Химическое загрязнение среды
Определение первичных и вторичных загрязнителей атмосферы. Природные и антропогенные вещества, влияющие на природу. Оценка уровня вреда производственных и техногенных выбросов. Влияние загрязняющих воздух веществ на здоровье человека и животный мир.
Рубрика | Экология и охрана природы |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.05.2014 |
Размер файла | 133,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Химическое загрязнение атмосферы
1.1 Основные загрязняющие вещества
1.2 Источники загрязнения атмосферы
1.3 Аэрозольное загрязнение атмосферы
1.4 Фотохимический туман (смог)
1.5 Проблема контролирования выброса в атмосферу загрязняющих веществ промышленными предприятиями (ПДК)
2. Загрязнение атмосферы от подвижных источников
2.1 Автотранспорт
2.2 Самолеты
2.3 Ракетоносители
3. Влияние загрязнения атмосферы на человека, растительный и животный мир
3.1 Оксид углерода
3.2 Оксиды азота и некоторые другие вещества
3.3 Влияние радиоактивных веществ на растительный и животный мир
4. Глобальные проблемы, связанные с загрязнением атмосферы
4.1 Парниковый эффект
4.2 Кислотные дожди
Список использованной литературы
Введение
Вмешательство человека в природу известно издавна. В процессе эволюции человечество все больше и больше приспосабливало окружающий мир под себя, не задумываясь о возможных проблемах в будущем.
Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества. Регулярно вырубаются леса, повышается расход не возобновляемых видов сырья, все больше пахотных земель выбывает из экономики для строительства новых городов и заводов.
Человеку приходится все больше вмешиваться в хозяйство биосферы - той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию. При этом можно выделить несколько наиболее существенных процессов, любой из которых не улучшает экологическую ситуацию на планете. Наиболее масштабным и значительным является химическое загрязнение среды несвойственными ей веществами химической природы. Среди них - газообразные и аэрозольные загрязнители промышленно-бытового происхождения. Прогрессирует и накопление углекислого газа в атмосфере. Дальнейшее развитие этого процесса будет усиливать нежелательную тенденцию в сторону повышения среднегодовой температуры на планете и, как результат, изменение климатических условий в целом, что несомненно скажется на здоровье и жизнедеятельности человека.
1. Химическое загрязнение атмосферы
1.1 Основные загрязняющие вещества
Начну с обзора тех факторов, которые приводят к ухудшению состояния одной из важнейших составляющих биосферы - атмосферы. Человек загрязняет атмосферу уже тысячелетиями, однако последствия употребления огня, которым он пользовался весь этот период, были незначительны. Приходилось мириться с тем, что дым мешал дыханию и что сажа ложилась черным покровом на потолке и стенах жилища. Получаемое тепло было для человека важнее, чем чистый воздух и не закопченные стены пещеры. Это начальное загрязнение воздуха не представляло проблемы, ибо люди обитали тогда небольшими группами, занимая обширную нетронутую природную среду. И даже значительное сосредоточение людей на сравнительно небольшой территории, как это было в классической древности, не сопровождалось еще серьезными последствиями.
Так было вплоть до начала девятнадцатого века. Лишь за последние сто лет развитие промышленности "одарило" нас такими производственными процессами, последствия которых вначале человек еще не мог себе представить. Возникли города-миллионеры, рост которых остановить нельзя. Все это результат великих изобретений и завоеваний человека.
Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних.
Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония.
Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются вторичные признаки. К основным загрязнителям атмосферы относятся: углекислый газ, оксид углерода, диоксиды серы и азота, а также малые газовые составляющие, способные оказывать влияние на температурный режим тропосферы: диоксид азота, фреоны, свинец, метан и тропосферный озон:
А) Оксид углерода (СО) - бесцветный газ, не имеющий запаха, известен также под названием «угарный газ». Получается при неполном сгорании ископаемого топлива (угля, газа, нефти) в условиях недостатка кислорода и при низкой температуре. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. При этом 65% от всех выбросов приходится на транспорт, 21% - на мелких потребителей и бытовой сектор, а 14% - на промышленность Ежегодно этого газа поступает в атмосферу не менее 1250 млн. т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта;
Б) Сернистый ангидрид - выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд (до 170 млн. т. в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 65% от общемирового выброса;
В) Оксиды азота (оксид и диоксид азота) - газообразные вещества: моно оксид азота NO и диоксид азота NO2 объединяются одной общей формулой NOх. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитро соединения, вискозный шелк, целлулоид. Количество окислов азота, поступающих в атмосферу, составляет 65 млн. тонн в год. От общего количества выбрасываемых в атмосферу оксидов азота на транспорт приходится 55%, на энергетику - 28%, на промышленные предприятия - 14%, на мелких потребителей и бытовой сектор - 3%;
Г) Соединения хлора - поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлорсодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 11 т. предельного чугуна выделяется кроме 12,7 кг. сернистого газа и 14,5 кг. пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода;
Д) Соединения фтора - источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений - фтор водорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами;
Е) Сероводород и сероуглерод - поступают в атмосферу раздельно или вместе в другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы;
Ж) Свинец (Pb) - серебристо-серый металл, токсичный в любой известной форме. Широко используется для производства красок, боеприпасов, типографского сплава и т. п. Около 60% мировой добычи свинца ежегодно расходуется для производства кислотных аккумуляторов. Однако основным источником (около 80%) загрязнения атмосферы соединениями свинца являются выхлопные газы транспортных средств, в которых используется этилированный бензин.
1.2 Источники загрязнения атмосферы
Проблема чистоты атмосферы не нова. Она возникла вместе с появлением промышленности и транспорта, работающих на угле, а затем на нефти. В течение практически двух столетий задымление воздуха носило местный характер. Дым и копоть сравнительно редких заводских, фабричных и паровозных труб почти полностью рассеивались на большом пространстве. Однако быстрый и повсеместный рост промышленности и транспорта в ХХ в. привёл к такому увеличению объёмов и токсичности выбросов, которые уже не могут быть «растворены» в атмосфере до безвредных для природной среды и человека концентраций.
Загрязнение атмосферы имеет природное (естественное) и антропогенное (искусственное) происхождение.
К природным источникам загрязнения относятся: извержения вулканов, пыльные бури, лесные пожары, пыль космического происхождения, частицы морской соли, продукты растительного, животного и микробиологического происхождения.
Уровень такого загрязнения рассматривается в качестве фонового, который мало изменяется со временем.
Главный природный процесс загрязнения приземной атмосферы - вулканическая и флюидная активность Земли. Крупные извержения вулканов приводят к глобальному и долговременному загрязнению атмосферы.
Это обусловлено тем, что в высокие слои атмосферы мгновенно выбрасываются огромные количества газов, которые на большой высоте подхватываются движущимися с высокой скоростью воздушными потоками и быстро разносятся по всему земному шару. Продолжительность загрязнённого состояния атмосферы после крупных вулканических извержений достигает нескольких лет.
Естественные источники загрязнения обычно имеют катастрофический характер. Так, в результате извержения вулкана Кракатау в 1883 г. в атмосферу было выброшено около 150 млрд. т. пыли и пепла. Мелкие пылевые частицы держались в верхних слоях атмосферы в течение нескольких лет. На долю природных факторов в конце ХХ в. приходилось 75% общего загрязнения атмосферы. Остальные 25% возникали в результате деятельности человека.
При извержении вулканов происходит тепловое загрязнение атмосферы, так как в воздух выбрасываются сильно нагретые вещества. Температура их, в том числе паров и газов, такова, что они сжигают все на своем пути. Существенно загрязняют атмосферу крупные лесные пожары. Чаще всего они возникают в засушливые годы. В России наиболее опасны пожары в Сибири, на Дальнем Востоке, на Урале, в Республике Коми. Пыльные бури возникают в связи с переносом сильным ветром поднятых с земной поверхности частиц почвы. Сильные ветры - смерчи и ураганы - поднимают в воздух и крупные обломки пород, но долго в воздухе они не держатся. При сильных пыльных бурях в атмосферный воздух поднимается до 50 млн. т. пыли. Антропогенные источники загрязнения наиболее опасны для атмосферы. Они способствуют поступлению в атмосферный воздух инородных, не свойственных естественным условиям газов и веществ. По агрегатному состоянию все загрязняющие вещества антропогенного происхождения подразделяются на твердые, жидкие и газообразные, причем последние составляют около 90% от общей массы выбрасываемых в атмосферу искусственных загрязняющих веществ. К ним следует отнести:
1. Сжигание горючих ископаемых, которое сопровождается выбросом 5 млрд. т. углекислого газа в год;
2. Работа тепловых электростанций, когда при сгорании высокосернистых углей в результате выделения сернистого газа и мазута образуются кислотные дожди;
3. Выхлопы современных турбореактивных самолётов с оксидами азота и газообразными фтор углеводородами из аэрозолей, которые могут привести к повреждению озонового слоя атмосферы;
4. Выбросы вредных веществ от автомобилей;
5. Производственная деятельность;
6. Загрязнение взвешенными частицами (при измельчении, фасовке и загрузке, от котельных, электростанций, шахтных стволов, карьеров при сжигании мусора);
7. Выбросы предприятиями различных газов;
8. Сжигание топлива в котлах, сопровождающееся образованием оксидов азота, которые вызывают смог;
9. Вентиляционные выбросы с чрезмерной концентрацией озона из помещений с установками высоких энергий (ускорители, ультрафиолетовые источники и атомные реакторы).
При процессах сгорания топлива наиболее интенсивное загрязнение приземного слоя атмосферы происходит в мегаполисах и крупных городах, промышленных центрах ввиду широкого распространения в них автотранспортных средств, ТЭЦ, котельных и других энергетических установок, работающих на угле, мазуте, дизельном топливе, природном газе и бензине. Вклад автотранспорта в общее загрязнение атмосферного воздуха достигает здесь 40-50%.
Мощным и чрезвычайно опасным фактором загрязнения атмосферы являются катастрофы на АЭС (Чернобыльская авария) и испытания ядерного оружия в атмосфере. Это связано как с быстрым разносом радионуклидов на большие расстояния, так и с долговременным характером загрязнения территории. Высокая опасность химических и биохимических производств заключается в потенциальной возможности аварийных выбросов в атмосферу чрезвычайно токсичных веществ, а также микробов и вирусов, которые могут вызвать эпидемии среди населения и животных.
В настоящее время в приземной атмосфере находятся многие десятки тысяч загрязняющих веществ антропогенного происхождения. Ввиду продолжающегося роста промышленного и сельскохозяйственного производства появляются новые химические соединения, в том числе сильно токсичные. Главными антропогенными загрязнителями атмосферы кроме крупнотоннажных оксидов серы, азота, углерода, пыли и сажи являются сложные органические, хлорорганические и нитро соединения, техногенные радионуклиды, вирусы и микробы. Наиболее опасны широко распространённые в воздушном бассейне диоксин, бенз(а)пирен, фенолы, формальдегид, сероуглерод. Твёрдые взвешенные частицы представлены главным образом сажей, кальцитом, кварцем, гидрослюдой, каолинитом, полевым шпатом, реже сульфатами, хлоридами. В снеговой пыли специально разработанными методами обнаружены окислы, сульфаты и сульфиты, сульфиды тяжёлых металлов, а также сплавы и металлы в самородном виде.
Серьезные последствия имеет загрязнение воздуха хлорфторметанами, или фреонами. Широкое использование фреонов в холодильных установках, в производстве аэрозольных баллонов приводит к появлению их на больших высотах, в стратосфере и мезосфере. Высказываются опасения относительно возможности взаимодействия озона с галогенами, которые выделяются из фреонов под действием ультрафиолетового излучения.
Радиоактивное загрязнение атмосферы особенно опасно для людей, животных и растений. Источники радиоактивного загрязнения в основном техногенного происхождения, это:
- экспериментальные взрывы атомных, водородных и нейтронных бомб;
- различные производства, связанные с изготовлением термоядерного оружия;
- атомные реакторы и электростанции;
- предприятия, где используются радиоактивные вещества.
Таблица 1:
Примеси |
Основные источники |
Средняя концентрация в воздухе мг/м. куб. |
||
Естественные |
Антропогенные |
|||
Пыль |
Вулканические извержения, пылевые бури, лесные пожары |
Сжигание топлива в промышленных и бытовых условиях |
в городах 0,04-0,4 |
|
Диоксид серы |
Вулканические извержения, окисление серы и сульфатов, рассеянных в море |
Сжигание топлива в промышленных и бытовых установках |
в городах до 1,0 |
|
Оксиды азота |
Лесные пожары |
Промышленность, автотранспорт, теплоэлектростанции |
В районах с развитой промышленностью до 0,2 |
|
Оксиды углерода |
Лесные пожары, природный метан |
Автотранспорт, испарение нефтепродуктов |
В районах с развитой промышленностью до 0,3 |
|
Летучие углеводороды |
Лесные пожары, природный метан |
Автотранспорт, испарение нефтепродуктов |
В районах с развитой промышленностью до 0,3 |
|
Полициклические ароматические углеводороды |
- |
Автотранспорт, химические и нефтеперерабатывающие заводы |
В районах с развитой промышленностью до 0,01 |
1.3 Аэрозольное загрязнение атмосферы
Из естественных и антропогенных источников в атмосферу ежегодно поступают сотни миллионов тонн аэрозолей. Аэрозоли - это твёрдые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Аэрозоли разделяются на первичные (выбрасываются из источников загрязнения), вторичные (образуются в атмосфере), летучие (переносятся на далёкие расстояния) и нелетучие (отлагаются на поверхности вблизи зон пыле-, газо-, выбросов). К естественным источникам относятся пыльные бури, вулканические извержения и лесные пожары. Газообразные выбросы (например, Газообразные выбросы (например, SO2) приводят к образованию в атмосфере аэрозолей. Несмотря на то, что время пребывания в тропосфере аэрозолей исчисляется несколькими сутками, они могут вызвать снижение средней температуры воздуха у земной поверхности на 0,1-0,3єС. Не меньшую опасность для атмосферы и биосферы представляют аэрозоли антропогенного происхождения, образующиеся при сжигании топлива либо содержащиеся в промышленных выбросах. Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест.
Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Источниками аэрозольного загрязнения являются промышленные отвалы - искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва (1250-3000 тонн взрывчатых веществ) в атмосферу выбрасывается около 12 тыс. куб. м. условного оксида углерода и более 1150 т. пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств - измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу. К атмосферным загрязнителям относятся углеводороды - насыщенные и ненасыщенные, включающие от 11 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц.
При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха.
Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия - расположения слоя более холодного воздуха под теплым, что препятствует воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.
Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 1-5 мкм.
В атмосферу Земли ежегодно поступает около 1 куб. км. пылевидных частиц искусственного происхождения.
Большое количество пылевых частиц образуется также в ходе производственной деятельности людей. Сведения о некоторых источниках техногенной пыли приведены ниже.
Таблица 2. - Производственный процесс. Выброс пыли млн. т/год:
1. Сжигание каменного угля |
93,600 |
|
2. Выплавка чугуна |
20,210 |
|
3. Выплавка меди (без очистки) |
6,230 |
|
4. Выплавка цинка |
0,180 |
|
5. Выплавка олова (без очистки) |
0,004 |
|
6. Выплавка свинца |
0,130 |
|
7. Производство цемента |
53,370 |
1.4 Фотохимический туман (смог)
Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами.
Его возникновению способствуют определённые метеорологические условия: отсутствие ветра и дождя, а также температурная инверсия. Смог крайне вреден для живых организмов. Во время смога ухудшается самочувствие людей, резко увеличивается число лёгочных и сердечнососудистых заболеваний, возникают эпидемии гриппа.
Смог бывает следующих типов…
Влажный смог лондонского типа - сочетание тумана с примесью дыма и газовых отходов производства.
Ледяной смог аляскинского типа - смог, образующийся при низких температурах из пара отопительных систем и бытовых выбросов.
Радиационный туман - туман, который появляется в результате радиационного охлаждения земной поверхности и массы влажного приземного воздуха до точки росы.
Обычно радиационный туман возникает ночью в условиях антициклона при безоблачной погоде и лёгком бризе. Сухой смог лос-анджелесского типа - смог, возникающий в результате фотохимических реакций, которые происходят в газовых выбросах под действием солнечной радиации, устойчивая синеватая дымка из едких газов без тумана.
Рисунок 1. - Смог в Нью-Йорке:
Фотохимический смог - смог, основной причиной возникновения которого считаются автомобильные выхлопы. Автомобильные выхлопные газы и загрязняющие выбросы предприятий в условиях инверсии температуры вступают в химическую реакцию с солнечным излучением, образуя озон.
Фотохимический смог может вызвать поражение дыхательных путей, рвоту, раздражение слизистой оболочки глаз и общую вялость. В ряде случаев в фотохимическом смоге могут присутствовать соединения азота, которые повышают вероятность возникновения раковых заболеваний.
Смог наблюдается обычно при слабой турбулентности (завихрение воздушных потоков) воздуха, и следовательно, при устойчивом распределении температуры воздуха по высоте, особенно при инверсиях температуры, при слабом ветре или штиле.
Инверсии температуры в атмосфере, повышение температуры воздуха с высотой вместо обычного для тропосферы её убывания. Инверсия температуры встречается и у земной поверхности (приземные инверсии температуры), и в свободной атмосфере. Приземные инверсии температуры чаще всего образуются в безветренные ночи (зимой иногда и днём) в результате интенсивного излучения тепла земной поверхностью, что приводит к охлаждению как её самой, так и прилегающего слоя воздуха. Толщина приземных инверсий температуры составляет десятки - сотни метров. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20єС и более. Наиболее мощны зимние приземные инверсии температуры в Восточной Сибири и в Антарктиде. В тропосфере, выше приземного слоя, инверсия температуры чаще образуется в антициклонах благодаря оседанию воздуха, сопровождающемуся его сжатием, а следовательно - нагреванием (инверсия оседания). В зонах фронтов атмосферных инверсия температуры создаётся вследствие натекания тёплого воздуха на нижерасположенный холодный. В верхних слоях атмосферы (стратосфере, мезосфере, термосфере) инверсия температуры возникает из-за сильного поглощения солнечной радиации.
Так, на высотах от 20-30 до 50-60 км. расположена инверсия температуры, связанная поглощением ультрафиолетового излучения Солнца озоном. У основания этого слоя температура равна от -50 до -70єС, у его верхней границы она поднимается до (-10єС)-(+10єС). Мощная инверсия температуры, начинающаяся на высоте 80-90 км. и простирающаяся на сотни км. вверх, также обусловлена поглощением солнечной радиации.
Смог снижает видимость, усиливает коррозию металлов и сооружений, оказывает отрицательное воздействие на здоровье человека.
Интенсивный и длительный смог может явиться причиной повышения заболеваемости и смертности.
Угарный газ, входящий в состав смога, представляет собой соединение углерода с кислородом, газ без цвета и запаха.
Отравление угарным газом возможны на производстве и в быту: в доменных, литейных цехах, при испытании двигателей, использовании топливных газов для сушки и подогрева, в химической промышленности, в гаражах, при дровяном отоплении и т. п.
Одним из вредных компонентов смога является и озон (О3). В крупных городах при образовании смога его естественная концентрация (1-10) повышается в 10 раз и более. Озон здесь начинает оказывать вредное воздействие на лёгкие и слизистые оболочки человека и на растительность.
1.5 Проблема контролирования выброса в атмосферу загрязняющих веществ промышленными предприятиями (ПДК)
Приоритет в области разработки предельно допустимых концентраций в воздухе принадлежит СССР. ПДК - такие концентрации, которые на человека и его потомство прямого или косвенного воздействия, не ухудшают их работоспособности, самочувствия, а также санитарно-бытовых условий жизни людей. Обобщение всей информации по ПДК, получаемой всеми ведомствами, осуществляется в ГГО - Главной Геофизической Обсерватории. Чтобы по результатам наблюдений определить значения воздуха, измеренные значения концентраций сравнивают с максимальной разовой предельно допустимой концентрацией и определяют число случаев, когда были превышены ПДК, а также во сколько раз наибольшее значение было выше ПДК. Среднее значение концентрации за месяц или за год сравнивается с ПДК длительного действия - среднеустойчивой ПДК. Состояние загрязнение воздуха несколькими веществами, наблюдаемые в атмосфере города, оценивается с помощью комплексного показателя - индекса загрязнения атмосферы (ИЗА). Для этого нормированные на соответствующее значения ПДК и средние концентрации различных веществ с помощью несложных расчетов приводят к величине концентраций сернистого ангидрида, а затем суммируют. Максимальные разовые концентрации основных загрязняющих веществ были наибольшими в Норильске (оксиды азота и серы), Фрунзе (пыль), Омске (угарный газ). Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города. Наибольшие максимальные концентрации характерны для городов с численностью населения 1 более 500 тыс. жителей. Загрязнение воздуха специфическими веществами зависит от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха, однако проблема снижения выбросов многих специфических веществ до сих пор остается нерешенной.
2. Загрязнение атмосферы от подвижных источников
В последние десятилетия в связи с быстрым развитием автотранспорта и авиации существенно увеличилась доля выбросов, поступающих в атмосферу от подвижных источников: грузовых и легковых автомобилей, тракторов, тепловозов и самолетов. Согласно оценкам, в городах на долю автотранспорта приходится (в зависимости т. развития в данном городе промышленности и числа автомобилей) от 30 до 70% общей массы выбросов. В США в целом по стране по крайней мере 40% общей массы пяти основных загрязняющих веществ составляют выбросы подвижных источников.
2.1 Автотранспорт
Основной вклад в загрязнение атмосферы вносят автомобили, работающие на бензине (в США на их долю приходится около 75%), затем самолеты (примерно 5%), автомобили с дизельными двигателями (около 4%), тракторы и другие сельскохозяйственные машины (около 4%), железнодорожный и водный транспорт (примерно 2%).
К основным загрязняющим атмосферу веществам, которые выбрасывают подвижные источники (общее число таких веществ превышает 40), относятся оксид углерода (в США его доля в общей массе составляет около 70%), углеводороды (примерно 19%) и оксиды азота (около 9%). Оксид углерода (CO) и оксиды азота (N0x) поступают в атмосферу только с выхлопными газами, тогда как не полностью сгоревшие углеводороды (HnСm) поступают как вместе с выхлопными газами (что составляет примерно 60% от общей массы выбрасываемых углеводородов), так и из картера (около 20%), топливного бака (около 10%) и карбюратора (примерно 10%), твердые примеси поступают в основном с выхлопными газами (90%) и из картера (10%). Наибольшее количество загрязняющих веществ выбрасывается при разгоне автомобиля, особенно при быстром, а также при движении с малой скоростью (из диапазона наиболее экономичных). Относительная доля (от общей массы выбросов) углеводородов и оксида углерода наиболее высока при торможении и на холостом ходу, доля оксидов азота - при разгоне. Из этих данных следует, что автомобили особенно сильно загрязняют воздушную среду при частых остановках и при движении с малой скоростью. Создаваемые в городах системы движения в режиме "зеленой волны", существенно сокращающие число остановок транспорта на перекрестках, призваны сократить загрязнение атмосферного воздуха в городах. Большое влияние на качество и количество выбросов примесей оказывает режим работы двигателя, в частности соотношение между массами топлива и воздуха, момент зажигания, качество топлива, отношение поверхности камеры сгорания к ее объему и др.
При увеличении отношения массы воздуха и топлива, поступающих в камеру сгорания, сокращаются выбросы оксида углерода и углеводородов, но возрастает выброс оксидов азота. Несмотря на то что дизельные двигатели более экономичны, таких веществ, как СО, HnCm, NОx, выбрасывают не более, чем бензиновые, они существенно больше выбрасывают дыма (преимущественно несгоревшего углерода), который к тому же обладает неприятным запахом создаваемым некоторыми несгоревшими углеводородами). В сочетании же с создаваемым шумом дизельные двигатели не только сильнее загрязняют среду, но и воздействуют на здоровье человека гораздо в большей степени, чем бензиновые.
2.2 Самолеты
Хотя суммарный выброс загрязняющих веществ двигателями самолетов сравнительно невелик (для города, страны), в районе аэропорта эти выбросы вносят определяющий вклад в загрязнение среды. К тому же турбореактивные двигатели (так же как дизельные) при посадке и взлете выбрасывают хорошо заметный на глаз шлейф дыма. Значительное количество примесей в аэропорту выбрасывают и наземные передвижные средства, подъезжающие и отъезжающие автомобили. Согласно оценкам, в среднем около 42% общего расхода топлива тратится на выруливание самолета к взлетно-посадочной полосе (ВПП) перед взлетом и на заруливание с ВПП после посадки (по времени в среднем около 22 мин.). При этом доля несгоревшего и выброшенного в атмосферу топлива при рулении намного больше, чем в полете. Помимо улучшения работы двигателей (распыление топлива, обогащение смеси в зоне горения, использование присадок к топливу, впрыск воды и др.), существенного уменьшения выбросов можно добиться путем сокращения времени работы двигателей на земле и числа работающих двигателей при рулении (только за счет последнего достигается снижение выбросов в 3-8 раз).
В последние 10-15 лет большое внимание уделяется исследованию тех эффектов, которые могут возникнуть в связи с полетами сверхзвуковых самолетов и космических кораблей.
Эти полеты сопровождаются загрязнением стратосферы оксидами азота и серной кислотой (сверхзвуковые самолеты), а также частицами оксида алюминия (транспортные космические корабли).
Поскольку эти загрязняющие вещества разрушают озон, то первоначально создалось мнение (подкрепленное соответствующими модельными расчетами), что планируемый рост числа полетов сверхзвуковых самолетов и транспортных космических кораблей приведет к существенному уменьшению содержания озона со всеми последующими губительными воздействиями ультрафиолетовой радиации на биосферу Земли. Однако более глубокий подход к этой проблеме позволил сделать заключение о слабом влиянии выбросы сверхзвуковых самолетов на состояние стратосферы. Так, при современном числе сверхзвуковых самолетов и выбросе загрязняющих веществ на высоте около 16 км. относительное уменьшение содержания О3 может составить примерно 0.60;если их число возрастет до 200 и высота полета будет близка к 20 км., то относительное уменьшение содержания О3 может подняться до 17%. Глобальная приземная температура воздуха за счет парникового эффекта, создаваемого выбросами сверхзвуковыми самолетами может повысится не более чем на 0,1°C.
Более сильное воздействие на озонный слой и глобальную температуру воздуха могут оказать хлорфторметаны (ХФМ0 фреон-11 и фреон-12 газы, образующиеся в частности, при испарении аэрозольных препаратов, которые используются (преимущественно женщинами) для крашения волос. Поскольку ХФМ очень инертны, то они распространяются и долго живут не только в тропосфере, но и в стратосфере. Обладая довольно сильными полосами поглощения в окне прозрачности атмосферы (8-12 мкм), фреоны усиливают парниковый эффект. Наметившееся в последние десятилетия темпы роста производства фреонов могут привести к увеличению содержания фреона-11 и фреона-12 в 2030 г. до 0,8 и 2,3 млрд. (при современных значениях 0,1 и 0,2 млрд.). Под влиянием такого количества фреонов общее содержание озона в атмосфере уменьшится на 18%, а в нижней стратосфере даже на 40;глобальная приземная температура возрастет на 0,12-0,21°С.
2.3 Ракетоносители
Загрязнение воздушной среды транспортом с ракетными двигательными установками происходит главным образом при их работе перед стартом, при взлете и посадке, при наземных испытаниях в процессе их производства и после ремонта, при хранении и транспортировке топлива, а так же при заправке топливом летательных аппаратов. Работа жидкостного ракетного двигателя сопровождается выбросом продуктов полного и неполного сгорания топлива, состоящих из O, NOx, OH и другие. При сгорании твердого топлива из камеры сгорания выбрасываются H2O, CO2, HCl, CO, NO, Cl, а также твердые частицы Al2O3 со средним размером 0,1 м км. (иногда до 10 мкм). В двигателях космического корабля «Шатл» сжигается как жидкое так и твердое топливо. Продукты сгорания топлива по мере удаления корабля от Земли проникают в различные слои атмосферы (табл. 3), но большей частью в тропосферу.
Таблица 3:
Атмосферный слой |
Высота, км |
Продукты сгорания, кг |
|||||||
HCl |
Cl |
NO |
CO |
CO2 |
H2O (пар) |
Al2O3 |
|||
Приземный слой |
0-0,5 |
24666 |
2741 |
1697 |
131 |
55075 |
46674 |
39284 |
|
Тропосфера |
0,5-13 |
78517 |
9657 |
4618 |
839 |
172570 |
152677 |
26385 |
|
Стратосфера |
13-50 |
59732 |
11727 |
239 |
2189 |
147684 |
146393 |
110304 |
|
Нижняя мезосфера |
50-67 |
0 |
0 |
0 |
0 |
0 |
15542 |
0 |
|
Мезосфера - термосфера |
67 |
0 |
0 |
0 |
0 |
0 |
119045 |
0 |
В условиях запуска у пусковой системы образуется облако продуктов сгорания, водяного пара от системы шума глушения, песка и пыли. Объем продуктов сгорания можно определить по времени (обычно 20 с) работы установки на стартовой площадке и в приземном слое. После запуска высоко температурное облако поднимается на высоту до 3 км. и перемещается под действием ветра на расстояние 30-60 км., оно может рассеется, но может стать и причиной кислотных дождей.
При старте и возвращении на Землю Ракетные двигатели неблагоприятно воздействуют не только на приземный слой атмосферы, но и на космическое пространство, разрушая озоновый слой Земли. Масштабы разрушения озонового слоя определяются числом запусков ракетных систем и интенсивностью полетов сверхзвуковых самолетов.
За 40 лет существования космонавтики в СССР и позднее России произведено свыше 1800 запусков ракет-носителей. По прогнозам фирмы Aerospace в XXI в. для транспортировки грузов на орбиту будет осуществляться до 10 запусков ракет в сутки, при этом выброс продуктов сгорания каждой ракеты будет превышать 1,5 т/с. Согласно ГОСТ 17.2.1.01 - 76 выбросы в атмосферу классифицируют:
1) по агрегатному состоянию вредных веществ в выбросах, это - газообразные и парообразные (SO2, CO, NOx углеводороды и др.), жидкие (кислоты, щелочи, органические соединения, растворы солей и жидких металлов), твердые (свинец и его соединения, органическая и неорганическая пыль, сажа, смолистые вещества и др.);
2) по массовому выбросу, выделяя шесть групп, т/сут:
1. менее 0,01 вкл.;
2. свыше 0,01 до 0,1 вкл.;
3. свыше 0,1 до 1,0 вкл.;
4. свыше 1,0 до 10 вкл.;
5. свыше 10 до 100 вкл.;
6. свыше 100.
В связи с развитием авиации и ракетной техники, а также интенсивным использованием авиационных и ракетных двигателей в других отраслях народного хозяйства существенно возрос их общий выброс вредных примесей в атмосферу. Однако на долю этих двигателей приходится пока не более 5% токсичных веществ, поступающих в атмосферу от транспортных средств всех типов.
3. Влияние загрязнения атмосферы на человека, растительный и животный мир
Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека.
Различают два вида воздействий химических загрязняющих веществ на организм человека: специфическое, приводящее к возникновению определенных заболеваний в результате избирательного воздействия на органы и системы организма, и неспецифическое, при котором действие элементов способствует росту болезней, этиологически связанных с другими факторами (по Буштуевой, Слуганко, 1979). Специфическое действие характерно для большинства загрязняющих веществ, в том числе ртути, кадмия, свинца, мышьяка, фтора. Например при действии избыточных количеств фтора поражаются кальцинированные ткани и возникает флюороз. Загрязнение рыбы ртутью в Японии вызвало тяжелую болезнь минамата.
Общетоксическое действие высоких доз тяжелых металлов на человека или животных приводит к поражению или изменению деятельности таких важных систем организма, как центральной и периферической нервной системы, кроветворения.
Химические загрязняющие вещества избирательно накапливаются в различных органах и тканях человека и животных. Обычно они аккумулируются в различных органах с интенсивными биохимическими процессами - в печени, почках и т. д.
Наибольшую опасность представляет возможность проявления негативного воздействия на организм человека через десятилетия и в последующих поколениях.
Загрязняющие вещества попадают в организм человека преимущественно через систему дыхания.
Органы дыхания страдают от загрязнения непосредственно, поскольку около 50% частиц примеси радиусом 0,01-0.1 м км., проникающих в легкие, осаждаются в них. Проникающие в организм частицы вызывают токсический эффект, поскольку они:
а) токсичны (ядовиты) по своей химической или физической природе;
б) служат помехой для одного или нескольких механизмов, с помощью которых нормально очищается респираторный (дыхательный) тракт;
в) служат носителем поглощенного организмом ядовитого вещества.
В некоторых случаях воздействие одни из загрязняющих веществ в комбинации с другими приводят к более серьезным расстройствам здоровья, чем воздействие каждого из них в отдельности. Большую роль играет продолжительность воздействия.
Рисунок 2:
Статистический анализ позволил достаточно надежно установить зависимость между уровнем загрязнения воздуха и такими заболеваниями, как поражение верхних дыхательных путей, сердечная недостаточность, бронхиты, астма, пневмония, эмфизема легких, а также болезни глаз. Резкое повышение концентрации примесей, сохраняющееся в течение нескольких дней, увеличивает смертность людей пожилого возраста от респираторных и сердечнососудистых заболеваний. В декабре 1930 г. в долине реки Маас (Бельгия) отмечалось сильное загрязнение воздуха в течение 3 дней, в результате сотни людей заболели, а 60 человек скончались - это более чем в 10 раз выше средней смертности. В январе 1931 г. в районе Манчестера (Великобритания) в течение 9 дней наблюдалось сильное задымление воздуха, которое явилось причиной смерти 592 человек.
Широкую известность получили случаи сильного загрязнения атмосферы Лондона, сопровождавшиеся многочисленными смертельными исходами. В 1873 г. в Лондоне было отмечено 268 непредвиденных смертей. Сильное задымление в сочетании с туманом в период с 5 по 8 декабря 1852 г. привело к гибели более 4000 жителей Большого Лондона. В январе 1956 г. около 1000 лондонцев погибли в результате продолжительного задымления. Большая часть тех, кто умер неожиданно, страдали от бронхита, эмфиземы легких или сердечнососудистыми заболеваниями.
3.1 Оксид углерода
Оксид углерода, или угарный газ - очень ядовитый газ без цвета, запаха и вкуса. Он образуется при неполном сгорании древесины, ископаемого топлива и табака, при сжигании твердых отходов и частичном анаэробном разложении органики. Примерно 50% угарного газа образуется в связи с деятельностью человека, в основном в результате работы двигателей внутреннего сгорания автомобилей. В закрытом помещении (например, в гараже), наполненном угарным газом, снижается способность гемоглобина эритроцитов переносить кислород, из-за чего у человека замедляются реакции, ослабляется восприятие, появляются головная боль, сонливость, тошнота. Под воздействием большого количества угарного газа может произойти обморок, случиться кома и даже наступить смерть.
СО - исключительно агрессивный газ,, легко соединяющийся с гемоглобином (красными кровяными тельцами). При соединении образуется карбоксигемоглобин, повышение (сверх нормы, равной 0.4%) содержание которого в крови сопровождается:
а) ухудшением остроты зрения и способности оценивать длительность интервалов времени;
б) нарушением некоторых психомоторных функций головного мозга (при содержании 2-5%);
в) изменениями деятельности сердца и легких (при содержании более 5%);
г) головными болями, сонливостью, спазмами, нарушениями дыхания и смертностью (при содержании 10-80%).
Степень воздействия оксида углерода на организм зависят не только от его концентрации, но и от времени пребывания (экспозиции) человека в загазованном СО воздухе.
Так, при концентрации СО равной 10-50 млн. (нередко наблюдаемой в атмосфере площадей и улиц больших городов), при экспозиции 50-60 мин отмечаются нарушения, приведенные в п. "а", 8-12 ч. - 6 недель - наблюдаются изменения, указанные в п. "в". Нарушение дыхания, спазмы. Потеря сознания наблюдаются при концентрации СО, равной 200 млн., и экспозиции 1-2 ч. при тяжелой работе и 3-6 ч. - в покое. К счастью, образование карбоксигемоглобина в крови - процесс обратимый:
- после прекращения вдыхания СО начинается его постепенный вывод из крови;
- у здорового человека содержание СО в крови каждые 3-4 ч. и уменьшается в два раза.
Оксид углерода - очень стабильное вещество, время его жизни в атмосфере составляет 2-4 мес.
При ежегодном поступлении 350 млн. т. концентрация СО в атмосфере должна была бы увеличиваться примерно на 0,03 млн. 1/год.
Однако этого, к счастью, не наблюдается, чем мы обязаны в основном почвенным грибам, очень активно разлагающим СО (некоторую роль играет также переход СО в СО2).
Таблица 4. - Степень воздействия СО на человека:
Концентрация Мг/м. куб. |
Длительность воздействия |
Симптомы отравления |
|
6 |
20 мин |
Снижение цветовой и световой чувствительности глаз Снижение точности зрительного восприятия пространства и ночного зрения |
|
80-111 |
3,5 часа |
Снижение скорости зрительного восприятия, ухудшение выполнения психологических и психомоторных тестов, координации мелких точных движений и аналитического мышления |
|
460 |
4-5 часов |
Сильная головная боль, слабость, головокружение, туман перед глазами, тошнота и рвота, коллапс. Головная боль, общая мышечная слабость, тошнота. |
|
1350 |
1 час |
Сердцебиение. Легкое пошатывание, одышка при легкой мышечной работе, расстройства зрения и слуха. Пульсирующая головная боль, спутанность в мыслях. Учащение дыхания и пульса, кома, прерываемая судорогами |
|
1760 |
20 мин |
Потеря сознания, коллапс |
|
1800 |
1-1,5 часа |
То же. Ослабление дыхания и сердечной деятельности. Может наступить смерть |
|
3500 |
5-10 мин |
Головная боль, головокружение, рвота, потеря сознания |
|
3400 |
20-30 мин |
Слабый пульс, замедление и остановка дыхания. Смерть |
|
14000 |
1-3 мин |
Потеря сознания, рвота, смерть |
3.2 Оксиды азота и некоторые другие вещества
Оксиды азота (прежде всего, ядовиты диоксид азота NO2), соединяющиеся при участии ультрафиолетовой солнечной радиации с углеводородами (среди наибольшей реакционной способностью обладают олеофины), образуют пероксилацетилнитрат (ПАН) и другие фотохимические окислители, в том числе пероксибензоилнитрат (ПБН), озон (О3), перекись водорода (Н 2О2), диоксид азота. Эти окислители- основные составляющие фотохимического смога, повторяемость которого велика в сильно загрязненных городах, расположенных в низких широтах северного и южного полушария (Лос-Анджелес, в котором около 200 дней в году отмечается смог, Чикаго, Нью-Йорк и другие города США, ряд городов Японии, Турции, Франции, Испании, Италии, Африки и Южной Америки).
Оценка скорости фотохимических реакций, приводящих к образованию ПАН, ПБН и озона, показывает, что в ряде южных городов бывшего Советского Союза летом в околополуденные часы (когда велик приток ультрафиолетовой радиации) эти скорости превосходят значения, начиная с которых отмечается образование смога. Так, в Алма-Ате, Ереване, Тбилиси, Ашхабаде, Баку, Одессе и других городах при наблюдаемых уровнях загрязнения воздуха максимальная скорость образования О3 достигла 0,70-0,86 мг/(м. куб. ч), в то время как смог возникает уже при скорости 0,35 мг/(м. куб. ч). Наличие в составе ПАН диоксида азота и иодистого калия придает смогу коричневый оттенок. При концентрации ПАН выпадает на землю в виде клейкой жидкости губительно действующей на растительный покров. Все окислители, в первую очередь ПАН и ПБН, сильно раздражают и взывают воспаление глаз, а в комбинации с озоном раздражают носоглотку, приводят к спазмам грудной клетки, а при высокой концентрации (свыше 3-4 мг/м. куб.) вызывают сильный кашель и ослабляют возможность на чем либо сосредоточиться. Назовем некоторые другие загрязняющие воздух вещества, вредно действующие на человека.
Установлено, что у людей, профессионально имеющих дело с асбестом повышена вероятность раковых заболеваний бронхов и диафрагм, разделяющих грудную клетку и брюшную полость. Берилий оказывает вредное воздействие (вплоть до возникновения онкологических заболеваний) на дыхательные пути, а также на кожу и глаза. Пары ртути вызывают нарушение работы центральной верхней системы и почек. Поскольку ртуть может накапливаться в организме человека, то в конечном итоге ее воздействие приводит к расстройству умственных способностей. В городах вследствие постоянно увеличивающегося загрязнения воздуха неуклонно растет число больных, страдающих такими заболеваниями, как хронический бронхит, эмфизема легких, различные аллергические заболевания и рак легких. В Великобритании 10% случаев смертельных исходов приходится на хронический бронхит, при этом 21, населения в возрасте 40-59 лет страдает этим заболеванием. В Японии в ряде городов до 60% жителей болеют хроническим бронхитом, симптомами которого является сухой кашель с частыми отхаркиваниями, последующее прогрессирующее затруднение дыхания и сердечная недостаточность (в связи с этим следует отметить, что так называемое японское экономическое чудо 50-60-х годов сопровождалось сильным загрязнением природной среды одного из наиболее красивых районов земного шара и серьезным ущербом, причиненным здоровью населения этой страны).
В последние десятилетия с вызывающей сильную озабоченность быстротой растет число заболевших раком бронхов и легких, возникновению которых способствуют канцерогенные углеводороды.
3.3 Влияние радиоактивных веществ на растительный и животный мир
Некоторые химические элементы радиоактивны: их самопроизвольный распад и превращение в элементы с другими порядковыми номерами сопровождается излучением. При распаде радиоактивного вещества его масса с течением времени уменьшается. Теоретически вся масса радиоактивного элемента исчезает за бесконечно большое время. Время, по истечении которого масса уменьшается вдвое, называется периодом полураспада. Для разных радиоактивных веществ период полураспада изменяется в широких пределах: от нескольких часов до нескольких миллиардов лет (238U - 4,5 млрд. лет).
Борьба с радиоактивным загрязнением среды может носить лишь предупредительный характер, поскольку не существует никаких способов биологического разложения и других механизмов, позволяющих нейтрализовать этот вид заражения природной среды. Наибольшую опасность представляют радиоактивные вещества с периодом полураспада от нескольких недель до нескольких лет: этого времени достаточно для проникновения таких веществ в организм растений и животных.
Распространяясь по пищевой цепи (от растений к животным), радиоактивные вещества с продуктами питания поступают в организм человека и могут накапливаться в таком количестве, которое способно нанести вред здоровью человека.
При одинаковом уровне загрязнения среды изотопы простых элементов (14С, 32З, 45Са, 35S, 3Н и др.) являющиеся основными слагаемыми живого вещества (растений и животных), более опасны, чем редко встречающиеся радиоактивные вещества, слабо поглощаемые организмами.
Наиболее опасные среди радиоактивных веществ 90 Sr м 137Сs образуются при ядерных взрывах в атмосфере, а также поступают в окружающую среду с отходами атомной промышленности. Благодаря химическому сходству с кальцием 90Sr легко проникает в костную ткань позвоночных, тогда как 137 Cs накапливается в мускулах замещая калий.
Излучения радиоактивных веществ оказывают следующее воздействие на организм:
- ослабляют облученный организм, замедляют рост, снижают сопротивляемость к инфекциям и иммунитет организма;
- уменьшают продолжительность жизни, сокращают показатели естественного прироста из-за временной или полной стерилизации;
- различными способами поражают гены, последствия, которого проявляются во втором или третьем поколениях;
- оказывают аккумулятивное (накапливающееся) воздействие, вызывая необратимые эффекты.
Тяжесть последствий облучения зависит от количества поглощенной организмом энергии (радиации), излученной радиоактивным веществом. Единицей этой энергии служит 1 ряд - это доза облучения, при которой 1 г. живого вещества поглощает 10-5 Дж энергии. Установлено, что при дозе, превышающей 1000 рад, человек погибает, при дозе 7000 и 200 рад смертельный исход отмечается в 90 и 10% случаев соответственно, в случае дозы 100 рад человек выживает, однако значительно возрастает вероятность заболевания раком, а также вероятность полной стерилизации.
Наибольшее загрязнение радиоактивного распада вызвали взрывы атомных и водородных бомб, испытание которых особенно широко проводилось в 1954-1962 гг.
...Подобные документы
Доля железнодорожного транспорта в загрязнении окружающей природной среды. Количественная и качественная оценка предельно допустимых выбросов загрязняющих веществ в атмосферный воздух. Расчет загрязнения атмосферы источниками выбросов предприятия.
курсовая работа [1,6 M], добавлен 25.05.2014Общая характеристика производства лакокрасочных материалов. Расчет объемов выбросов на предприятиях нефтегазовой промышленности. Определение уровня загрязнения атмосферы по организованным источникам с учетом всех выделяющихся загрязняющих веществ.
курсовая работа [934,8 K], добавлен 11.12.2014Критерии и показатели оценки состояния загрязнения воздуха. Определение ресурсного потенциала воздушного бассейна. Основные природные и антропогенные загрязнители окружающей среды. Осуществление мероприятий по снижению уровня загрязненности атмосферы.
курсовая работа [30,2 K], добавлен 13.10.2014Химические вещества, токсически опасные для человека: свинец; ртуть; кадмий; диоксины; полициклические ароматические углеводороды; летучие органические соединения. Факторы, определяющие здоровье человека. Влияние загрязнения воздуха на здоровье человека.
курсовая работа [78,1 K], добавлен 29.03.2010Химическое загрязнение атмосферы. Основные загрязняющие вещества. Фотохимический туман. Контроль за выбросами. Химическое загрязнение природных вод. Неорганическое загрязнение. Органическое загрязнение. Загрязнение Мирового океана. Нефть, нефтепродукты.
реферат [17,9 K], добавлен 14.07.2008Основные природные и антропогенные источники загрязнения атмосферы и их влияние на здоровье человека. Охрана атмосферного воздуха - ключевая проблема оздоровления окружающей природной среды. Нарушение озонового слоя, загрязнение воды и способы ее очистки.
контрольная работа [28,5 K], добавлен 10.11.2010Вещества, загрязняющие атмосферу, их состав. Платежи за загрязнение окружающей среды. Методы расчетов выбросов загрязняющих веществ в атмосферу. Характеристика предприятия как источника загрязнения атмосферы, расчет выбросов на примере ЛОК "Радуга".
курсовая работа [50,4 K], добавлен 19.10.2009Вещества, загрязняющие атмосферу и их состав в выбросах, основные загрязнители атмосферы. Методы расчетов выбросов загрязняющих веществ в атмосферу, характеристика предприятия как источника загрязнения атмосферы. Результаты расчетов выбросов веществ.
курсовая работа [48,1 K], добавлен 13.10.2009Характеристика города Новолукомля в историческом, промышленном и культурном аспектах. Влияние предприятий и транспорта на состояние окружающей среды. Анализ выбросов загрязняющих веществ в атмосферный воздух, загрязнителей почв и водных объектов в городе.
дипломная работа [132,3 K], добавлен 11.05.2015Последствия загрязнения приземной атмосферы. Отрицательное влияние загрязненной атмосферы на почвенно-растительный покров. Состав и расчет выбросов загрязняющих веществ. Трансграничное загрязнение, озоновый слой Земли. Кислотность атмосферных осадков.
реферат [547,7 K], добавлен 12.01.2013Анализ проблемы химического загрязнения окружающей среды. Влияние промышленных выбросов на здоровье населения России. Выхлопы автотранспорта: проблемы загрязнения воздуха и меры борьбы с ним. Особенности воздействия химических веществ на человека.
реферат [2,3 M], добавлен 21.01.2015Важнейшие экологические функции атмосферы. Характеристика антропогенного загрязнения воздушной среды России. Динамика выбросов загрязняющих веществ. Анализ состояния воздушной среды Оренбургской области. Основные последствия загрязнения атмосферы.
дипломная работа [2,4 M], добавлен 30.06.2008Состояние гидросферы, литосферы, атмосферы Земли и причины их загрязнения. Методы утилизации отходов предприятий. Способы получения альтернативных источников энергии, не наносящих вреда природе. Влияние загрязнений окружающей среды на здоровье человека.
реферат [28,0 K], добавлен 02.11.2010Характеристика состояния окружающей среды района размещения исследуемого предприятия. Оценка воздействия выбросов загрязняющих веществ на атмосферный воздух. Расчет выбросов дуговой печи и выбросов загрязняющих веществ при механической обработке металлов.
курсовая работа [727,3 K], добавлен 02.06.2013Основные загрязнители атмосферного воздуха и глобальные последствия загрязнения атмосферы. Естественные и антропогенные источники загрязнения. Факторы самоочищения атмосферы и методы очистки воздуха. Классификация типов выбросов и их источников.
презентация [468,7 K], добавлен 27.11.2011Оценка влияния деятельности предприятия на состояние атмосферного воздуха, на здоровье людей, находящихся в зоне риска. Нормирование выбросов загрязняющих веществ в атмосферу в соответствии с действующим законодательством в сфере охраны окружающей среды.
дипломная работа [666,4 K], добавлен 12.11.2013Основные понятия инвентаризации выбросов. Источники загрязняющих воздух веществ. Порядок проведения инвентаризации источников выбросов. Отбор проб. Проблемы нормирования выбросов загрязняющих веществ при проектировании предприятий ТОМС Инжиниринг.
курсовая работа [260,0 K], добавлен 13.05.2019Изучение проблемы загрязнения атмосферы различными отраслями промышленности. Антропогенные и естественные факторы, изменяющие радиационный баланс Земли. Влияние вредных выбросов на природу и человека. Роль природоохранных технологий на электростанциях.
презентация [7,0 M], добавлен 29.01.2014Атмосферный воздух как объект правовой охраны. Естественное и искусственное загрязнение атмосферы. Нормативы воздействия на атмосферный воздух. Создание зеленых зон вокруг предприятий-загрязнителей, лесопосадок для нейтрализации вредных выбросов.
контрольная работа [196,4 K], добавлен 01.03.2009Состав атмосферного воздуха. Загрязняющие вещества атмосферного воздуха - химическое, биологическое, механическое и физическое загрязнения. Характеристика загрязнителей воздуха. Влияние загрязняющих веществ на морфофизиологические показатели растений.
курсовая работа [41,7 K], добавлен 07.10.2008