Современные представления об озоновом слое
История изучения проблемы озонового слоя Земли, местоположение, основные причины его ослабления. Озон и климат в стратосфере. Гипотеза солнечно-атмосферного резонанса. Глобальная политика и экология. Разрушение озонового слоя хлорфторуглеводородами.
Рубрика | Экология и охрана природы |
Вид | реферат |
Язык | русский |
Дата добавления | 28.10.2014 |
Размер файла | 32,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Российский Государственный Педагогический Университет им. А.И. Герцена
Реферат
на тему: «Современные представления об озоновом слое»
по дисциплине: «Экология и природопользование»
Выполнила: Александрова Милена
Санкт-Петербург - 2012
Содержание
Введение
1. Из истории (что было известно об озоновом слое за времена истории)
2. Изучение проблемы озонового слоя и его местоположение
3. Причины ослабления озонового щита
4. Как авиация разрушает озоновый слой земли
5. Озоновый щит против парникового эффекта. Озон и климат в стратосфере
5.1 Всесилен ли парниковый эффект
5.2 Страна озоновой аномалии
6. Гипотеза солнечно-атмосферного резонанса
6.1 Глобальная политика и глобальная экология
6.2 О механизмах воздействия солнечно-атмосферного резонанса на атмосферу
6.3 Солнечно-атмосферный резонанс
7. Разрушение озонового слоя Земли хлорфторуглеводородами
7.1 Что делается в области защиты озонового слоя
7.2 Факты об озоновом слое
Заключение
Список используемой литературы
Введение
Конец ХХ века характеризуется мощным рывком научно технического прогресса, ростом социальных противоречий, резким демографическим взрывом, ухудшением состояния окружающей человека природной среды.
Наша планета никогда раньше не подвергалась таким физическим и политическим перегрузкам, какие она испытывает на рубеже ХХ -ХХI веков. Человек никогда ранее не взимал с природы столько ресурсов и не оказывался столь уязвимым перед мощью, которую сам же и создал.
XX век принес человечеству немало благ, связанных с бурным развитием научно-технического прогресса, и в то же время поставил жизнь на Земле на грань экологической катастрофы. Рост населения, интенсификация добычи и выбросов, загрязняющих Землю, приводят к коренным изменениям в природе и отражаются на самом существовании человека. Часть из таких изменений чрезвычайно сильна и настолько широко распространена, что возникают глобальные экологические проблемы. Имеются серьезные проблемы загрязнения (атмосферы, вод, почв), кислотных дождей, радиационного поражения территории, а также утраты отдельных видов растений и живых организмов, оскудения биоресурсов, обезлесения и опустынивания территорий.
Проблемы возникают в результате такого взаимодействия природы и человека, при котором антропогенная нагрузка на территорию (ее определяют через техногенную нагрузку и плотность населения) превышает экологические возможности этой территории, обусловленные главным образом ее природно-ресурсным потенциалом и общей устойчивостью природных ландшафтов (комплексов, геосистем) к антропогенным воздействиям. [4]
озоновый слой экология стратосфера
1. Из Истории (что было известно об озоновом слое за времена истории)
С начала 20 века ученые наблюдают за состоянием озонового слоя атмосферы. Сейчас уже все понимают, что стратосферный озон является своего рода естественным фильтром, препятствующим проникновению в нижние слои атмосферы жесткого космического излучения - ультрафиолета-В.
В 1985 г. специалисты по исследованию атмосферы из Британской Антарктической Службы сообщили о совершенно неожиданном факте: весеннее содержание озона в атмосфере над станцией Халли-Бей в Антарктиде уменьшилось за период с 1977 по 1984 г. на 40%. Вскоре этот вывод подтвердили другие исследователи, показавшие также, что область пониженного содержания озона простирается за пределы Антарктиды и по высоте охватывает слой от 12 до 24 км, т.е. значительную часть нижней стратосферы. Наиболее подробным исследованием озонного слоя над Антарктидой был международный Самолетный Антарктический Озонный Эксперимент. В его ходе ученые из 4 стран несколько раз поднимались в область пониженного содержания озона и собрали детальные сведения о ее размерах и проходящих в ней химических процессах. Фактически это означало, что в полярной атмосфере имеется озонная «дыра». В начале 80-х по измерениям со спутника "Нимбус-7" аналогичная дыра была обнаружена и в Арктике, правда она охватывала значительно меньшую площадь и падение уровня озона в ней было не так велико - около 9%. В среднем по Земле с 1979 по 1990 г. содержание озона упало на 5%.
Это открытие обеспокоило как ученых, так и широкую общественность, поскольку из него следовало, что слой озона, окружающий нашу планету, находится в большей опасности, чем считалось ранее.
Если содержание озона в атмосфере значительно уменьшится, человечество легко найдет способ защититься от жесткого ультрафиолетового излучения, но при этом рискует умереть от голода. [2]
16 сентября 1987 г. был принят Монреальский протокол по веществам, разрушающим озоновый слой. Впоследствии по инициативе ООН этот день стал отмечаться как День защиты озонового слоя.
С конца 70-х годов ученые стали отмечать неуклонное истощение озонового слоя. Причиной тому стало проникновение в верхние слои стратосферы озоноразрушающих веществ (ОРВ), используемых в промышленности, молекулы которых содержат хлор или бром. Хлорфторуглероды (ХФУ) или другие ОРВ, выпущенные человеком в атмосферу, достигают стратосферы, где под действием коротковолнового ультрафиолетового излучения Солнца их молекулы теряют атом хлора. Агрессивный хлор начинает разбивать одну за другой молекулы озона, сам при этом не претерпевая никаких изменений. Срок существования различных ХФУ в атмосфере от 74 до 111 лет. Расчетным путем доказано, что за это время один атом хлора способен превратить в кислород 100 000 молекул озона.
По данным ООН, благодаря согласованным усилиям мирового сообщества, предпринятым в последнее десятилетие, производство пяти основных видов ХФУ сократилось более чем вдвое. Темпы прироста озоноразрушающих веществ в атмосфере уменьшились. Однако на ближайшие годы придется пик истощения озоносферы, а наиболее сложным был 1998 год. После этого, полагают ученые, озоновый слой начал медленно восстанавливаться.
2. Местоположение и функции озонового слоя
Озоновый слой -- часть стратосферы на высоте от 12 до 50 км (в тропических широтах 25--30 км, в умеренных 20--25, в полярных 15--20), в которой под воздействием ультрафиолетового излучения Солнца молекулярный кислород (О2) диссоциирует на атомы, которые затем соединяются с другими молекулами О2, образуя озон (О3). Относительно высокая концентрация озона (около 8 мл/мі) поглощает опасные ультрафиолетовые лучи и защищает всё живущее на суше от губительного излучения. Более того, если бы не озоновый слой, то жизнь не смогла бы вообще выбраться из океанов и высокоразвитые формы жизни типа млекопитающих, включая человека, не возникли бы. Наибольшая плотность озона встречается на высоте около 20--25 км, наибольшая часть в общем объёме -- на высоте 40 км. Если бы можно было извлечь весь озон, находящийся в атмосфере, и сжать под нормальным давлением, то в результате вышел бы слой, покрывающий поверхность Земли толщиной всего 3 мм. Для сравнения, вся сжатая под нормальным давлением атмосфера составляла бы слой в 8 км. [6]
Доказано, что отсутствие или малая концентрация озона может или приводит к раковым заболеваниям, что самым наихудшим образом отражается на человечестве и его способностью к воспроизводству.
3. Причины ослабления озонового щита
Разрушение озона происходит из-за воздействия ультрафиолетовой радиации, космических лучей, некоторых газов: соединений азота, хлора и брома, фторхлоруглеродов (фреонов). Деятельность человека, приводящая к разрушению озонового слоя, вызывает наибольшую тревогу.
Механизм образования, а также расходования озона был предложен Сидни Чепменом в 1930 году и носит его имя.
Кроме реакций, входящих в механизм Чепмена, имеется целый ряд других реакций, приводящих к гибели озона. Их все объединяют в несколько семейств, главными из которых является азотное, кислородное (из механизма Чепмена), водородное и галогеновое. Эти реакции представляют собой каталитические циклы, поэтому их также называют соответствующими циклами.
Азотный цикл (NOx):
N2O + O(1D) > NO + NO,
О3 + NO > NO2 + О2,
NO2 + О > NO + О2.
Водородный цикл (HOx):
Н2O + O > OH + OH,
ОН + О3 > НО2 + О2,
НО2 + О3 > ОН + 2О2.
Хлорный цикл (ClOx):
CFCl3 + hн > CFCl2 + Cl,
Cl + O3 > ClO + O2,
ClO + O > Cl + O2.
Доля в расходовании озона различных химических семейств.
Давление, гПа |
Азотное |
Кислородное |
Водородное |
Галогеновое |
|
1,31 |
0,10 |
0,26 |
0,41 |
0,21 |
|
3,78 |
0,50 |
0,14 |
0,11 |
0,25 |
|
8,93 |
0,68 |
0,11 |
0,08 |
0,13 |
|
21,9 |
0,46 |
0,12 |
0,19 |
0,20 |
|
55,8 |
0,12 |
0,03 |
0,48 |
0,14 |
Доля галогенового пути распада стратосферного озона увеличилась в результате деятельности человека, что привело к возникновению озоновых дыр. Генеральная ассамблея ООН в 1994 году провозгласила 16 сентября ежегодным Международным днём охраны озонового слоя. [6]
4. Как авиация разрушает озоновый слой земли
Авиация выбрасывает в атмосферу соединения азота и серы, непрерывно бомбит и обстреливает. Суммарная мощность использованных боеприпасов в несколько раз превысила мощность атомной бомбы, взорванной над Хиросимой. Действия авиации вызвало многочисленные пожары, в том числе пожары нефтеперерабатывающих и химических заводов.
Выбросы авиации, азотосодержащие взрывчатые вещества, пожары создают химические соединения, способные разрушать озоновый слой. Эти соединения способны накапливаться в атмосфере и воздействовать на озоновый слой в течение длительного времени. Становится вероятной экологическая катастрофа в Европе.
Качественный анализ данных со спутника Earth Probe/TOMS показывает, что с начала апреля 1999 г. над районом Косово появилось образование, которое условно можно квалифицировать как озоновая "мини-дыра". Сравнение со спутниковыми данными за тот же период 1998 г. показало, что в 1998 г. в этом районе не было признаков озоновой мини-дыры.
Судя по этим данным, озоновая мини-дыра перемещается, в основном, на восток, но и перемещения в других направлениях представляются возможными. По сравнению с 1998г. над районом Косово содержание озона уменьшилось на 8-10%. [5]
5. Озоновый щит против парникового эффекта
5.1 Озон и климат в стратосфере
Озон и климат воздействуют друг на друга. Воздействие озона на климат проявляется прежде всего в изменении температуры. Чем больше озона в данном объёме воздуха, тем больше тепла он удерживает. Озон является источником тепла в стратосфере, поглощая ультрафиолетовое излучение солнца и восходящее инфракрасное излучение от тропосферы. Следовательно, уменьшение количества озона в стратосфере приводит к понижению температуры. А это в свою очередь приводит к истощению озона.
Истощение озона - ведёт к снижению температуры - ведёт к полярным стратосферным облакам - ведёт к истощению озона
Самые крупные потери озона в Арктике и Антарктике происходят зимой и в начале весны, когда полярные стратосферные вихри изолируют воздух в своих пределах. Когда температура воздуха падает ниже -78°С, формируются облака, состоящие из льда, азотной и серной кислот. В результате химических реакций на поверхности ледяных кристаллов в облаках выделяются хлорфторуглероды. Из-за воздействия ХФУ начинается истощение озона, и появляется озоновая "дыра". Весной температура воздуха повышается, лед испаряется, и озоновый слой начинает восстанавливаться.
5.2 Всесилен ли парниковый эффект
Экологическим врагом номер один для цивилизации объявлен излишек углекислого газа. Сжигая ископаемое топливо и сводя леса, люди увеличивают его содержание в атмосфере. И эта прибавка разогревает Землю больше, чем все прочие парниковые газы, такие, как метан, окись азота, фреоны. Такова официальная версия Всемирной метеорологической организации, поддержанная ООН и ее специализированными организациями.
Климат Земли поддерживается всей той долей солнечной энергии, которая перехватывается планетой и затем расходуется на нагревание атмосферы и подстилающей поверхности, а также на испарение и ряд других процессов. Мощность процессов в климатической системе огромна. Она почти в сто тысяч раз превосходит мощность всех энергопотоков, создаваемых людьми. Люди могут влиять на климат, только расшатывая природные связи, что и происходит. Но от дестабилизации климатических процессов до управления климатом на глобальном уровне - "дистанция огромного размера".
В последние 12 тыс. лет каждые 900-950 лет потепления сменялись похолоданиями. Полный цикл 1850 лет (цикл Шнитникова) содержит внутри более короткие. Природное похолодание, именуемое малым ледниковым периодом, закончилось в XIX веке. Оно как раз замыкало цикл Шнитникова. Дальнейший прирост среднепланетарной температуры сторонники "рукотворного" потепления отнесли на счет цивилизации. Никто даже не пытался доказать, что не природная изменчивость, а человек оборвал малую ледниковую эпоху. Современное потепление рассматривается только как реакция на прирост в воздухе содержания парниковых газов. Роль антипарниковых факторов оценивается как малосущественная.
Многие ученые возражают против столь однобокой оценки отклика климатической системы на антропогенную нагрузку. Другие занимают выжидательную позицию. Между тем суть решений международных организаций по климату не меняется, хотя прогнозные оценки снижаются, а сроки климатической катастрофы отодвигаются на более отдаленный период.
Конечно, перспектива дальнейшего потепления климата существует, и риск возникновения неблагоприятных процессов надо учитывать. Но следует признать очевидную раздутость проблемы в отношении роли парниковых газов, в особенности применительно к СО2. А вот по отношению к озону ситуация диаметрально противоположна. [2]
5.3 Страна озоновой аномалии
Стратосферный озоновый слой защищает Землю от перегрева. По данным доктора физико-математических наук Ракиповой, количество тепла, поглощаемого озоном (3% приходящей солнечной радиации), - это больше, чем вклад озона в парниковый эффект. В основном озон - антипарниковый газ. Районы в Северном полушарии, где содержание озона максимально, практически совпадают в холодное время года с основными очагами холода в Канаде и Восточной Сибири.
Негативные изменения в стратосфере в последние 15-20 лет не могли не привести к снижению эффективности природного компенсатора парникового эффекта - стратосферного озона. Территория России в силу ее географического положения и размеров страдает больше, чем любая другая страна от перипетий с озоном.
На карте, по состоянию на 15 апреля 1997 г., видно, что большую часть России поглотила озоновая аномалия, и за ее края выходили в основном лишь большая часть Камчатки, Сахалин, юг Дальнего Востока, а также европейская Россия без Кольского полуострова и бассейнов рек Северная Двина и Печора.
Чрезмерная забота о климате, а точнее, о парниковых газах и в особенности о контроле над СО2, оттеснили на второй план проблему стратосферного озона.[4]
6. Гипотеза солнечно-атмосферного резонанса
6.1 Глобальная политика и глобальная экология
Глобальные изменения окружающей среды представляют собой лишь следствие (и в то же время служат индикаторами) более глубоких (и возможно более опасных) процессов изменения биоты и окружающей среды, их взаимного влияния и их зависимости от естественного (не антропогенного) процесса эволюции.
Таким образом пути решения экологических проблем, стратегия экологической безопасности "устойчивого" развития цивилизации остаются неопределенными, несмотря на принятие в последнее десятилетие известных международных соглашений (Венская Конвенция об озоновом слое, 1985 г., Монреальский Протокол, 1987 г., Рамочная Конвенция по климату, 1992 г., Соглашение о сокращении производства электроэнергии за счет сжигания органического топлива, 1997). Главной причиной является недостаточная научная обоснованность "фундаментальных" положений, по которым и принимаются ответственные экономические и политические решения.
В связи с этим были рассмотрены некоторые важные вопросы, относящиеся к глобальной проблеме эволюции озонового слоя, подчеркнуто отсутствие системного подхода в этой проблеме и представлены последние результаты (как отечественные так и зарубежные), позволяющие по-новому рассмотреть причины изменчивости озона и последствия этой изменчивости для биосферы и человека (Конференция по физической экологии 1997 г.).
Ниже представлены новые результаты анализа экспериментальных данных, полученных в ходе выполнения международных кампаний: DYANA (1990 г.), CRISTA/MAHRSI (1994 и 1997 гг.) и в рамках сотрудничества с Индией (1983, 1987, 1990 и 1998 гг.), а также анализа накопленной к настоящему времени гелиогеофизической, метеорорологической и астрономической информации.[5]
6.2 О механизмах воздействия солнечно-атмосферного резонанса на атмосферу
Количество энергии, получаемое Землей от Солнца, имеет сильную широтную зависимость и определяет радиационный баланс планеты. Тропическая область получает за год в два раза больше, чем остальная часть Земли. Среднегодовой радиационный баланс планеты определяется среднепланетарным альбедо а, равном 0,3. Важную роль при энергетических расчетах играют радиационные характеристики облаков различных типов.
Глобальное распределение водяного пара в атмосфере таково, что количество осажденной воды Q максимально в тропическом поясе: Q = 5,0 г/кв. см и более в обширных районах Бразилии, Индонезии, а летом и в Индии и Вьетнаме, а также вблизи зоны конвергенции (ВТЗК) в Атлантике до 5,9 г/кв.см. Среднее Q по земному шару 2,5 - 3,0 г/кв.см. Отметим, что водяной пар (а не СО2) - главный парниковый газ, обеспечивающий более 70% парникового эффекта в атмосфере.
Таким образом, тропическая зона является значительно более энергонасыщенной, чем внетропические зоны. Циркуляция тропической зоны, охватывающая почти половину земного шара, является большой термодинамической машиной, превращающей тепло океана (в том числе скрытое тепло водяного пара) в кинетическую энергию атмосферы и определяющую в значительной степени термодинамику умеренных и полярных широт. Математическое описание этой машины отсутствует, что и приводит к несовершенству всех климатических и прогностических моделей общей циркуляции атмосферы, т.к. динамика приэкваториального пояса, где необходим учет фазовых переходов и где неприменима теорема о сохранении потенциального вихря и квазигеострофический подход, также не поддается адекватному описанию.
Известно, что солнечная активность влияет на интенсивность космических лучей, запуская конденсационный механизм, включающий ионизацию верхнетропосферных воздушных масс (8 - 16 км) такими лучами. Это способствует образованию перистой облачности и усиленному развитию высококучевых облаков, изменяющему альбедо, и создающего условия для интенсификации динамических процессов. Максимум концентрации ионов находится на высотах 12 - 20 км в зависимости от широты (геомагнитной), сезона и СА. На средних широтах максимум ионообразования наблюдается на высоте около 12 км, т.е. вблизи тропопаузы. Ионизация на таких высотах способствует образованию множества ядер конденсации, на которых в условиях низких температур (40.-90 С) активно сублимируется водяной пар, растут ледяные кристаллы, и формируется облачность (в основном перистая).
было установлено путем проведения серий баллонных измерений концентраций легких ионов в стратосфере в различных геомагнитных широтах (в т. ч. на геомагнитном экваторе) и интенсивности космических лучей (ГКЛ, но также и СКЛ в период вспышек) это основной сток образовавшихся ионов (а не рекомбинация положительных и отрицательных ионов). При действии конденсационного механизма в атмосфере выделяется тепловая энергия, изменяется альбедо системы "земная поверхность - тропосфера" для солнечной коротковолновой радиации, а также ИК-излучение атмосферы. Тем самым конденсационный механизм стимулирует другие физические процессы, интенсифицирующие "усвоение" солнечной энергии. Активизируемый наиболее энергичными ГКЛ конденсационный механизм может также влиять на зарождение и развитие облачности на типичных уровнях в средней и нижней тропосфере (3 - 7 км) и выделение тепла конденсации, которое может генерировать различные типы атмосферных волн, переносящих импульс, энергию и вещество при своем распространении в атмосфере.[5]
6.3 Солнечно-атмосферный резонанс
Интенсивность ГКЛ модулируется СА (глубина модуляции достигает 30%) и это может вызывать резонансные явления в атмосфере. Например, в тропической области Земли существуют планетарные экваториальные волны Кельвина и Россби, имеющие периоды 27 - 30, 13 - 15, 6 - 8 дней, характерные для СА. При этом характерная полоса для развития таких волн составляет величины +/- 20 градусов относительно экватора, т.е. захватывает практически все тропики. Характерной особенностью таких волн является перенос ими импульса, энергии и массы (в первую очередь водяного пара - основного "скрытого" энергоносителя) при распространении волн вверх и вниз от источника возбуждения. Таким образом, они могут изменять циркуляционные процессы в тропосферно-стратосферных тропических ячейках Хэдли (Гадлея), увеличивая или уменьшая транспорт влажного и бедного озоном воздуха нижней тропической стратосферы во внетропические широты.
Проведение широкого фронта научных и прикладных исследований по глобальным экологическим проблемам имеет важное политическое, экономическое и прикладное значение, т.к. может привести к созданию современных высоких технологий, позволяющих контролировать и воздействовать на природные процессы в нужном направлении. А это и есть необходимое и достаточное условие "устойчивого" (лучше использовать термин "регулируемого") развития цивилизации.[5]
7. Разрушение озонового слоя Земли хлорфторуглеводородами
В 1985 г. специалисты по исследованию атмосферы из Британской Антарктической Службы сообщили о совершенно неожиданном факте: весеннее содержание озона в атмосфере над станцией Халли-Бей в Антарктиде уменьшилось за период с 1977 по 1984 г. на 40%. Вскоре этот вывод подтвердили другие исследователи, показавшие также, что область пониженного содержания озона простирается за пределы Антарктиды и по высоте охватывает слой от 12 до 24 км, т.е. значительную часть нижней стратосферы.
Наиболее подробным исследованием озонного слоя над Антарктидой был международный Самолетный Антарктический Озонный Эксперимент. В его ходе ученые из 4 стран несколько раз поднимались в область пониженного содержания озона и собрали детальные сведения о ее размерах и проходящих в ней химических процессах. Фактически это означало, что в полярной атмосфере имеется озонная "дыра". В начале 80-х по измерениям со спутника "Нимбус-7" аналогичная дыра была обнаружена и в Арктике, правда она охватывала значительно меньшую площадь и падение уровня озона в ней было не так велико - около 9%. В среднем по Земле с 1979 по 1990 г. содержание озона упало на 5%.
Это открытие обеспокоило как ученых, так и широкую общественность, поскольку из него следовало, что слой озона, окружающий нашу планету, находится в большей опасности, чем считалось ранее. Утончение этого слоя может привести к серьезным последствиям для человечества. Содержание озона в атмосфере менее 0.0001%, однако, именно озон полностью поглощает жесткое ультрафиолетовое излучение солнца с длиной волны l<280 нм и значительно ослабляет полосу УФ-Б с 280<l<315 нм, наносящие серьезные поражения клеткам живых организмов. Падение концентрации озона на 1% приводит в среднем к увеличению интенсивности жесткого ультрафиолета у поверхности земли на 2%. Эта оценка подтверждается измерениями, проведенными в Антарктиде (правда, из-за низкого положения солнца, интенсивность ультрафиолета в Антарктиде все еще ниже, чем в средних широтах).
По своему воздействию на живые организмы жесткий ультрафиолет близок к ионизирующим излучениям, однако, из-за большей, чем у g-излучения длины волны он не способен проникать глубоко в ткани, и поэтому поражает только поверхностные органы. Жесткий ультрафиолет обладает достаточной энергией для разрушения ДНК и других органических молекул, что может вызвать рак кожи, в особенности быстротекущую злокачественную меланому, катаракту и иммунную недостаточность. Естественно, жесткий ультрафиолет способен вызывать и обычные ожоги кожи и роговицы. Уже сейчас во всем мире заметно увеличение числа заболевания раком кожи, однако, значительно количество других факторов (например, возросшая популярность загара, приводящая к тому, что люди больше времени проводят на солнце, таким образом, получая большую дозу УФ облучения) не позволяет однозначно утверждать, что в этом повинно уменьшение содержания озона. Жесткий ультрафиолет плохо поглощается водой и поэтому представляет большую опасность для морских экосистем. Эксперименты показали, что планктон, обитающий в приповерхностном слое, при увеличении интенсивности жесткого УФ может серьезно пострадать и даже погибнуть полностью. Планктон находится в основании пищевых цепочек практически всех морских экосистем, поэтому без преувеличения можно сказать, что практически вся жизнь в приповерхностных слоях морей и океанов может исчезнуть. Растения менее чувствительны к жесткому УФ, но при увеличении дозы могут пострадать и они. Если содержание озона в атмосфере значительно уменьшится, человечество легко найдет способ защититься от жесткого УФ излучения но при этом рискует умереть от голода. [3]
7.1 Что делается в области защиты озонового слоя?
Под давлением этих аргументов многие страны начали принимать меры направленные на сокращение производства и использования ХФУ. С 1978 г. в США было запрещено использование ХФУ в аэрозолях. К сожалению, использование ХФУ в других областях ограничено не было. Повторю, что в сентябре 1987 г. 23 ведущих страны мира подписали в Монреале конвенцию, обязывающую их снизить потребление ХФУ. Согласно достигнутой договоренности развитые страны должны к 1999 г. снизить потребление ХФУ до половины уровня 1986 г. Для использования в качестве пропеллента в аэрозолях уже найден неплохой заменитель ХФУ - пропан-бутановая смесь. По физическим параметрам она практически не уступает фреонам, но, в отличие от них, огнеопасна. Тем не менее, такие аэрозоли уже производятся во многих странах, в том числе и в России. Сложнее обстоит дело с холодильными установками - вторым по величине потребителем фреонов. Дело в том, что из-за полярности молекулы ХФУ имеют высокую теплоту испарения, что очень важно для рабочего тела в холодильниках и кондиционерах (см. «Причины ослабления озонового щита»). Лучшим известным на сегодня заменителем фреонов является аммиак, но он токсичен и все же уступает ХФУ по физическим параметрам. Неплохие результаты получены для полностью фторированных углеводородов. Во многих странах ведутся разработки новых заменителей и уже достигнуты неплохие практические результаты, но полностью эта проблема еще не решена.
Использование фреонов продолжается и пока далеко даже до стабилизации уровня ХФУ в атмосфере. Так, по данным сети Глобального мониторинга изменений климата, в фоновых условиях - на берегах Тихого и Атлантического океанов и на островах, вдали от промышленных и густонаселенных районов - концентрация фреонов -11 и -12 в настоящее время растет со скоростью 5-9% в год. Содержание в стратосфере фотохимически активных соединений хлора в настоящее время в 2-3 раза выше по сравнению с уровнем 50-х годов, до начала быстрого производства фреонов. [8]
7.2 Факты об озоновом слое
Вместе с тем, ранние прогнозы, предсказывающие, например, что при сохранении современного уровня выброса ХФУ, к середине XXI в. содержание озона в стратосфере может упасть вдвое, возможно были слишком пессимистичны. Во-первых, дыра над Антарктидой во многом является следствием метеорологических процессов. Образование озона возможно только при наличии ультрафиолета и во время полярной ночи не идет. Зимой над Антарктикой образуется устойчивый вихрь, препятствующий притоку богатого озоном воздуха со средних широт. Поэтому к весне даже небольшое количество активного хлора способно нанести серьезный ущерб озоновому слою. Такой вихрь практически отсутствует над Арктикой, поэтому в северном полушарии падение концентрации озона значительно меньше.
Многие исследователи считают, что на процесс разрушения озона оказывают влияние полярные стратосферные облака. Эти высотные облака, которые гораздо чаще наблюдаются над Антарктикой, чем над Арктикой, образуются зимой, когда при отсутствии солнечного света и в условиях метеорологической изоляции Антарктиды температура в стратосфере падает ниже -80°С. Можно предположить, что соединения азота конденсируются, замерзают и остаются связанными с облачными частицами и поэтому лишаются возможности вступить в реакцию с хлором. Возможно также, что облачные частицы способны катализировать распад озона и резервуаров хлора.
Все это говорит о том, что ХФУ способны вызвать заметное понижение концентрации озона только в специфических атмосферных условиях Антарктиды, а для заметного эффекта в средних широтах, концентрация активного хлора должна быть намного выше. Во-вторых, при разрушении озонного слоя жесткий ультрафиолет начнет проникать глубже в атмосферу. Но это означает, что образование озона будет происходить по-прежнему, но только немного ниже, в области с большим содержанием кислорода. Правда, в этом случае озонный слой будет в большей степени подвержен действию атмосферной циркуляции.
Хотя первые мрачные оценки были пересмотрены, это ни в коем случае не означает, что проблемы нет. Скорее стало ясно, что нет серьезной немедленной опасности. Даже наиболее оптимистичные оценки предсказывают при современном уровне выброса ХФУ в атмосферу серьезные биосферные нарушения во второй половине XXI в., поэтому сокращать использование ХФУ по-прежнему необходимо. [7]
Заключение
Возможности воздействия человека на природу постоянно растут и уже достигли такого уровня, когда возможно нанести биосфере непоправимый ущерб. Уже не в первый раз вещество, которое долгое время считалось совершенно безобидным, оказывается на самом деле крайне опасным. Лет двадцать назад вряд ли кто-нибудь мог предположить, что обычный аэрозольный баллончик может представлять серьезную угрозу для планеты в целом. К несчастью, далеко не всегда удается вовремя предсказать, как то или иное соединение будет воздействовать на биосферу. Потребовалась достаточно серьезная демонстрация опасности ХФУ для того, чтобы были приняты серьезные меры в мировом масштабе. Следует заметить, что даже после обнаружения озонной дыры, ратифицирование Монреальской конвенции одно время находилось под угрозой. [6]
Понимание взаимодействий между озоном и изменением климата, и предсказание последствий изменения требует громадных вычислительных мощностей, надежных наблюдений, и здравых диагностических способностей. Способности сообщества науки быстро развились за прошлые десятилетия, но все же некоторые фундаментальные механизмы работы атмосферы все еще не ясны. Успех будущего исследования зависит от общей стратегии, с реальным взаимодействием между наблюдениями ученых и математическими моделями.
Нам нужно все знать о мире, который нас окружает. А так же придумывать новые пути решения приходящих проблем.
Используемая литература:
1. Никитин Д.П., Новяков Ю.В. Окружающая среда и человек. Учебное пособие для студентов вузов. - М.: Высшая школа, 1980 г
2. Петров С.П. Почему меняется климат Земли.
3. Миронов Л.В. Разрушение озонного слоя земли хлорфторуглеводородами.1998г.
4. http://xreferat.ru/112/425-2-ozonovyiy-sloiy.html
5. http://www.bibliofond.ru/view.aspx?id=21145
6. http://ru.wikipedia.org/wiki/%D0%9E%D0%B7%D0%BE%D0%BD%D0%BE%D0%B2%D1%8B%D0%B9_%D1%81%D0%BB%D0%BE%D0%B9
7. http://www.planet.elcat.kg/?cont=wclim&id=2
8. www.meteo.lv/public/27108
Размещено на Allbest.ru
...Подобные документы
Из истории. Местоположение и функции озонового слоя. Причины ослабления озонового щита. Озон и климат в стратосфере. Разрушение озонового слоя земли хлорфторуглеводородами. Что было сделано в области защиты озонового слоя. Факты говорят сами за себя.
реферат [67,2 K], добавлен 14.03.2007Понятие и местоположение озонового слоя, его функциональные особенности и оценка значения для биосферы Земли. Структура и элементы озонового слоя, причины его ослабления в последние десятилетия, негативные последствия данного процесса и его замедление.
презентация [339,3 K], добавлен 24.02.2013Роль озона и озонового экрана для жизни планеты. Экологические проблемы атмосферы. Озоноразрушающие вещества и механизм их действия. Влияние уменьшения озонового слоя на жизнь на Земле. Меры, принимаемые по его защите. Роль ионизаторов в жизни человека.
реферат [31,1 K], добавлен 04.02.2014Озоновая дыра как локальное падение озонового слоя. Роль озонового слоя в атмосфере Земли. Фреоны - основные разрушители озона. Методы восстановления озонового слоя. Кислотные дожди: сущность, причины появления и негативное воздействие на природу.
презентация [354,1 K], добавлен 14.03.2011Защита климата и озонового слоя атмосферы как одна из наиболее острых глобальных экологических проблем современности. Суть и причины возникновения парникового эффекта. Состояние озонового слоя над Россией, уменьшение содержания озона ("озоновая дыра").
реферат [40,3 K], добавлен 31.10.2013Озон. Озоновая дыра - разрыв озоносферы диаметром св. 1000 км. По своему воздействию на живые организмы жесткий ультрафиолет близок к ионизирующим излучениям. Образование озона. Хлорфторуглероды (ХФУ) могут вызывать разрушение озона.
реферат [164,6 K], добавлен 14.03.2007Влияние теплового режима поверхности Земли на состояние атмосферы. Защита планеты от ультрафиолетовой радиации озоновым экраном. Загрязнение атмосферы и разрушение озонового слоя как глобальные проблемы. Парниковый эффект, угроза глобального потепления.
реферат [39,3 K], добавлен 13.05.2013Химическая формула и свойства озона. Роль атмосферного и тропосферного озона в защите живых организмов от действия ультрафиолетового излучения. Дыры в озоновом слое Земли, гипотезы об их происхождении. Международные конвенции по охране озонового слоя.
реферат [23,8 K], добавлен 20.01.2015Теории образования озоновых дыр. Спектр озонового слоя над Антарктидой. Схема реакции галогенов в стратосфере, включающая их реакции с озоном. Принятие мер по ограничению выбросов хлор- и бромсодержащих фреонов. Последствия разрушения озонового слоя.
презентация [418,6 K], добавлен 14.05.2014Локальный экологический кризис. Экологические проблемы атмосферы. Проблема озонового слоя. Понятие парниковый эффект. Кислотные дожди. Последствия кислотных осадков. Самоочищение атмосферы. Какие приоритеты считать основными? Что важнее экология или НТП.
реферат [36,5 K], добавлен 14.03.2007Озоновые дыры и причины их возникновения. Источники разрушения озонового слоя. Озоновая дыра над Антарктикой. Мероприятия по защите озонового слоя. Правило оптимальной компонентной дополнительности. Закон Н.Ф. Реймерса о разрушении иерархии экосистем.
контрольная работа [24,7 K], добавлен 19.07.2010Глобальный экологический кризис. Увеличение в атмосфере концентраций углекислого газа, метана и других парниковых газов. Нарушение радиационного баланса атмосферы. Накопление аэрозолей в атмосфере, разрушение озонового слоя.
реферат [14,1 K], добавлен 25.10.2006Изучение химических особенностей, реакций синтеза и распада озона. Характеристика основных соединений, приводящих к изменению текущего состояния озонового слоя. Влияние ультрафиолета на человека. Международные соглашения в области охраны озонового слоя.
реферат [16,8 K], добавлен 24.01.2013Причины резкого потепления климата, начавшегося во второй половине ХХ века. Проблемы интенсивного разрушения озонового слоя. Последствия гибели и вырубки лесов, почвенной эрозии. Современные проблемы мирового океана. Цели и задачи охраны природы.
презентация [5,3 M], добавлен 14.11.2013Глобальные экологические проблемы: сокращение биоразнообразия Земли, деградация экосистем; потепление климата; разрушение озонового слоя; загрязнение атмосферы, воды, земель; увеличение населения Земли. Состояние окружающей среды в Республике Беларусь.
реферат [68,8 K], добавлен 24.10.2011Глобальные изменения в атмосфере. Разрушение озонового слоя. Континентальные проблемы, причины вымирания массы тропических видов растений и животных. Парниковый эффект и возможные последствия изменения климата. Угроза для экосистем и биоразнообразия.
реферат [23,3 K], добавлен 13.10.2011Сущность и причины возникновения глобальных экологических проблем. Распространение загрязняющих веществ в атмосфере. Разрушение озонового слоя Земли. Загрязнение гидросферы и литосферы. Влияние антропогенной деятельности на животный и растительный мир.
презентация [1,8 M], добавлен 19.12.2013Локальное падение концентрации озона в озоновом слое Земли, механизм образования. Венская конвенция и Монреальский протокол. Схема реакции галогенов в стратосфере. Меры по ограничению выбросов бромсодержащих фреонов путем перехода на другие вещества.
презентация [481,6 K], добавлен 28.10.2014Проблема сохранения мира, международного терроризма. Экологические проблемы. Изменение климата, разрушение озонового слоя, истощение запасов пресной воды, разрушение почвенного покрова. Сохранение биологического разнообразия. Демографическая проблема.
реферат [58,7 K], добавлен 24.10.2008Основные причины возникновения экологических проблем в мире. Воздействие общества на окружающую среду. Разрушение озонового слоя. Кислотные осадки и обезлесение. Деградация земель и их опустынивание. Загрязнение мирового океана и дефицит пресной воды.
курсовая работа [70,1 K], добавлен 08.01.2014