Технологии ликвидации аварийных разливов нефти и нефтепродуктов

Международные соглашения по предотвращению загрязнения моря нефтью и нефтепродуктами. Присутствие постоянных полей загрязнения на трассах морских путей. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод. Направление дрейфа пятна.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык русский
Дата добавления 12.05.2014
Размер файла 2,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Сибирский федеральный университет»

Институт Нефти и газа

Кафедра «Топливообеспечение и горючесмазочные материалы»

Курсовой проект

Технологии ликвидации аварийных разливов нефти и н/п

Преподаватель

Н.Н. Малышева

Студент НГ 09 - 05 0802451

Р.С. Фомин

Красноярск 2013

Содержание

загрязнение нефть море

Введение

1. Международные соглашения по предотвращению загрязнения моря нефтью и нефтепродуктами

2. Ликвидация разливов нефти на море

2.1 Поведение нефти, разлитой на поверхности чистой воды

2.2 Поведение нефти, разлитой в ледовых условиях

2.3 Технологии ликвидации разливов нефти на море

2.4 Сбор нефти механическими способами

2.5 Применение диспергентов

2.6 Применение сорбентов

2.7 Контролируемое сжигание нефти

2.8 Технологии ЛРН в ледовых условиях

3. Ликвидация разливов нефти на суше

3.1 Технологии локализации розлива нефти на грунт

3.2 Сбор аварийной нефти

3.3 Технологии рекультивации нефтезагрязненных земель

4. Средства ЛРН

4.1 Боны

4.2 Скиммеры

4.3 Суда-нефтесборщики

4.4 Сорбенты

4.5 Диспергаторы

4.6 Биохимические препараты

4.7 Вспомогательные средства

Заключение

Использованные источники

Приложение

Введение

Нефть - горючая маслянистая жидкость, распространенная в осадочной оболочке Земли; важнейшее полезное ископаемое. Нефть известна с древнейших времен, ее добывали еще в Мессопотамии. В России первое датированное письменное упоминание о ней относится к 1637 году. Именно тогда в рукописях Пушкарского приказа было сказано о нахождении «казанской черной нефти». А еще через столетие, в 1745 году, в России был сооружен первый нефтеперегонный завод в Пустозерске архангелогородским «рудознатцем» и купцом Федором Прядуновым. Нефть добывалась из колодцев и использовалась для смазки и обогрева жилищ.

Поначалу казалось, что нефть приносит людям только пользу, но постепенно выяснилось, что использование нефти и продуктов ее переработки имеет и оборотную сторону. С увеличением объемов добычи, переработки, транспортировки, хранения и потребления нефти и нефтепродуктов, расширялись масштабы их разливов и загрязнения ими окружающей среды.

Разлив нефти - это сброс сырой нефти, нефтепродуктов, смазочных материалов, смесей, содержащих нефть, и очищенных углеводородов в окружающую среду, произошедший в результате аварийной ситуации при добыче, транспортировке и хранении нефти.

С 2000 по 2011 годы Россия обеспечила самый высокий прирост добычи нефти в мире. Прирост добычи нефти в России был в три раза выше, чем у ОПЕК. К большому сожалению, с увеличением добычи нефти растут и объемы ее разливов.

1. Международные соглашения по предотвращению загрязнения моря нефтью и нефтепродуктами

Наибольшие потери нефти связаны с ее морской транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод, -- все это обуславливает присутствие постоянных полей загрязнения на трассах морских путей. Снимки поверхности Земли, сделанные со спутников, показывают, что уже почти 30% поверхности океана покрыто нефтяной пленкой. Особенно загрязнены воды Средиземного моря, Атлантического океана.

В настоящее время нефть - самое распространенное вещество, загрязняющее природные воды. Транспортировка половины добываемой на мировом шельфе нефти обеспечивается танкерным флотом. Транспортировка на танкерах оценивается до 2 млрд. тонн в год. При этом 0,03% транспортируемой танкерами нефти и нефтепродуктов, теряется по различным причинам.

Огромное количество нефти попадает в окружающую среду и при нормальной («рутинной») работе отечественных нефтепроводов и нефтепромыслов.

Существуют нормативы потерь (нормы естественной убыли) нефти и нефтепродуктов при их перекачке по трубопроводам. Например, при перекачке бензина по трубопроводу норма естественной убыли составляет 0,19 кг на 1 тонну перекачиваемого топлива на 100 км трубопровода. Другими словами, при перекачке 1 млн. тонн бензина по трубопроводу длиной 1000 км допускается потеря 1900 тонн. При этом, согласно «общим положениям», в нормы естественной убыли не включены потери, связанные с ремонтом, аварийные потери и потери, вызванные последствиями стихийных бедствий.

Официально допустимые нормы потерь нефтепродуктов при отпуске в транспортные средства составляют 1,25 кг/тонн. Норма естественной убыли при перекачке с железной дороги на нефтебазу составляет 171 кг на 1000 тонн, при погрузке с нефтебазы на танкер - 1400 кг на 1000 тонн. По существующим в России нормативным документам, регламентирующих «нормы естественной убыли», допустимые потери нефти, например, при железнодорожных перевозках, составляют 0,042% (420 кг на 1000 тонн), т. е. при перевозке 1 млн. тонн нефти допускается потеря 420 тонн.

В 1954 годы Великобритания организовала конференцию по загрязнению нефтью, которая закончилась принятием Международного соглашения по предотвращения загрязнения моря нефтью - OILPOL-54 [11].

В 1959 году была учреждена Международная морская организация (IMO), взявшая на себя функции депозитария Конвенции OILPOL-54, которая вступила в силу в 1958 году.

Соглашение 1954 года, которое исправлялось и дополнялось в 1962, 1969 и 1971 годах, прежде всего было направлено против загрязнения моря, вызванных обычной эксплуатацией танкеров и сбросом нефтесодержащих льяльных вод из машинных отделений, что расценивалось как главные причины загрязнения моря с судов.

В 1962 году IMO приняла поправки к Соглашению, которые касались маломерных судов, а также расширили «особые зоны». Поправки, принятые в 1969 году содержали инструкции, еще более ужесточающие требования к эксплуатационному сбросу нефти и нефтесодержащих вод с танкеров и из машинных отделений всех судов.

В 1967 году танкер «Torrey Canyon» сел на мель при входе в Ла-Манш и сбросил в море свой полный груз - 120000 тонн сырой нефти. Это стало крупнейшим инцидентом загрязнения моря. Инцидент сразу показал недостаточность существующей системы обеспечения компенсации после подобных инцидентов.

В 1967 году был учрежден Юридический Комитет, по инициативе которого были созваны две международные конференции (Брюссель, 1969 и 1971 годы), принявшие три Международные Конвенции: о вмешательстве в открытом море, о гражданской ответственности за ущерб от загрязнения моря нефтью и об учреждении Международного фонда для компенсации ущерба от загрязнения, которые вступили в силу в 1975 и 1978 годах.

Ассамблея IMO объявила в 1969 году о созыве Международной конференции в 1973 году для подготовки нового международного документа для ограничения загрязнения судами всех трех сред.

В феврале 1978 года, в ответ на большое количество инцидентов с танкерами в 1976-1977 годах, IMO провела Конференцию по безопасности танкеров и предотвращению загрязнения. Конференция утвердила требования к конструкции танкеров и их эксплуатации, которые были включены в Протокол 1978-го, принятый 17 февраля 1978 года и дополняющий Соглашение по безопасности на море (1978 SOLAS Protocol) и Международную конвенцию по предотвращению загрязнения моря с судов (1978 MARPOL Protocol). В 1992 году обновленная Хельсинкская Конвенция была подписана всеми странами района Балтийского моря и Комиссией Европейского Сообщества. Руководящим органом Хельсинкской Конвенции является Хельсинкская Комиссия - Комиссия по охране морской среды Балтийского моря (ХЕЛКОМ) [28].

Постановлением Правительства Российской Федерации от 15 октября 1998 года № 1202 «Об одобрении Конвенции по защите морской среды района Балтийского моря» Хельсинкская Конвенция была одобрена, и Россия приняла на себя обязательства по указанной Конвенции в полном объеме.

В 1988 году была принята Министерская Декларация, установившая цель - достичь к 1995 году 50-процентного сокращения сброса всех загрязнений и обеспечить, тем самым, продвижение на пути восстановления экологического баланса Балтийского моря. Для обеспечения достижения целей указанной Декларации было разработано и принято более 40 рекомендаций ХЕЛКОМ, главным образом, для точечных источников загрязнений.

2. Ликвидация разливов нефти на море

2.1 Поведение нефти, разлитой на поверхности чистой воды

Вылившаяся в результате аварии нефть быстро растекается по поверхности моря, образуя поля нефтяных пленок:

на тихой воде, при отсутствии ветра и течения, нефть растекается во все стороны одинаково, образуя круг, радиус которого изменяется во времени;

при наличии ветра и течения нефтяное пятно приобретает вытянутую форму по направлению суммарного вектора скоростей ветра и течения.

Разлившаяся на поверхности воды нефть перемещается в том же направлении и с той же скоростью, что и поверхностный слой воды. Главными факторами, определяющими перемещение нефтяного пятна, является течение и ветер.

Перемещение нефтяного пятна в пространстве происходит за счет действия поверхностных течений и ветра. Направление дрейфа пятна определяется путем сложения векторов направления поверхностного течения и ветра (рис. 1). Скорость дрейфа складывается из 97-95% скорости поверхностного течения и 3-5% скорости ветра (рис. 2).

Рис. 1. Направление движения нефтяного пятна в море

Рассеивание нефтяной пленки происходит за счет эмульгирования. При волнении 5 баллов уже через 12 часов эмульгирует около 15% нефти. Большая часть распределенной в воде нефти находится в виде эмульсии типа «нефть в воде» (прямая эмульсия). При разливах нефти образуется также эмульсия типа «вода в нефти» (обратная эмульсия). Образование прямой эмульсии может привести к исчезновению с поверхности воды. Однако при изменении условий нефтяное пятно может восстановиться. Обратная эмульсия отличается высокой стойкостью. Она характерна для смеси воды с вязкой нефтью и содержит от 50 до 80% свободной воды. Внешне она выглядит как чистая нефть. Иногда ее называют «шоколадный мусс».

Нефтяное пятно при своем движении будет постоянно трансформироваться. В качестве примера на рис. 2 изображен сценарий трансформации разлива 1000 м нефти.

Рис. 2. Типичный сценарий трансформации разлива сырой нефти на морской акватории в теплое время года

2.2 Поведение нефти, разлитой в ледовых условиях

Под воздействием внешних природных факторов, в условиях ледяного покрова, растекание нефти при разливе, ее дрейф и процессы деградации имеют свои особенности.

Нефть, попадая на ограниченную поверхность воды с плавающим льдом, оказывается подо льдом, на поверхности льда и во льду (сорбирована льдом). На попадание нефти под лед основное влияние оказывает плотность нефтепродукта. При температуре 0°С плотность большинства тяжелых нефтей больше плотности льда. Эта разница увеличивается по мере деградации нефти. В этом случае лед как бы наползает на нефть. Легкие сорта нефти попадают под лед под влиянием течения, ветра. Наблюдения показали, что при скорости ветра 12 м/с и скорости течения 0,5 м/с при толщине льда 15-45 см нефть легко загоняется под лед. На поверхность льда нефть попадает непосредственно из источника разлива, проникая через поры и трещины рыхлого льда, выбрасываясь на лед при раскачивании льдин во время волнения относительно друг друга. Процесс налипания резко прогрессирует при наличии на поверхности льда снежного покрова, с которым нефть образует вязкую кашу, что значительно осложняет процесс очистки и сбора нефти.

Способность проникновения зависит от плотности и вязкости нефти, а также от размеров пор и каналов, образовавшихся во льду в результате его таяния. Кроме того, нефть, накопившаяся подо льдом во впадинах, в процессе намерзания льда оказывается в толще, где может находиться до полного таяния льда.

В период оттепели нефть, находящаяся на поверхности льда, проникает внутрь в силу того, что температура нефти под лучами солнца выше температуры льда и окружающего воздухе. При последующем понижении температуры подтаявший снег и лед образуют ледовую корку поверх нефти, проникшей в лед. При чередовании таких периодов образуется как бы слоеный пласт льда и нефти.

При торошении таких льдов нефть задерживается среди обломков и снега, сохраняясь до таяния льдин.

2.3 Технологии ликвидации разливов нефти на море

Ликвидация нефтяного разлива на море ставит перед собой цель уменьшить ущерб для экологических и социально-экономических ресурсов, сокращая при этом время, необходимое для восстановления этих ресурсов и обеспечивая приемлемые стандарты очистки [35, 67, 71].

Основные варианты ликвидации - это локализация и сбор разлитой нефти, распыление химических диспергаторов, защита береговой полосы или самоочищение ее естественным путем. Физическое удаление нефти с поверхности воды снижает угрозу для птиц, млекопитающих в прибрежных водах и на побережье. Диспергаторы, которые помогают разорвать поверхностное пятно нефти, выполняют ту же роль, но их попадание в прибрежные воды может угрожать морским организмам.

Технологии ликвидации разливов нефти - это, по существу, способы сбора и извлечения нефепродуктов.

Основными мерами по локализации и ликвидации разлива нефти и нефтепродуктов на воде являются:

предотвращение дальнейшего сброса;

постановка преград, препятствующих рассеиванию сброшенного вещества и загрязнению уязвимых районов;

отвод разлитого вещества или аварийного объекта в зону, удобную для проведения операций по ЛРН.

сбор разлитого вещества с поверхности воды;

сдача собранных загрязняющих веществ на берег;

ликвидация разлива с помощью физических и химических методов.

Выбор методов локализации и ликвидации разлива производится, исходя из условий разлива и реальных возможностей, определяющихся имеющимися силами и средствами, а также местными условиями, связанными с разрешением использования сжигания, диспергаторов для защиты районов высокой экологической ценности.

2.4 Сбор нефти механическими способами

Технологии и специальные технические средства, применяемые для локализации разливов нефти на воде, должны обеспечивать свое оперативное использование, а также надежное удержание нефтяного пятна в минимально возможных границах [35].

Очень важное значение имеет оперативность реагирования на разлив нефти, поскольку нефтяное пятно со временем расползается и трансформируется.

В зависимости от температуры и обстановки на море и масштабов разлива, легкие продукты при благоприятных условиях фактически исчезнут с поверхности моря в течение 1-2 дней, легкие нефти - в течение 2-5 дней и нефти средней плотности - в течение 5-10 дней. Тяжелые нефти или нефти парафинового основания и тяжелые нефтепродукты сохраняются в течение более длительных периодов, но и они со временем рассеиваются естественным образом.

Для сбора нефти на воде механическими способами могут быть запланированы два основных типа нефтесборных работ:

стационарный сбор нефти, при котором применяют боны и нефтесборщики для локализации и удаления нефтяных пятен, начиная с источника разлива или на расстоянии от него, будь это в открытом море или вблизи берега.

передвижной способ сбора нефти, при котором применяются забортные скиммеры, при этом другие скиммеры размещаются в контактной подвеске буксируемого двумя судами бонового заграждения U-, V- или J-образной конфигурации.

Для локализации разливов нефти требуются нефтеограждающие боны различного типа, рабочие характеристики, которых, включая габариты и прочность, должны соответствовать поставленным задачам.

С целью определения количества необходимого оборудования определяются эксплуатационные возможности каждого из компонентов системы сбора.

Длина бонового заграждения выбирается такой, при которой оно может быть легко установлено и эффективно управляемо на участке разлива.

Для локализации нефтяного пятна и определения его толщины определяется объем смеси воды с нефтью. Расчеты должны учитывать изменения в объеме вследствие испарения, эмульгирования, естественного диспергирования и других изменений в связи с нахождением во внешней среде. Большое количество относительно малых разливов, быстро локализованных в спокойных водах, вероятнее всего не будет подвержено значительному эмульгированию или испарению, а также естественной дисперсии.

Выбор нефтесборного оборудования и его размеров основывается на расчетном объеме разлитой нефти, ее свойстве и условиях моря.

Средства сбора обычно дают возможность работать от 8 до 12 часов в сутки в зависимости от длины светового дня, времени транзита к очищаемому участку и от него.

Планировщики должны также учитывать время, отпускаемое на техническое обслуживание, передислокацию скиммера и рабочей платформы, перекачку извлеченной нефти и воды в хранилища, а также время, потерянное вследствие плохой погоды. Однако разные скиммеры имеют разные номинальную и реальную скорость сбора, что также должно быть принято в расчет.

Выбор скиммера для работы в порту рекомендуется проводить, исходя из емкости наибольшего бортового танка танкера, подходящего к терминалу или заходящего в порт. Производительность сбора должна быть такой, чтобы, по крайней мере, 50% объема наибольшего бортового танка было собрано за 12 часов.

При разливах нефти регионального и федерального значения суммарная производительность устройств сбора нефти принимается: через два часа после начала работ - 200 куб. м/ч, через восемь часов - 2 тыс. куб. м/ч и через 24 часа - 20 тыс. куб. м/ч. Характеристики различных типов скиммеров приведены в таблице 1.

Таблица 1. Производительность скиммеров

Тип скиммера

Производительность, куб. м/ч, при сборе

Дизельное топливо

Сырая легкая нефть

Тяжелая сырая нефть

Мазут М100

Содержание нефти в собранной смеси

Олеофильные скиммеры

Дисковый, малый

0,4-1

0,2-2

80-95

Дисковый, большой

10-20

10-50

80-95

Щеточный

0,2-0,8

0,5-100

0,5-20

0,5-20

80-95

Цилиндровый, большой

ю-зо

80-95

Цилиндровый, малый

0,5-5

0,5-5

80-95

Тросовый

2-20

2-10

75-95

Пороговые скиммеры

Пороговый, малый

0,2-10

0,6-5

2-10

20-80

Пороговый, большой

30-100

5-10

3-5

50-90

Передвижной

1-10

5-30

5-25

30-70

Следует учесть, что расчетная производительность сбора конкретных скиммеров достигается, только если пленка нефти имеет толщину порядка 10 мм (производительность сбора нефти будет равна 100%), то есть нефть после разлива была сразу же ограждена бонами. На практике такие случаи относительно редки, нефть успевает растечься на большой площади и толщина пленки обычно составляет 0,5-5 мм (это не относится к высокопарафинистым сырым нефтям и мазутам, толщина пленки которых на воде может быть более 10 см). В этом случае реальная производительность сбора нефти резко падает. Кроме того, на производительность сбора влияют также неблагоприятные погодные условия, при которых обычно происходят аварии.

Поэтому для реальных условий ведения ЛРН производительность сбора разлитой нефти принимается равной 10-15% производительности насоса скиммера. Производительность сбора будет зависеть также от скорости траления, ширины полосы траления и толщины пленки нефти.

Достижению высокой скорости сбора препятствует ряд физических ограничений, которые трудно преодолеть. Олеофильные, основанные на сорбционном принципе действия скиммеры, работая самостоятельно, могут успешно производить сбор нефти при относительно высокой скорости передвижения (2-5 узлов), однако их ширина захвата небольшая.Ширина захвата может быть увеличена путем присоединения к скиммеру бонов.В большинстве случаев ордер, состоящий из бонов и скиммера, может эффективно работать в диапазоне скорости 0,75-1,0 узла. Поэтому скорость траления может быть увеличена только за счет увеличения ширины захвата, то есть длины бонов. Траление нефти обычно проводят ордерами, построенными в виде U-, V- и J-конфигурации. Длина бонов, буксируемых в виде U-конфигурации, обычно не превышает 250 м, при этом ширина траления будет около 100 м. В некоторых случаях (при благоприятных гидрометеоусловиях, наличии соответствующих судов и прочных бонов) длина бонов может быть увеличена до 500-- 600 м, при этом ширина захвата будет составлять порядка 150-200 м (из-за низкой маневренности таких систем они применяются очень редко). На практике нефть будет растекаться и в процессе ее сбора. Кроме того, проход нефтесборной системы через пятно нефти не будет означать, что позади нее останется чистая поверхность воды, так как под действием ветра и течений нефть будет продолжать распространяться и вновь покроет очищенную поверхность. Поэтому все расчеты по силам и средствам ЛРН, необходимых для обеспечения адекватного реагирования на бассейне, могут служить, в основном, для ориентировочного планирования их минимального количества.

«Темп захвата» - площадь, покрываемая скиммером за единицу времени, обычно выражается в кв. миля/час (морские квадратные мили в час) и рассчитывается по формуле:

Темпы захвата = Скорость сбора х Ширина охвата.

«Скорость сбора» - скорость перемещения скиммера при сборе и «ширина охвата» - ширина горловины скиммера или отражающих бонов, прикрепленных к нему, выраженная в футах или метрах. Темпы захвата по существу определяют, какой срок понадобится любому данному скиммеру для охвата данной площади. Когда боновые заграждения применяются для увеличения ширины трала, скорость сбора уменьшается обычно до 0,25-0,5 м/сек (0,5-1,0 узла). Однако самоходные системы сбора работают с учетом нулевой относительной скорости между заборным механизмом и пятном, которое может двигаться без бонового заграждения со скоростью несколько узлов и более. Это происходит за счет ширины трала.

Насосы для мобильных систем обычно входят в состав скиммера. В то время как самоходные суда, такие, как прибрежные танкеры и нефтяные баржи, обычно снабжены оборудованием для разгрузки, баржи, используемые для очистных работ, могут не иметь таких устройств. В случае наличия барж или других самоходных судов, используемых для перевозки вязких нефтей, необходимо подбирать типы насосов, удовлетворяющих поставленным требованиям.

Для сбора нефти с помощью специальных судов (нефтесборщики), используют технологию, именуемую «скимминг», что в переводе с английского означает «снятие пенок». Они оснащаются раздвижными консолями на поплавках, как бы сгребают нефть с поверхности воды. Эта система, основанная на применении раздвижных поплавковых устройств, подчиняется волнению на море. Иными словами, такое судно старается с помощью своих раздвижных плавучих консолей как можно более точно повторять форму волн и при этом как бы соскребать нефтяное пятно с подвижной поверхности воды. Нефть поступает в сточные колодцы, где расположены винтовые насосы. Эти насосы напоминают огромную мясорубку: вращающиеся шнеки - непрерывные винтовые лопасти - затягивают густую вязкую нефтяную массу с поверхности воды внутрь судна и по трубопроводу направляют в специальные баки. Эти баки оборудованы нагревательным устройством, которое позволяет доводить их температуру до 90 градусов Цельсия. В результате нагрева нефть становится более текучей, и ее легче перекачивать в нефтесборники на берегу. Однако эта технология эффективна лишь при малом волнении на море. При высоте волн более 2 метров, суда-скиммеры бесполезны.

Рисунок 3. Суда-нефтесборщики

Механическими средствами на воде, как утверждают специалисты, удается собрать не более 20% от общего количества разлитой нефти. Они практически бесполезны в штормовую погоду и при сложных гидрометеоусловиях.

В случае волнения и низких температурах нефтемусоросборщики не смогут обеспечить номинальные режимы сбора нефти с поверхности воды из-за ее вязкости и малой текучести. В результате волнения моря нефть переходит в состояние эмульсии, причем эта эмульсия обладает высокой вязкостью и сложнее распадается на фракции, то есть практически не подвергается биоразложению. Процесс эмульгирования существенно увеличивает объем нефтесодержащих продуктов, что серьезно осложняет проведение работ по ликвидации и утилизации водонефтяной смеси.

2.5 Применение диспергентов

Одним из методов уничтожения нефтяной пленки в тех случаях, когда она угрожает катастрофическим загрязнением приоритетных зон, является ее диспергирование с помощью специальных препаратов - диспергентов.

В России к применению допускаются диспергенты, разрешенные Минздравом России и зарегистрированные в Российском Реестре потенциально опасных химических и биологических веществ. Применение диспергентов должно быть санкционировано Госкомрыболовством России и МПР России.

Диспергенты особенно эффективны, если с момента разлива нефти прошло не более 72 часов и температура окружающей среды выше 5°С. Диспергенты не рекомендуется применять на мелководье на глубинах менее 10 м.

Диспергаторы ускоряют скорость естественного диспергирования, снижают «барьер» (натяжение), который препятствует образованию очень мелких каплей под воздействием волн. При использовании диспергаторов образуется гораздо больше мелких нефтяных каплей. Нефти переходят в дисперсное состояние быстрее при сильном волнении. Высоковязкие нефти труднее поддаются диспергированию.

Диспергаторы надлежит применять быстро и точно. Они могут наноситься с судов, вертолетов и самолетов, при этом распыление с самолета представляет наилучший метод при больших разливах нефти.

При использовании воздушных судов больших размеров поверхность нефтяного пятна может быть обработана в 40 раз быстрее, чем при использовании самых больших и высокопроизводительных нефтесборщиков. Кроме того, применение диспергентов с воздуха позволяет распылять их в штормовую погоду, когда невозможно использование средств механического сбора нефти. Ключевым соображением является обработка наиболее утолщенных частей нефтяного пятна применением достаточного количества диспергента. В общем случае применение одной части диспергента приводит к диспергированию от 20 до 30 частей нефти.

Сильное волнение моря способствует быстрому перемешиванию и разбавлению диспергированной нефти. В условиях сильного волнения отношение диспергента к нефти уменьшается до одной сотой.

За последних 30 лет диспергенты успешно применялись более чем на 70 разливах нефти. Частота их применения устойчиво возрастает в девяностых годах.

При разливе с танкера «Си Эмпресс» у побережья Уэльса в 1996 года в результате диспергирования было предотвращено попадание на береговую линию более 80% неиспарившейся нефти (около 35 000 тонн). Последующие исследования показали, что чистый эффект от применения диспергентов оказался положительным для окружающей среды, в частности, для морских плиц ,прибрежных болотных птиц в приливных зонах и на пляжах. Решение о применении диспергентов принимается после проведения оценки чистой экологической выгоды (ответа на вопрос, нанесет ли не-диспергированная нефть больший или меньший ущерб окружающей среде по сравнению с диспергированной химическими препаратами).

Допускается применение только препаратов имеющих сертификаты и нормативно-техническую документацию одобренные Госкомэкологией, Росрыбводом и Госсанэпиднадзором.

2.6 Применение сорбентов

Использование нефтяных сорбентов аналогично применению других порошкообразных сорбентов. При ликвидации нефтяных загрязнений водной поверхности прежде всего производят локализацию разлившейся нефти или нефтепродуктов бонами, что является обязательным при любой технологии очистки. Затем производят нанесение сорбента на загрязненную поверхность любым механизированным или ручным способом до полного поглощения нефтяной пленки и образования плавучего конгломерата. После этого производят стягивание бонового заграждения, концентрируя сорбент с поглощенной нефтью вблизи места, удобного для сбора, и тем или иным образом удаляют отработанный сорбент с поверхности воды.

Резерв времени для локализации нефтяного разлива без существенного ущерба окружающей среде, в зависимости от погодных условий, обычно не должен превышать 24-72 часов с момента аварии. Использование при ликвидации нефтяного загрязнения порошковых сорбентов, сохраняющих плавучесть в течение длительного периода времени, позволяет значительно увеличить резервы времени для проведения подготовительных мероприятий и сбора нефти.

При сборе нефти на воде могут применяться крупные конструкции сорбционно-заградительных бонов длиной 5 метров, состоящие из нетканого сорбента, элемента, обеспечивающего плавучесть, и сетки, придающей конструкции необходимую форму. Боны легко соединяются между собой и образуют заграждения, ограничивающие нефтяное пятно и препятствующие его распространению по поверхности воды или почвы. С помощью бонов огражденное пятно разлива буксируется к урезу воды и концентрируется для последующего сбора, одновременно сорбируя нефть. Боны обладают плавучестью даже в состоянии полного насыщения нефтепродуктами.

По неполным сведениям только в последние годы биосорбенты широко применялись для борьбы с разливами нефти на воде:

очистка воды от пленки мазута (до 0,7 тонн) при загрузке танкера, С.-Петербургский порт, март 2000 года;

очистка поверхности воды на реке Неве (до 0,5 тонн мазута) - июнь 2000 года;

ликвидация разлива 12 тонн дизтоплива (столкновение судов), Кронштадт - ноябрь 2000 года;

очистка от пленки нефти акватории Ейского порта (до 2000 м2, 1-2 мм) - март 2001 года;

очистка поверхности воды от 8 тонн мазута при подъеме судна, Камчатка - май 2001 года;

ликвидации разлива (до 16 тонн, дизтопливо), авария с судном «Каунас», С.-Петербург - сентябрь 2002 года;

профилактическая очистка поверхности воды на нефтяных терминалах (5-10 тонн нефтепродуктов), Таганрог, Морская Администрация порта - апрель-май 2003 года;

очистка поверхности воды от мазута, Тверская область, Зубцовский район, июнь 2005 года.

Рисунок 4. Тактика и технология применения биосорбентов с использованием вертолета

2.7 Контролируемое сжигание нефти

Пролитую сырую нефть в принципе можно сжечь, однако при образовании тонкой нефтяной пленки на водной поверхности, горение прекращается из-за теплоотвода в толщу воды. Кроме того, разлитая нефть быстро теряет легкие, наиболее горючие фракции. Поэтому для осуществления контролируемого сжигания разлитой нефти первоначально производится локализация нефтяного разлива, утолщение слоя нефти (до нескольких сантиметров) с целью ее последующего поджога и сжигания.

Более легкие и летучие нефти могут быть подвержены возгоранию сразу же после разлива. Эти характеристики склонят чашу весов в пользу сжигания на месте - вариант ликвидации, обладающий потенциалом удаления значительных количеств нефти с поверхности моря, но который также породит обильный черный дым и небольшое количество стойкого осадка.

К середине 80-х годов метод сжигания аварийно разлитой нефти на месте был признан надежным при условии удержания пятна нефти достаточной толщины на месте. В 1988 году на открытой воде у берегов Норвегии были проведены успешные испытания: 80 м нефти удерживали огнеупорным боном длиной 91 м и подожгли с помощью желеобразного газолина. За 30 минут 95% нефти было уничтожено.

В 1989 году на второй день после аварии танкера «Эксон Валдиз» 4800 м нефти выгорели за 45 минут на 98% (поверхностный воспламенитель подплыл к огражденному пятну и поджег его). В августе 1993 года более 25 агентств из Канады и США провели успешные испытания у берегов Канады по сжиганию на месте аварийно разлитой нефти. Участвовало 20 судов, 7 самолетов, 230 человек, затраты составили 7 млн. долл. США, сожгли более 3200 м нефти. Получается, что на сжигание 1 м нефти было затрачено более двух тысяч долларов США.

В 1996 году на Северном море были проведены два отдельных сжигания нефти на месте с использованием огнеупорных боновых заграждений, вертолетного факела и желеобразного газолина, при этом было сожжено 640 м3 нефти.

В качестве альтернотивного метода уничтожения нефтяной пленки предлагается использование лазерного излучения с длиной волны 10,6 мкм. Такое излучение относительно слабо поглощается нефтью и нефтепродуктами и сильно поглощается водой. Характерная глубина проникновения лазерного излучения с указанной длиной волны для нефти различных сортов составляет 100-300 мкм, а для воды - порядка 10 мкм.

Российским ученым впервые в мире удалось создать относительно недорогой в эксплуатации мощный электроионизационный СО2 - лазер, работающий на потоке атмосферного воздуха. Лазерное излучение характеризуется не только тепловым воздействием на материалы, но обладает целым рядом уникальных физических свойств. Это, например, высокое оптическое качество потока излучения, его когерентность и монохроматичность. Использование именно этих уникальных свойств лазерного луча открывает замечательные технологические перспективы. Речь идет о создании мобильных установок для лазерной очистки водной поверхности от нефтепродуктов.

Механизм метода лазерной очистки заключается в следующем. Лазерное излучение сильнее всего поглощается тонким слоем воды, который непосредственно примыкает к нефтяной пленке, поэтому вода в этом слое быстро нагревается и переходит в состояние метастабильности. Происходит парообразующий взрыв метастабильно перегретой воды и разрывается тепловой контакт нефти и воды, который препятствует горению нефтяной пленки в обычных условиях. Нефтяная пленка подбрасывается вверх и дробится на фрагменты. Капли нефти подбрасываются на высоту 30-40 см, смешиваются с атмосферным воздухом и образуют горючую смесь. Происходит самовоспламенение смеси, и капли нефтяного загрязнения сгорают в воздухе.

При ликвидации аварий, связанных с разливом нефтепродуктов, таким способом можно эффективно и быстро удалять нефтесодержащие пленки практически любого состава и толщины. Только применение лазера позволяет проводить полную очистку поверхности воды от тонких «радужных» пленок, что недостижимо другими известными способами. При использовании лазерной технологии можно проводить очистку водной поверхности со значительных расстояний, например, с берега.

Лазерный способ очистки может быть с успехом использован на завершающей стадии обработки поверхности нефтяного разлива после применения механического или химического способов сбора толстых пленок, а также для очистки водоемов-плантаций морепродуктов или жемчужных факторий, береговой кромки и гидротехнических сооружений. Опыты показали, что скорость очистки слабо зависит от состава и вязкости нефтепродуктов, а также от угла падения лазерного излучения на поверхность воды. Специалисты Российского ВПК разработали проект плавучего комплекса использующего лазерную технологию при очистке «внутренних» водоемов (рек, водохранилищ, портов) и прибрежных акваторий морей от разливов нефти и нефтепродуктов. При этом вред окружающей среде практически не наносится, так как лазерному воздействию при удалении пленки подвергается очень тонкий слой воды (10-20 мкм) за сотые доли секунды, а продукты испарения перед выпуском в атмосферу очищаются. Производительность такого комплекса при дистанционном сжигании (до 100 м) нефтяной пленки при толщине 5 мм составляет 500 м /час.

Весьма перспективным выглядит применение новой технологии и с финансовой точки зрения. Стоимость одних судно-суток при ликвидации аварийных разливов нефти механическим способом составляет около 3 тыс. долларов, а эксплуатации лазерного комплекса обойдется в несколько сотен долларов за сутки. Затраты на сбор 1 тонны нефти механическим способом оцениваются в 200-400 долларов, а работы с использованием лазерной технологии - примерно вдесятеро дешевле. По законодательствам ряда стран, финансовая ответственность за тонну разлитой нефти составляет 4-10 тыс. долларов, в России - 20 тыс. рублей. Путем несложных вычислений можно подсчитать, что создание и эксплуатация плавучего комплекса, способного утилизировать, скажем, 20 тонн нефти в сутки при себестоимости 20 долларов за тонну, будут в десятки раз дешевле, чем выплата штрафных санкций.

2.8 Технологии ЛРН в ледовых условиях

В настоящее время из средств ЛРН, имеющихся на вооружении морспецподразделений, большинство малоэффективно, а в некоторых случаях практически неприменимо в ледовых условиях, так как они разрабатывались для применения на чистой воде.

Прочность боковых заграждений недостаточна, чтобы противостоять усилиям, создаваемым дрейфом льда.

Для ограничения распространения нефти по акватории в качестве ограждения рекомендуется использовать сам лед.

Нефтесборщики порогового, вихревого и всасывающего принципов действия применять в ледовых условиях можно в весьма ограниченных случаях, когда имеются разводья, акватория чистой воды и соответствующие метеорологические условия. Лед легко блокирует такие нефтесборные устройства, забивает приемный орган.

Для сбора плавающей в разводьях льда нефти эффективно применение олеофильных сборщиков сорбционного типа.

Возможно сжигание нефти в ледовых условиях при достижении большой толщины слоя нефти (сырой нефти - до 5 мм). Такая толщина обеспечивает достаточную устойчивость горения. Для уменьшения охлаждающего воздействия воды используются инициаторы (торф, опилки, древесную стружку и т.п.). Но сжигание возможно только свежеразлитой нефти.

Применение биологических методов ЛРН в ледовых условиях и в море никакого эффекта не дает, так как активная деятельность бактерий незначительна и поэтому их целесообразно применять только для очистки берега.

Сбор разлитой нефти в ледовых условиях (замазученные куски льда, ледяная шуга, перемешанная с плавающей нефтью) или вязкой нефти (около 7000 сСт), потерявшей текучесть из-за низкой температуры воды и наружного воздуха, возможен только грейфером, которым захватываются куски замазученного льда, ледяная шуга вместе с нефтью и грузятся в трюм.

Возможен и сбор нефти путем притапливания льда перфорированным листом или сетью. В результате этого нефть всплывает на поверхность и собирается одним из возможных методов. Но такой метод сбора можно применить лишь на незначительных площадях, защищенных от ветра и волнения, к тому же этот метод влечет за собой решение последующих нелегких проблем, т.к. при погрузке замазученного льда в трюм землесоса, грузоотвозной шаланды или баржи необходимо обеспечить растапливание льда, сбор и выкачку нефти или эмульсии в береговые плавемкости.

В случаях разлива нефти в мелкобитом льду возможно применение трала с последующим опорожнением его кошелька в открытую плав-емкость.

3. Ликвидация разливов нефти на суше

Работы по ликвидации крупного разлива нефти на грунт можно разделить на три этапа:

первый - локализация разлитой нефти;

второй - сбор нефти;

третий - рекультивация земель.

Следует отметить, что четкой границы между этапами нет, так как работы проводят одновременно как по сбору разлитой нефти, так и по технической и биологической рекультивации и занимают продолжительное время.

3.1 Технологии локализации розлива нефти на грунт

Разливы нефти и нефтепродуктов на любой площади от нескольких квадратных метров до сотен и тысяч квадратных метров забрасываются (покрываются) гранулированным нефтесорбентом вручную или с помощью специальных мониторов. Реакция поглощения нефти нефтесорбентом происходит очень энергично и завершается, как правило, в течение нескольких минут или в отдельных случаях - нескольких часов без дополнительного вмешательства операторов. Дозировка необходимого количества нефтесорбента для ликвидации разлива легко определяется и составляет примерно 1/10 от массы разлива нефти (нефтепродукта).

Сбор конгломерата разлитой нефти с нефтесорбентом (нефтешлама) с загрязненной поверхности производится с помощью ручных приспособлений (при небольших площадях разливов) или с помощью специальной техники - нефтемусоросборщиков (при значительных площадях разливов нефти и нефтепродуктов).

При небольших площадях разливов и тем более, если они произошли в отдаленных местах, наиболее целесообразным считается сжигание собранного нефтешлама на месте в мобильных установках с соблюдением всех требований экологической безопасности.

При значительных количествах, собранный нефтешлам загружается в самосвалы и вывозится на стационарные или временно развернутые пункты утилизации.

Технология утилизации нефтешламов может быть различной:

прямое сжигание собранного нефтешлама в инсинераторах с утилизацией тепла отходящих газов для получения пара или горячей воды;

предварительный отжим нефти (нефтепродукта) из нефтешлама на фильтр-прессах с последующей очисткой отжатого сорбата (загрязненной нефти) на сепараторах для получения товарной нефти (нефтепродукта) и брикетированием сухого остатка нефтешлама после фильтр-прессов с получением топливных брикетов.

Локализация большого объема разлитой нефти осуществляется: путем строительства дамб, нефтеловушек, каналов и отстойников, применением локализующих бонов.

В большинстве случаев возводятся земляные дамбы, строительство которых осуществляется насыпным способом. В основании дамбы бульдозерами или скреперами снимают и перемещают растительный слой в валы, далее грузят его экскаватором или погрузчиком в транспортные средства. При отсутствии растительного грунта подготовка основания заключается в уплотнении грунта катками после предварительного рыхления на глубину 0,15-0,30 м.

Нефтеловушка (гидрозатвор) представляет собой гидротехническое сооружение для перекрытия водотоков с целью предотвращения распространения аварийной нефти. Гидрозатвор состоит из земляной плотины, ограждающей дамбы, водопропускного сооружения и отстойника. Гидрозатворы позволяют предотвратить распространение нефти и произвести ее сбор в отстойнике. Для сбора аварийной нефти предусматривается устройство площадок и подъездов для механизированного сбора и перевозки аварийной нефти.

После сбора нефти и завершения очистных работ проводится разборка гидрозатвора и биорекультивация нарушенных земель.

Водопропускное сооружение гидрозатвора состоит из труб металлических диаметром от 330 до 1400 мм. Для обеспечения отвода воды из среднего слоя отстойника трубы укладываются с обратным уклоном или приваривается колено. Отстойник рассматривается как аккумулирующая емкость для отстоя и сбора аварийной нефти. Поток воды в отстойнике должен иметь ламинарный режим течения, при котором аварийная нефть всплывает на поверхность, а частицы нефтезагрязненного грунта оседают на дно.

Для локализации аварийной нефти и отвода избыточной воды на переувлажненных землях и болотах прокладывают открытые каналы, устраивают отстойники, где с поверхности воды собирают аварийную нефть и нефтепродукты. Строительство открытых каналов ведут землеройными машинами, реже взрывным способом или способами гидромеханизации. Наиболее распространено производство работ по каналам землеройными машинами.

Для локализации и сбора аварийной нефти на водотоках и водной поверхности озер и болот применяются боновые заграждения, которые позволяют оперативно перекрывать водоток и задерживать нефть и нефтепродукты, находящиеся на поверхности воды, и направляют нефть к месту сбора. Для локализации аварийной нефти на водотоках и водоемах используются боны: береговые (секция 21 м), речные (секция 10 м), заградительные (секция 30 м), портовые и болотные.

Боновые заграждения в отстойниках перемещают нефть по поверхности воды к месту сбора, где она собирается с помощью скиммеров, экскаваторов, насосами и вакуумными бочками с берега (рис. 5).

Для локализации разлива нефти на реках применяют установку удерживающих боновых заграждений с учетом ширины и скорости течения реки с целью создания так называемого рубежа задержания.

Способ установки бонов со стопроцентным перекрытием русла реки применим для малых рек, несудоходных рек и рек со скоростями течения до 0,3 м/сек.

Для защиты берегов от нефтезагрязнения на водотоках применяют боновые береговые заграждения. Они позволяют направлять аварийную нефть к местам сбора, не пропуская ее по всему сечению водотока (рис. 6).

Особую заботу при разливе нефти вызывает защита водозаборов. В этом случае применяют установку направляющих бонов двумя ветвями с применением якорей (рис. 7).

Рис. 5. Схема локализации аварийной нефти при помощи бонов

Рис. 6. Установка боновых береговых заграждений

Рис. 7. Установка бонов для защиты речного водозабора

3.2 Сбор аварийной нефти

Работы по сбору аварийной нефти на земле делятся на два вида - грубые и щадящие. При грубой очистке бульдозерами и экскаваторами нефть счищается вместе с поверхностным слоем земли. При щадящей - верхний почвенный слой и растительность сохраняются: загрязненный участок временно заводняется, а нефть собирается уже с поверхности воды. Кроме того, нефть смывается с помощью водяных струй и счищается скребками-драгами.

На сильно загрязненных нефтью участках (толщина слоя - 30-50 см) хорошо зарекомендовала себя следующая последовательность очистных работ. Вначале нефть собирается при помощи скребков-драг или, при заводнении участка, нефтесборщиков. Потом оставшаяся нефть либо смывается водой под высоким давлением, либо верхний загрязненный слой почвы срезается.

Наиболее распространенным методом ликвидации последствий нефтяных разливов является засыпка замазученных земель песком. Используемый для засыпки разливов нефти карьерный и намывной песок не способен восстановить плодородие почвы в полной мере. Засыпка нефтяных разливов на почве торфом является более удачной технологией, но без перемешивания мульчирующего торфяного слоя с загрязненным грунтом не может считаться экологически приемлемой.

Был предложен способ рекультивации нефтезагрязненных земель взрывным методом: при этом необходимо густо разместить микрозаряды, обеспечивающие сплошное перемешивание торфяной залежи.

Краткое описание применяемых технологий сбора нефти с грунта механическим методом приведено в таблице 2.

Но, как показал опыт ликвидации последствий усинского разлива в Республике Коми, механическая очистка земель от нефти до предельно допустимого уровня содержания углеводородов не всегда возможна и экологически оправдана.

Таблица 2. Технологии сбора разлитой нефти с грунта

Технология

Описание

Заводнение

Заполнение понижения (или участка между дамбами) водой, которая позволяет собирать нефть с поверхности воды, смывать ее брандспойтами с поверхности земли.

Смыв холодной водой

Предусматривает использование высоконапорных насосов, шлангов и брандспойтов для удаления, мобилизации и перемещения нефти в точки сбора.

Смыв горячей водой

Вода предварительно подогревается до 25~35°С для снижения вязкости нефти и оптимизации процесса. Использование теплой воды обеспечивает безопасность и позволяет сохранить животные и растительные организмы почв.

Уборка граблями

Производится для удаления больших слоев нефти с поверхности грунта.

Очистка резиновыми скребками

Использование резиновых скребков для удаления нефти с поверхности грунта и перемещения ее в места сбора.

Механическое снятие загрязненного грунта

Проводится с использованием техники для удаления замазученных материалов и обычно предусматривает удаление некоторого слоя грунта.

Откачка

Откачка нефти с использованием различных электронасосов в емкости или автоцистерны для перевозки.

Нефтесборщики

Использование различных типов скиммеров, предназначенных для сбора нефти различной вязкости с водных поверхностей.

Зумпф

Вырытые небольшие углубления, которые устраиваются в районах сбора нефти вниз по склонам.

Вакуумная откачка

Производится с использованием передвижных вакуумных насосов, шлангов и емкостей для откачки нефти с поверхности воды.

Сжигание

Сжигание может производиться для удаления нефти с поверхности грунта и воды и для утилизации ее после сбора. Для поджигания нефти используются факелы. Необходимы меры предосторожности для предотвращения возгорания прилежащих территорий и обеспечения ТБ.

Водоотводящие каналы

Устраиваются в зимне-весенний период для отвода грунтовых вод на переувлажненных участках.

3.3 Технологии рекультивации нефтезагрязненных земель

Когда завершается сбор «видимой» нефти, тогда замеряется остаточная концентрация нефти в грунте, которая зависит, в частности, и от применяемых технологий.

После аварии власти часто ставят задачу полностью очистить территорию от нефтяного разлива. Но оказалось, чтобы выполнить такие жесткие нормативы, пришлось бы полностью уничтожить верхний слой не только на месте разлива. Ученые предложили отказаться от обязательного требования очистить почву до такой степени, чтобы на всей территории разлива содержание нефти было не более 1 г на 1 кг почвы, и поднять остаточное содержание нефти от 3 до 8 граммов - в зависимости от того, как используется земля. Во многих случаях не стоит даже пытаться восстановить полностью исходную экосистему. Во-первых, потому, что это практически невозможно, во-вторых, потому, что с определенными концентрациями нефти природа справляется сама.

Целесообразно привязать нормативы загрязненности к различным природным зонам - тундре, тайге, широколистным лесам, лесостепям и так далее. Разные по своему строению и биохимическому составу почвы тоже ведут себя по отношению к загрязнению по-разному. Хуже всего дело обстоит с торфяником, который практически сразу впитывает нефть и нефтепродукты, и их практически невозможно извлечь. Килограмм торфа может удерживать от 100 до 500 граммов нефтепродуктов. Песчаные и глинистые почвы впитывают примерно в 100 раз меньше, и в случае разлива нефтяное пятно почти полностью остается на поверхности.

Задача состоит в том, чтобы определить, при каком уровне загрязненности не наблюдается угнетение экосистемы, и выбрать вариант очистки почв до допустимого уровня без нанесения большого ущерба окружающей среде. Наиболее жестким должен быть подход в тех случаях, когда продукты нефтяного загрязнения могут попасть в открытые водоемы -реки, озера, море.

Под термином «рекультивация нефтезагрязненных земель» понимается комплекс мер, направленный на ликвидацию разлива нефти как источника вторичного загрязнения природной среды, нейтрализацию остаточной нефти в почве до уровня фитотоксичности и восстановление плодородия загрязненных почв до приемлемой хозяйственной значимости.

Но нет четких нормативов, до какой степени надо очищать почву от разливов нефти и нефтепродуктов. Сегодня эта задача передана на региональный уровень, поскольку нормативы по загрязнению зависят от большого числа сугубо местных факторов. Эта работа весьма актуальна. Определение допустимых параметров нефтяного загрязнения, во-первых, позволит снизить как прямой, так и побочный экологический ущерб, возникающий при проведении работ по рекультивации земель. Во-вторых, даст возможность нефтяным компаниям выработать оптимальные корпоративные природоохранные стратегии. И, наконец, в-третьих, позволит государственным контролирующим органам эффективнее воздействовать на нарушителей.

Для успешной борьбы с последствиями разливов нужно достоверно знать степень их воздействия на природу, а это до сих пор представляется даже специалистам весьма сложным. В определенных концентрациях нефть может и не наносить ущерба почве - иногда гораздо больший вред наносят действия человека по ее очистке.

...

Подобные документы

  • Охрана окружающей природной среды на международном уровне. Проведение Конвенции в Лондоне в 1973 году. Общие обязательства по предотвращению загрязнения с судов морской среды нефтепродуктами. План борьбы с загрязнением нефтью при аварийных ситуациях.

    реферат [14,8 K], добавлен 26.12.2013

  • Опасность нефтепродуктов для живых организмов, оценка их негативного влияния на почву, а также на моря и океаны. Правила противопожарной безопасности в обращении с нефтепродуктами, правила их транспортировки. Источники загрязнения нефтью и их устранение.

    реферат [26,4 K], добавлен 20.05.2014

  • Общие положения Конвенции по защите морской среды Балтийского моря. Правила предупреждения загрязнения морской среды. Значение Конвенция по защите морской среды Балтийского моря. Приложение по предотвращению загрязнения моря нефтью и вредными веществами.

    реферат [52,9 K], добавлен 26.12.2013

  • Предупреждение последствий разливов нефтепродуктов. Использование аварийных огнеупорных, цилиндрических боновых заграждений постоянной плавучести. Механические, физико-химические, термические и биологические методы удаления нефти с водных поверхностей.

    реферат [67,6 K], добавлен 27.02.2015

  • Понятие и проект исследуемой Конвенции, ее главное содержание. Порядок предотвращения загрязнения Средиземного моря с судов нефтью и другими вредными веществами. Общие положения Конвенции по охране Черного моря от загрязнения, правовое обоснование.

    реферат [26,7 K], добавлен 26.12.2013

  • Загрязнение вод Мирового океана нефтью и нефтепродуктами, радиоактивными веществами. Влияние сточных вод на водный баланс. Содержание пестицидов и синтетических поверхностно-активных веществ в океане. Международное сотрудничество в области охраны вод.

    курсовая работа [56,0 K], добавлен 28.05.2015

  • Проблемы нефтяного загрязнения почвы и подземных вод. Санитарно-эпидемиологические правила и гигиенические нормативы по содержанию нефти и нефтепродуктов в окружающей среде. Предупреждение аварийных выбросов, мероприятия по ликвидации их последствий.

    курсовая работа [93,0 K], добавлен 19.04.2011

  • Изучение влияния нефтяных загрязнений на окружающую среду, методы борьбы с ними. Влияние нефти на водные ресурсы, фауну и флору. Проведение защитных мероприятий и очистных работ. Принятие законов, регулирующих сферу ликвидации аварийных разливов нефти.

    курсовая работа [82,5 K], добавлен 14.12.2013

  • Основные компоненты нефти. Основные источники загрязнения водных объектов нефтепродуктами. Сущность механического, термического, физико-химического и биологического методов ликвидации аварийного разлива нефтяных продуктов. Назначение нефтесборных систем.

    контрольная работа [13,4 K], добавлен 08.02.2015

  • Проблема локальных загрязнений почвы, связанных с разливами нефти и нефтепродуктов. Снижение количества микроорганизмов в почве как следствие загрязнения почвы нефтепродуктами. Пагубное влияние загрязнений на пищевые цепи. Способы рекультивации земель.

    презентация [795,2 K], добавлен 16.05.2016

  • Методы определения зоны активного загрязнения. Оценка экономического ущерба от загрязнения атмосферы. Определение зоны активного загрязнения нефтепродуктами Каспийского моря. Экологическая проблема на Туркменбашинском нефтеперерабатывающем заводе.

    реферат [42,7 K], добавлен 25.04.2012

  • Основные операции, производимые с нефтью и нефтепродуктами. Общая характеристика производства. Береговые опасные производственные объекты. Специфические эксплуатационные опасности. Прогнозирование объемов и площадей разливов нефти и нефтепродуктов.

    дипломная работа [5,2 M], добавлен 13.05.2015

  • Моря России - крупные природные комплексы. Характеристика и анализ степени загрязнения морских вод. Экологические последствия загрязнения морей. Охрана морских вод. Экологические последствия загрязнения морей. Контроль за состоянием морских вод.

    дипломная работа [7,5 M], добавлен 30.06.2008

  • Сущность экологической ситуации в Алтайском крае. Основные пути решения проблемы загрязнения экосистемы реки Барнаулки. Оценка загрязнения водных массивов реки и ее притоков нефтепродуктами. Экологическая проблема загрязнения водных массивов в России.

    курсовая работа [48,3 K], добавлен 28.11.2008

  • Аварийное загрязнение нефтью. Механические, физико-химические и биологические методы и стадии ликвидации аварийных разливов нефти. Катастрофа в Керченском проливе. Экологическая катастрофа в Желтом море. Удаление нефтяных пленок с водной поверхности.

    реферат [139,8 K], добавлен 07.12.2011

  • Угрожающие масштабы загрязнения мирового океана нефтью и нефтепродуктами. Источник загрязнения водной среды. Основные методы управления качеством атмосферного воздуха. Управление отходами, их санитарное очищение и удаление. Виды экологических налогов.

    реферат [26,5 K], добавлен 07.11.2014

  • Речной сток как основа водных ресурсов России. Принципы использования воды для хозяйственных целей. Характеристика источников загрязнения внутренних водоёмов. Экологические последствия загрязнения океана и вообще всей гидросферы нефтью и нефтепродуктами.

    доклад [2,8 M], добавлен 07.12.2009

  • Разлив нефтепродуктов на воде и возможные последствия. Технологии устранения разлива нефтепродуктов. Неорганические, синтетические и природные органические сорбенты. Очистка сточных и поверхностных вод. Ликвидация разливов нефти и нефтепродуктов.

    курсовая работа [38,8 K], добавлен 01.10.2008

  • Вода из поверхностных или подземных источников как источник питьевой воды во многих странах мира. Загрязнение источников воды нефтепродуктами и химическими примесями. Технологии очистки воды и почвы от разливов нефти, нефтепродуктов, химических веществ.

    реферат [18,2 K], добавлен 08.04.2014

  • Исследование планирования по предупреждению разливов нефти. Описание мероприятий и принятых решений, направленных на исключение разгерметизации оборудования и предупреждение выбросов нефти. Ликвидация загрязнений при разливах нефти и технологии ее сбора.

    курсовая работа [43,3 K], добавлен 22.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.