мельче илистых частиц. Мелкий ил, глинистые и коллоидные частицы без специальных мер выделить отстаиванием невозможно. Для их осаждения и применяют добавление к воде коагулянтов - веществ, образующих относительно крупные, быстро осаждающиеся хлопья, которые увлекают с собой при осуждении мелкодисперсную взвесь, загрязняющую воду.

Скорости осаждения в воде частиц кварца крупности например 10 мк, с удельным весом г = 2,65 при температуре 15С, равна 0,1 мм/сек.

Большое значение имеют условия растворимости гидроокиси алюминия и основных сульфатов алюминия. Если после отсеивания и фильтрования с очистной станции в водопроводную сеть поступает вода с содержанием алюминия, превышающим растворимость его соединений, которые образуются при данных величинах рН, то это означает, что вода находится в состоянии пересыщения соединениями алюминия и возникает опасность так называемой « отлежки », т.е выделения осадка соединений алюминия в трубах.

В качестве коагулянтов, как указано выше, применяют сернокислое закисное железо FеSO4 7Н2О ( железный купорос, хлорное железо FеСl3 и сернокислую окись железа Fе2 (SO4 )3.

Оптимальное значение рН для солей железа равно рН = 7,5 - 8. При недостаточной величине рН воды и при недостатке кислорода железо Fе2+ может оставаться в воде, выходящей из очистной станции.

При использовании в качестве коагулянтов солей железа дозы последних при очистке мутных вод можно принимать на 10 - 20 % меньше, чем сернокислого алюминия (в пересчете на безводные продукты). Выше указывалось, что при недостатке природной щелочности для проведения процесса коагуляции, воду нужно подщелачивать. Доза щелочи для обеспечения коагуляции, воду нужно подщелачивать. Доза щелочи для обеспечения коагуляции может быть определена по формуле

( 3.1 )

где М - доза реагента (технического продукта) для подщелачивания воды в мг / л ;

Д - доза коагулянта в пересчете на безводное активное вещество в мг / л

е1 и е2 - эквивалентный вес активной части соответственно реагента для подщелачивания и коагулянта в мг/мг - экв (табл. 3.3)

Щ - общая щелочность обрабатываемой воды в мг - экв / л;

С - содержание активного вещества в реагенте для подщелачивания воды в %;

1 - резервная щелочность, которая должна оставаться после обработки воды коагулянтом в мг - экв / л.

Принципы процесса осветления воды в сооружениях

В практике проектирования и эксплуатации очистных сооружений до последнего времени существовало большое разнообразие в конструкциях осветлителей и методах их расчета. Такое положение явилось следствием экспериментальных поисков наилучшей конструкции при недостаточной разработке теоретических основ технологии осветления воды во взвешенном осадке.

Обобщение накопленного опыта использования осветлителей в конечном счете позволило установить необходимость выполнения следующих трех основных требований.

Создание оптимальных условий для формирования взвешенного фильтра и удержания избыточной взвеси. Выполнение этого требования возможно, если обеспечивается преимущественно контактная коагуляция, поддерживается определенная концентрация взвешенного фильтра, создаются необходимые гидравлические условия, исключающие старение, чрезмерное укрупнение и выпадение хлопьев на дно, обеспечивается необходимое время пребывания воды во взвешенном фильтре. В современных осветлителях выполнение этих требований нашло отражение в уменьшении объема зоны распределения (нижней части взвешенного фильтра ), создании условий для непрерывного снижения скорости воды ( наклонные стенки величиной расширения взвешенного слоя в потоке осветляемой воды и концентрацией взвешенного фильтра.

Создание оптимальных условий для стабилизации взвешенного фильтра и эффекта осветления воды. Выполнение этого требования осуществляется при помощи принудительного отбора избыточного осадка, создания разности скоростей движения воды на границе между зоной взвешенного фильтра и зоной осветления, обеспечения равномерного сбора осветленной воды. Избыток осадка вместе с частью воды, следующей через взвешенный фильтр, отбирается через окна или трубы из выходной части взвешенного фильтра, а осветленная вода - через систему желобов с затопленными отверстиями или вырезами (водосливами ) в их бортах. Для принудительного движения воды через зону отделения осадка используется перепад уровней на осветлителе и за ним, в сборном кармане.

Создание оптимальных условий для отделения, уплотнения и сброса в канализацию избыточного шлама. С этой целью расчетная скорость подъема воды в зоне отделения осадка принимается несколько (на 10 - 15 % ) меньшей по сравнению с расчетной скоростью в зоне осветления.

Уплотнение осадка осуществляется в течении 4 - 12 ч ( и на это время рассчитывается рабочий объем осадкоуплотнителя). Угол наклона стенок осадкоуплотнителя к сбросному отверстию или сбросной системе принимается достаточным ( 50-600 ) для сползания уплотнившегося осадка без дополнительного воздействия.

Вода с реагентами поступает в осветлитель из воздухоотделителя по трубопроводу 1 в нижнюю часть конуса диффузора 2. Поднимаясь вверх, поток воды расширяется, скорость его уменьшается до величины, при которой в диффузоре образуется слой взвешенного осадка 3. По мере накопления осадка его избыток переливается через кромку диффузора и опускается в осадкоуплотнитель 4. Осветленная вода проходит через защитный слой воды над диффузором и по сборному желобу 5 отводится на фильтры. Осадок через дырчатую трубу 6 непрерывно или периодически по трубопроводу 7 отводится в канализацию.

Основные расчетные формулы и параметры осветлителей.

В технологических схемах осветления воды хозяйственно - питьевых вод изложенные выше требования выполняются в конструкциях с центральными осадкоуплотнителями (рис. 3.3.1. и 3.3.2.)

Основные формулы для расчета осветлителей позволяют определить необходимые площадь осветлителя в плане и объём зон накопления и уплотнения осадка

Площадь зоны осветления в м2 принимается наибольшей из определённых по формулам

(3.3.1)

или

(3.3.2)

Кр и К/ Р - коэффициенты распределения воды между зонами осветления и отделения осадка для летнего Q0 и зимнего Q/ 0 расчётного расхода осветлителей в м3/ч.

vз.о и v/з.о. - соответствующие летнему и зимнему периодам расчётные скорости в зонах осветления мм/сек

Площадь зоны осветления осадка м2 в осветлителях с центральным осадкоуплотнителем

(3.3.3)

где б - коэффициент снижения скорости движения воды в зоне отделения осадка по сравнению со скоростью в зоне осветления принимаемым равным 0,9

Полная площадь осветлителей в м2:

с центральным осадкоуплотнителем

(3.3.4)

с поддонным осадкоуплотнителем

где f отб - суммарная площадь сечения труб в м2 для отбора осадка в осадкоуплотнитель, определяемая в зависимости от расчётной скорости движения воды в трубах, равной vотб.= 40 - 60 мм/сек по формуле

(3.3.5)

Объём зон накопления и уплотнения осадка в м3

(3.3.6)

Где: М0 - Максимальное содержание взвешенных веществ в мг/л в воде, поступающей в осветлители;

m - Расчётное содержание взвеси в осветлённой воде, пренимаемое равное 8 -12 мг/л;

ty - время уплотнения осадка: ty = 3 - 6 часов при М0>400мг/л и

ty=6 - 12 часов при М0<400мг/л.

дСР - средняя концентрация взвешенных веществ в осадкоуплотнителе в мг/л.

Площадь зоны осветления осадка м2 в осветлителях с центральным осадкоуплотнителем

(3.3.3)

где б - коэффициент снижения скорости движения воды в зоне отделения осадка по сравнению со скоростью в зоне осветления принимаемым равным 0,9

Полная площадь осветлителей в м2:

с центральным осадкоуплотнителем

(3.3.4)

с поддонным осадкоуплотнителем

где f отб - суммарная площадь сечения труб в м2 для отбора осадка в осадкоуплотнитель, определяемая в зависимости от расчётной скорости движения воды в трубах, равной vотб.= 40 - 60 мм/сек по формуле

(3.3.5)

Объём зон накопления и уплотнения осадка в м3

(3.3.6)

где

М0 - Максимальное содержание взвешенных веществ в мг/л в воде, поступающей в осветлители;

m - Расчётное содержание взвеси в осветлённой воде, пренимаемое равное 8 -12 мг/л;

ty - время уплотнения осадка: ty = 3 - 6 часов при М0>400мг/л и

ty=6 - 12 часов при М0<400мг/л.

дСР - средняя концентрация взвешенных веществ в осадкоуплотнителе в мг/л.

Основная формула для определения расчетных расходов осветлителя:

в м3/сут ( 3.3.7 )

где: Т - время работы осветлителей в течение суток;

Т = 24 ч

tпр - продолжительность в ч продувки одного осветлителя (включая время на подготовку продувки) ;

n - число продувок одного осветлителя в течение суток;

Кn - коэффициент, определяющий степень снижения выдачи воды продуваемым осветлителем; расчетное значение Кn следует принимать равным единице. Это условие означает, что расчетный продувочный расход Qпр будет равен расчетной подаче на осветлитель и при продувке уровень воды не станет ниже расчетного.

Расчетная продолжительность в часах самой продувки определяется по формуле.

( 3.3.8 )

где

К пр - коэффициент разжижения осадка при его сбросе;

равен 1,2 ;

qпр - продувочный расход в м3/ч ; при Rн = 1 Qпр = Q0 ( расчетной производительности осветлителя ).

Необходимая наименьшая глубина в зависимости от типа осветлителя приближенно может быть определена по формулам:

Н мин = 1,9А > 0,6А + 3 м, (3.3.9 )

где

А - расчетный линейный параметр при определении глубины: ширина полосы зоны осветления, обслуживаемой одной распределительной трубой и двумя сборными трубами (или желобами ) или кольцевым желобом.

Наибольшее значение параметра А - диаметр, радиус или сторона осветлителя, ширина прямоугольной или кольцевой полосы - должно составить (из условия обеспечения равномерного отбора воды ) 3 - 3,5 м, а фактическая величина определяется в результате расчета размеров зоны осветления.

Если в соответствии с высотной схемой можно применить несколько типов, то решающим фактором в выборе одного из них будет величина потребной для их размещения площади, которую можно вписать в стандартную сетку размеров промышленных зданий. Окончательный выбор типа осветлителя в этом случае определяет наименьшее значение необходимой производственной площади.

Для предварительной ориентировки в выборе типа осветлителя может быть использована таблица, в которой приведены приближенные размеры осветлителей в зависимости от общей производительности установки ( в расчетах были приняты : vз.о = 1 мм / сек ; Кр = 0,8 ; Мо = 500 мг / л ; tу = 4 ч;

Основные положения процесса фильтрования. Фильтрующие материалы. Типы фильтров. Расчёт основных параметров фильтров

Полное или частичное удаление из воды взвешенных веществ фильтрованием осуществляется в открытых или напорных фильтрах, состоящих из корпуса, фильтрующего слоя, дренажной или распределительной системы, системы подачи на фильтр осветляемой воды и отвода промывной воды. Дренажная система обычно служит также для распределения по площади фильтра промывной воды.

Интенсивность процесса фильтрования характеризуется скоростью фильтрования, представляющей собой частное от деления расходы фильтруемой воды на площадь фильтрующего слоя. Скорость фильтрования выражают в м/ч, т.е. количеством воды в м3, фильтруемой через 1 м3 площади фильтрующего слоя в течение 1 ч.

Фильтрование воды через фильтрующий слой происходит под действием разности давлений на выходе в фильтр и на выходе из него. Разность давлений для открытого фильтра равна разности отметок поверхности воды в фильтре и пьезометрического напора в трубе, отводящей фильтрат.

Разность давлений воды до и после фильтрующего слоя называется потерей напора в фильтрующем слое. Потеря напора в начальный момент работы фильтра, называемая начальной потерей напора, равна потере напора при фильтровании чистой, не содержащей взвешенных веществ воды, через чистый фильтрующий слой. Начальная потеря напора в фильтрующем слое зависит от скорости фильтрования воды, ее вязкости, размера и формы пор фильтрующего слоя, его толщины.

По мере загрязнения фильтрующего слоя задерживаемыми из воды взвешенными веществами потеря напора возрастает до некоторой величины, характеризующей сопротивление предельно загрязненного фильтрующего слоя.

Фильтрующий слой может состоять из не связанных друг с другом зерен фильтрующего материала либо представлять собой жесткий каркас в виде сетки, ткани или пористой керамики.

По достижении предельной потери напора или при ухудшении качества фильтрата фильтрующий слой нужно очистить от задержанных им загрязнений промывкой или другим способом.

По характеру фильтрующего слоя фильтры разделяются на:

Зернистые, в которых фильтрующий слой состоит из зерен песка, дробленого кварца, антрацита, мрамора, магнетита и др.;

Сетчатые, в которых фильтрующим слоем служит сетка с отверстиями, достаточно малыми для задержания из воды взвеси;

Тканевые, в которых фильтрующим слоем служит ткань (хлопчатобумажная, льняная, сукно, капроновая или стеклоткань);

Намывные, в которых фильтрующий слой образуется из вводимых в воду фильтрующих порошков, откладывающихся в виде тонкого слоя на каркасе фильтра; в качестве фильтрующих порошков применяют диатомит, древесную муку, асбестовую крошку и др., а каркасом могут служить пористая керамика, металлическая сетка, синтетическая ткань.

Наиболее широкое распространение в промышленном и коммунальном водоснабжении получили зернистые фильтры. Сетчатые фильтры применяют главным образом для грубой очистки воды, микросетчатые - для удаления из воды планктона.

Тканевые фильтры находят применение в полевом водоснабжении; намывные - при очистке маломутных вод для небольших предприятий или поселков и для очистки воды плавательных бассейнов.

Зернистые фильтры по скорости фильтрования разделяют на медленные (скорость фильтрования менее 0,5 м/ч), скорые (скорость фильтрования 2-15 м/ч) и сверхскоростные (скорость фильтрования более 25 м/ч).

Скорые фильтры могут быть напорными и открытыми. Медленные фильтры выполняют открытыми, сверхскоростные фильтры - напорными.

По крупности зерен фильтрующего слоя зернистые фильтры разделяют на мелкозернистые (медленные фильтры) с размером зерен верхнего слоя песка менее 0,4мм, среднезернистые (размер зерен верхнего слоя песка 0,4-0,8мм) и крупнозернистые (размер зерен верхнего слоя песка более 0,8мм), обычно применяемые для частичного осветления воды.

По мере загрязнения фильтрующего слоя задерживаемыми из воды взвешенными веществами потеря напора в нем будет возрастать, а скорость фильтрования при неизменном напоре - снижаться.

Фильтры могут работать с переменной скоростью фильтрования (большей в начале цикла и меньшей в конце) или с постоянной скоростью фильтрования. Постоянство скорости фильтрования обеспечивается специальными устройствами - регуляторами скорости фильтрования.

Через некоторый период времени от начала работы фильтра потеря напора в фильтрующем слое увеличится настолько, что скорость фильтрования станет ниже расчетной и производительность фильтра снизится.

Для восстановления пропускной способности фильтра его фильтрующий слой должен быть очищен от задержанных из воды загрязнений. В медленных фильтрах это достигается обычно удалением верхнего слоя загрязненного песка с последующей его промывкой; в скорых фильтрах промывка фильтрующего слоя производится непосредственно в самих фильтрах.

Продолжительность работы фильтра между чистками или промывками (включая время на промывку) называется продолжительностью фильтроцикла. Она зависит от характера и количества содержащихся в воде взвешенных веществ, от скорости фильтрования, крупности и пористости фильтрующей загрузки. В скорых фильтрах для промывки фильтрующего слоя через него пропускают осветленную воду снизу вверх с интенсивностью, достаточно для взвешивания фильтрующей загрузки в восходящем потоке промывной воды.

Фильтрующие материалы для зернистых фильтров.

В качестве фильтрующих материалов для зернистых фильтров в настоящее время применяют кварцевый речной или карьерный песок, дробленые кварц и антрацит, мрамор, магнетит, керамическую крошку, керамзит.

Крупность зерен фильтрующего материала и их однородность характеризуются данными ситового анализа, который позволяет определить следующие показатели:

10% диаметр (d10) фильтрующего материала, т.е. диаметр шара, равновеликого зерну фильтрующего материала, мельче которого в данном материале имеется 10% зерен по весу;

50% диаметр (d50), т.е. диаметр шара, равновеликого зерну фильтрующего материала мельче которого имеется 50% зерен по весу (dср);

коэффициент неоднородности зерен фильтрующего материала, равный отношению 80% диаметра фильтрующего материала к 10% диаметру.

Ситовой анализ фильтрующего материала заключается в рассеве высушенного образца средней пробы на калиброванных ситах и определении процента материала, оставшегося на каждом сите.

Кn - коэффициент, определяющий степень снижения выдачи воды продуваемым осветлителем; расчетное значение Кn следует принимать равным единице. Это условие означает, что расчетный продувочный расход Qпр будет равен расчетной подаче на осветлитель и при продувке уровень воды не станет ниже расчетного.

Расчетная продолжительность в часах самой продувки определяется по формуле.

( 3.3.8 )

где

К пр - коэффициент разжижения осадка при его сбросе;

равен 1,2 ;

qпр - продувочный расход в м3/ч ; при Rн = 1 Qпр = Q0 ( расчетной производительности осветлителя ).

Необходимая наименьшая глубина в зависимости от типа осветлителя приближенно может быть определена по формулам:

Н мин = 1,9А > 0,6А + 3 м, (3.3.9 )

где

А - расчетный линейный параметр при определении глубины: ширина полосы зоны осветления, обслуживаемой одной распределительной трубой и двумя сборными трубами (или желобами ) или кольцевым желобом.

Наибольшее значение параметра А - диаметр, радиус или сторона осветлителя, ширина прямоугольной или кольцевой полосы - должно составить (из условия обеспечения равномерного отбора воды ) 3 - 3,5 м, а фактическая величина определяется в результате расчета размеров зоны осветления.

Если в соответствии с высотной схемой можно применить несколько типов, то решающим фактором в выборе одного из них будет величина потребной для их размещения площади, которую можно вписать в стандартную сетку размеров промышленных зданий. Окончательный выбор типа осветлителя в этом случае определяет наименьшее значение необходимой производственной площади.

Для предварительной ориентировки в выборе типа осветлителя может быть использована таблица, в которой приведены приближенные размеры осветлителей в зависимости от общей производительности установки ( в расчетах были приняты : vз.о = 1 мм / сек ; Кр = 0,8 ; Мо = 500 мг / л ; tу = 4 ч;

Для загрузки фильтров должны применяться по возможности хорошо промытые однородные пески с коэффициентом неоднородности во всех случаях не более 2,2 (желательно не более 1,75).

Антрацитовую крошку для загрузки фильтров изготовляют из антрацита марок АП, АК и АС-мытое. Антрацит должен иметь удельный вес в пределах 1,6-1,7, насыпной вес 0,7-0,9т/м3 и при дроблении превращаться в зерна кубической или близкой к шару формы. Антрацит слоистого строения для загрузки в фильтры непригоден. Зольность антрацита должна быть не выше 5%, а содержание серы в нем должно быть не более 3%.

Поддерживающие слои.

Поддерживающие слои размещают между фильтрующим слоем и дренажем фильтра. Назначение поддерживающих слоев заключается в предотвращении выноса фильтрующего материала из фильтра вместе с фильтратом. Кроме того, поддерживающие слои служат для улучшения распределения промывной воды по площади фильтрата.

Гравий или щебень, используемые в качестве поддерживающих слоев, должны быть устойчивы против измельчения и истирания, химические стойки, не должны содержать больше 10% частиц известняка.

Поддерживающие слои должны состоять по возможности из однородных частиц. В каждом слое размер наиболее крупных зерен не должен более чем в 2 раза превышать размер самых мелких зерен этого же слоя (например, 2-4, 4-8, 8-16, 16-32мм).

Размер самых мелких зерен верхнего поддерживающего слоя, на который укладывается фильтрующий слой, должен быть в 2 раза больше, чем размер самых крупных зерен фильтрующего слоя. Толщину поддерживающих слоев в фильтрах, оборудованных дренажными системами большого сопротивления, принимают в соответствии с приведенными ниже данными:

...

Подобные документы

  • Подземные воды как источник водоснабжения населенных пунктов. Их запасы и качественный состав. Водопотребление и водоотведение на территории республики. Источники загрязнения водных объектов. Перспективы использования различных типов подземных вод Якутии.

    курсовая работа [278,6 K], добавлен 29.01.2014

  • Подземные воды как часть геологической среды. Практическое значение подземных вод. Характеристика техногенного воздействия на подземные воды (загрязнение подземных вод). Вода в промышленности, охрана источников питьевого водоснабжения от загрязнения.

    презентация [1,9 M], добавлен 18.06.2012

  • Общая характеристика условий водопроводной сети. Источники водоснабжения. Технология очистки воды в системе водоснабжения. Подача и распределение питьевой воды. Контроль качества питьевой воды. Водозаборные сооружения. Групповой водозабор подземных вод.

    отчет по практике [25,3 K], добавлен 09.11.2008

  • Условия сброса сточных вод в поверхностные водные объекты. Установление лимитов сброса загрязняющих веществ. Региональные нормативы качества воды. Расчет и анализ влияния расхода воды в реке и глубины реки на концентрацию загрязняющих веществ.

    курсовая работа [440,3 K], добавлен 12.01.2016

  • Характеристика природных водных ресурсов: их состав и элементы, общая характеристика источников водоснабжения (поверхностные и подземные). Оценка природных вод как возможных источников водоснабжения, принципы и обоснование их выбора, требования.

    контрольная работа [39,8 K], добавлен 26.08.2013

  • Источники водоснабжения. Система прямоточного и оборотного водоснабжения. Процессы охлаждения оборотной воды в охладителях. Требования к качеству охлаждающей воды оборотных систем водоснабжения. Оборудование применяемое для охлажения воды. Градирни.

    дипломная работа [709,1 K], добавлен 04.10.2008

  • Объект водоснабжения. Расчетное водопотребление. Выбор источника водоснабжения, системы и схемы водоснабжения. Водозаборные сооружения. Очистные сооружения. Водопроводная сеть и водоводы. Мероприятия по охране труда.

    дипломная работа [497,7 K], добавлен 15.06.2007

  • Физические свойства почв и их основные типы в районе уничтожения химического оружия. Проведение экспериментов по исследованию физических характеристик почв. Защитные мероприятия по предупреждению миграции загрязнителей в поверхностные и подземные воды.

    дипломная работа [1,3 M], добавлен 19.06.2011

  • Схема осветления, обесцвечивания и обеззараживания воды с применением камер хлопьеобразования, отстойников и фильтров. Определение размеров зон санитарной охраны источника водоснабжения. Расчет расстояния, на котором сказывается воздействие выбросов.

    курсовая работа [175,0 K], добавлен 26.02.2013

  • Экологические проблемы региона. Динамика валовых выбросов загрязняющих веществ. Поверхностные и подземные воды. Водопотребление и водоотведение. Структура земельного фонда. Состояние плодородия почв пашни. Особо охраняемые природные территории области.

    презентация [3,3 M], добавлен 12.01.2015

  • Сточные воды как ресурс промышленного водоснабжения, их классификация в зависимости от экономичности использования для водоподготовки, типы и разновидности. Этапы проведения мероприятий по подготовке сточных вод, применяемые сооружения и инструменты.

    реферат [38,8 K], добавлен 03.01.2011

  • Оценка природных условий Самарской области. Подземные и поверхностные воды области. Уровень комфортности природной среды. Техногенная нагрузка на урбанизированную территорию. Превышение показателей ПДК загрязняющих веществ по природным компонентам.

    реферат [34,1 K], добавлен 08.02.2012

  • Круговорот воды в природе, поверхностные и грунтовые воды. Проблемы водоснабжения, загрязнение водных ресурсов. Методические разработки: "Водные ресурсы планеты", "Исследование качества воды", "Определение качества воды методами химического анализа".

    дипломная работа [105,2 K], добавлен 06.10.2009

  • Хозяйственная деятельность человека и ее влияние на состояние водоисточников. Зона санитарной охраны поверхностного источника водоснабжения. Требования к качеству воды и их классификация. Основные показатели качества хозяйственно-питьевой воды.

    реферат [22,6 K], добавлен 09.03.2011

  • Основные источники поступления соединений кремния в воду: кислый гидролиз натуральных силикатов, разложение биомассы наземных и водных растительных организмов. Обработка воды магнезитом, обожженным доломитом. Коагуляция взвешенных и коллоидных соединений.

    реферат [19,1 K], добавлен 03.12.2010

  • Использование природных ресурсов. Характеристика города Саратова. Показатели загрязнения атмосферного воздуха. Контроль наблюдений за состоянием атмосферы. Источники загрязнения воздуха. Поверхностные и подземные воды. Мониторинг земельных ресурсов.

    реферат [3,6 M], добавлен 26.02.2011

  • Применение механической очистки бытовых и производственных сточных вод для удаления взвешенных веществ: решеток, песколовок и отстойников. Сооружения биологической очистки и расчет аэротенков, биофильтров, полей фильтрации и вторичных отстойников.

    курсовая работа [1,5 M], добавлен 25.04.2012

  • Выбор метода очистки воды и состава технологических сооружений. Определение производительности ОС. Организация реагентного хозяйства. Смесительные устройства. Расчет горизонтального отстойника, скорых фильтров. Обеззараживание воды. Песковое хозяйство.

    курсовая работа [210,7 K], добавлен 04.04.2014

  • Водные ресурсы: понятие и значение. Водные ресурсы Алтайского края. Водные экологические проблемы города Барнаула и пути их решения. Подземные воды как источник питьевого водоснабжения. О методах очистки воды. Вода и ее уникальные термические свойства.

    реферат [18,7 K], добавлен 04.08.2010

  • Исследование особенностей вертикальных, горизонтальных и радиальных типов отстойников. Изучение способов выделения из сточных вод грубодисперсных примесей. Определение скорости осаждения шарообразной частицы, расчет затрат электроэнергии на подачу воды.

    курсовая работа [478,2 K], добавлен 14.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.