Основы экологии и охраны природы
Учение В.И. Вернадского о биогенной миграции атомов. Большой и малый круговорот в биосфере. Кислотные осадки: причины образования, влияние на экосистемы. Основные загрязняющие вещества в выбросах химико-фармацевтических предприятий, методы анализа.
Рубрика | Экология и охрана природы |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.12.2014 |
Размер файла | 188,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Ярославская государственная медицинская академия
Фармацевтический факультет
Кафедра фармакогнозии и фармацевтической технологии
Контрольная работа по дисциплине
"Основы экологии и охраны природы"
Шестухина Н.С.
Ярославль
План
1. Учение В.И. Вернадского о биогенной миграции атомов. Большой и малый круговорот в биосфере
2. Биотические факторы. Определение. Классификация, характеристика
3. Кислотные осадки: причины образования, влияние на экосистемы
4. Основные загрязняющие вещества в выбросах химико-фармацевтических предприятий. Методы анализа
5. Физическое загрязнение окружающей природной среды. Тепловое загрязнение водных объектов: источники, последствия, пути преодоления
6. Космическое пространство. Международные правовые акты об охране космоса от загрязнения
Список использованной литературы
1. Учение В.И. Вернадского о биогенной миграции атомов. Большой и малый круговорот в биосфере
Закон биогенной миграции атомов В.И. Вернадского гласит - "миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (О 2, СО 2, Н 2 и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей геологической истории". Так происходило и в геологическом прошлом, миллионы лет назад, так происходит и в современных условиях. Живое вещество или принимает участие в биохимических процессах непосредственно, или создает соответствующую, обогащенную кислородом, углекислым газом, водородом, азотом, фосфором и другими веществами, среду. Этот закон имеет важное практическое и теоретическое значение. Понимание всех химических процессов, которые происходят в геосферах, невозможно без учета действия биогенных факторов, в частности - эволюционных. В наше время люди влияют на состояние биосферы, изменяя ее физический и химический состав, условия сбалансированной веками биогенной миграции атомов. В будущем это послужит причиной очень отрицательных изменений, которые приобретают способность саморазвиваться и становятся глобальными, неуправляемыми (опустынивание, деградация грунта, вымирание тысяч видов организмов). С помощью этого закона можно сознательно и активно предотвращать развитие таких отрицательных явлений, руководить биогеохимическими процессами, используя "мягкие" экологические методы.
Закон биогенной миграции атомов утверждает: биогенное происхождение всей земной поверхности свидетельствует о том, что жизнь - созидающая сила на планете. Серьезные нарушения этой силы, в том числе уничтожение видов, могут привести к непредсказуемым последствиям.
В ходе геологического времени развитие биосферы носило необратимый характер. В первую очередь это касается живого вещества, для которого необратимость развития стала ясной после работ Ч. Дарвина (1859). Основываясь на эволюционном учении и палеонтологических данных, знаменитый бельгийский палеонтолог Л. Долло (1857--1931) в короткой заметке "Законы эволюции" сформулировал закон необратимости эволюции: "Организм не может вернуться, хотя бы частично, к предшествующему состоянию, которое было уже осуществлено в ряде его предков". В течение истории Земли необратимость биологической эволюции определила необратимость динамики веществ в биосфере, выявляемых по характеру древних осадков. биосфера кислотный загрязняющий
Миграция атомов по скорости различна для микробов и одноклеточных организмов, с одной стороны, и многоклеточных - с другой. Мы должны различать в связи с этим при явлениях размножения и роста две различные биогенные миграции атомов:
1. Биогенную миграцию атомов первого рода для микроскопических одноклеточных и микробов огромной интенсивности, связанную с малым их объёмом и весом.
2. Биогенную миграцию атомов 2 рода для многоклеточных организмов.
Низшие организмы - не какой-то случайный пережиток прошлого, они - необходимая составная часть целостной системы органического мира, основа его существования и развития, без которой невозможен внутренний обмен между членами этой системы. Органический мир представляется в виде сети взаимодействующих видов, охватывающей практически весь земной шар.
Высшие организмы выделяются как сгустки живого вещества, концентраторы продуктов синтеза низших форм. Многоклеточные становятся как бы "кладовыми органического синтеза", в силу чего они приобретают функцию своеобразных инициаторов новых форм биохимической активности низших организмов (поставляя всё новые и новые субстраты). Они создают предпосылки для проникновения одноклеточных в биотопы, ранее ими не освоенные.
Если выразить отдельно биогеохимическую энергию размножения и роста одноклеточных и биогеохимическую энергию размножения и роста многоклеточных, получаются величины несравнимые. Одноклеточные доминировали на нашей планете до последнего времени. На наших глазах это явление начинает меняться в нашу психозойскую эру, когда человек овладел новой биогенной миграцией атомов третьего рода, идущей под влиянием его жизни, воли, разума в окружающей среде. В жизни каждого живого организма есть проявление этой формы биохимической энергии.
Эта биогенная энергия находится в состоянии, способном производить работу. Она выражается в биогенной миграции атомов. Пассивная энергия концентрируется в биогенных минералах, среди которых твёрдые и жидкие каустобиолиты играют основную роль.
Все биогенные миграции могут быть обобщены как первый биогеохимический принцип. Этот принцип гласит:
1. Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению. Всё живое вещество планеты, взятое в целом, таким образом, является источником действенной свободной энергии, может производить работу.
2. Вторая биогеохимическая функция связана с разрушением тела живых организмов после их умирания, связана с химическим превращением живого вещества после его умирания в косное. Этот переход в косное тело совершается не сразу. Промежуточным является биокосное тело в течение какого-то геологического времени, так как первая переработка совершается биогенным путём микробами, бактериями и грибами. А в конце наступают реакции, в которых микробы отсутствуют или играют второстепенную роль.
В биогеохимических функциях первого и второго рода мы впервые встречаемся в яркой форме с резким отличием косного и живого вещества в ходе геологического времени. В то самое время как живое вещество, охваченное эволюционным процессом, меняется до неузнаваемости в своих формах и даёт миллионы новых видов организмов и множество новых химических соединений, косная материя планеты остаётся инертной, неподвижной и по характеру происходящих изменений только в эоны веков закономерно меняет свой атомный состав закономерным радиоактивным процессом. В геологическое время она практически остаётся неизменной в своём морфологическом характере. В связи с этим биохимические функции могут быть сведены ко второму биогеохимическому принципу. Он указывает, что эволюция видов в ходе геологического времени, приводящая к созданию форм жизни, устойчивых в биосфере, идёт в направлении, увеличивающем биогенную миграцию атомов биосферы.
Солнечная энергия обеспечивает на Земле два круговорота веществ: большой, или геологический (абиотический) и малый, или биологический (биотический).
Большой круговорот наиболее четко проявляется в циркуляции воздушных масс и воды. В основе большого (геологического) круговорота лежит процесс переноса веществ, в основном минеральных соединений, из одного места в другое в масштабе планеты.
Около 30% падающей на Землю солнечной энергии расходуется на перемещение воздуха, испарение воды, выветривание горных пород, растворение минералов и т.п. Движение воды и ветра, в свою очередь, приводит к эрозии почв и горных пород, транспорту, перераспределению, осаждению и накоплению механических и химических осадков на суше и в океане. В течение длительного времени образующиеся морские отложения могут возвращаться на поверхность суши, и процессы возобновляются. К этим циклам подключаются вулканическая деятельность, землетрясения и движение океанических плит в земной коре.
Круговорот воды, включающий ее переход из жидкого в газообразное и твердое состояния и обратно, - один из главных компонентов абиотической циркуляции веществ. В процессе гидрологического цикла происходят значительное перераспределение и существенная очистка планетарных запасов воды. При этом следует отметить, что наибольшей скоростью обновления обладают наиболее важные для существования живой среды суши - пресные воды. Период их оборота составляет в среднем около 11 суток.
Малый круговорот. На базе большого геологического круговорота возникает круговорот органических веществ, или малый, биологический (биотический) круговорот.
В основе малого круговорота веществ лежат процессы синтеза и разрушения органических соединений. Эти два процесса обеспечивают жизнь и составляют одну из главных ее особенностей.
В отличие от геологического, биологический круговорот характеризуется ничтожным количеством энергии. На создание органического вещества, как уже упоминалось, затрачивается всего около 1% падающей на Землю лучистой энергии. Однако эта энергия, вовлеченная в биологический круговорот, совершает огромную работу по созиданию живого вещества. Чтобы жизнь продолжала существовать, химические элементы должны постоянно циркулировать из внешней среды в живые организмы и обратно, переходя из протоплазмы одних организмов в усвояемую форму для других.
Все абиотические и биотические планетарные циркуляции веществ тесно переплетены и образуют глобальный системно существующий круговорот, с перераспределением энергии Солнца, с отсутствием противоречий между его отдельными ветвями и практически с нулевым вещественным балансом.
В круговороте элементов различают две части: резервный (недоступный) фонд - большая небиологическая часть медленно движущихся веществ и обменный (доступный) фонд - меньшая, но более подвижная часть, которая быстро обменивается между организмами и окружающей их средой.
Биогеохимические циклы делятся на два типа: газообразные циклы с резервным фондом малоподвижного химического элемента в атмосфере и гидросфере и осадочные циклы с резервным фондом в земной коре. Главными биогеохимическими циклами, обеспечивающими жизнь на планете (кроме круговорота воды), являются циркуляции углерода, кислорода, азота, фосфора, серы и других биогенных макроэлементов.
2. Биотические факторы. Определение. Классификация, характеристика
Биотические факторы - это всевозможные формы влияния живых организмов друг на друга (например, опыление насекомыми растений, конкуренция, поедание одних насекомых другими, паразитизм) и на среду. Биотические взаимоотношения имеют чрезвычайно сложный и своеобразный характер и также могут быть прямыми и косвенными.
1. Симбиоз - сожительство (от греч. сим - вместе, биос - жизнь) - форма взаимоотношения, из которых оба партнера или хотя бы один извлекают пользу.
Симбиоз подразделяется на мутуализм, протокооперацию и комменсализм.
Мутуализм - форма симбиоза, при которой присутствие каждого из двух видов становится обязательным для обоих, каждый из сожителей получает относительно равную пользу, и партнеры (или один из них) не могут существовать друг без друга. Типичный пример мутуализма - отношения термитов и жгутиковых простейших, обитающих в их кишечнике. Термиты питаются древесиной, однако у них нет ферментов для переваривания целлюлозы. Жгутиконосцы вырабатывают такие ферменты и переводят клетчатку в сахара. Без простейших - симбионтов - термиты погибают от голода. Сами же жгутиконосцы помимо благоприятного микроклимата получают в кишечнике пищу и условия для размножения.
Протокооперация - форма симбиоза, при которой совместное существование выгодно для обоих видов, но не обязательно для них. В этих случаях отсутствует связь именно этой, конкретной пары партнеров. Примером протокооперации являются взаимоотношения мелких рыбок семейства губановых и крупных хищных мурен. Среди губановых имеются так называемые рыбы-чистильщики, освобождающие крупных рыб от наружных паразитов, находящихся на коже, в жаберной и ротовой полостях. Крупные хищники, в том числе мурены, страдающие от паразитов, приплывают в места обитания губанов и дают им возможность уничтожать паразитов даже у себя во рту, хотя могли бы с легкостью их проглотить.
Комменсализм - форма симбиоза, при которой один из сожительствующих видов получает какую-либо пользу, не принося другому виду ни вреда, ни пользы. Комменсализм, в свою очередь, подразделяется на квартиранство, сотрапезничество, нахлебничество.
Квартиранство - форма комменсализма, при которой один вид использует другой (его тело или его жилище) в качестве убежища или своего жилья. Особую важность приобретает использование надежных убежищ для сохранения икры или молоди. Пресноводный горчак откладывает икру в мантийную полость двухстворчатых моллюсков - беззубок. Отложенные икринки развиваются в идеальных условиях снабжения чистой водой.
Сотрапезничество - форма комменсализма, при которой несколько видов потребляют разные вещества или части одного и того же ресурса.
Нахлебничество - форма комменсализма, при которой один вид потребляет остатки пищи другого. Примером перехода нахлебничества в более тесные отношения между видами служат взаимоотношения рыбы-прилипалы, обитающей в тропических и субтропических морях, с акулами и китообразными. Передний спинной плавник прилипалы преобразовался в присоску, с помощью которой та прочно удерживается на поверхности тела крупной рыбы. Биологический смысл прикрепления прилипал заключается в облегчении их передвижения и расселения.
2. Нейтрализм - тип биотической связи, при которой совместно обитающие на одной территории организмы не влияют друг на друга. При нейтрализме особи разных видов не связаны друг с другом непосредственно. Например, белки и лось в одном лесу не контактируют друг с другом.
3. Антибиоз - тип биотической связи, когда обе взаимодействующие популяции (или одна из них) испытывают отрицательное влияние друг друга.
Антибиоз подразделяется на аменсализм, хищничество, конкуренцию и паразитизм.
Аменсализм - форма антибиоза, при которой один из совместно обитающих видов угнетает другой, не получая от этого ни вреда, ни пользы. Пример: светолюбивые травы, растущие под елью, страдают от сильного затемнения, в то время как сами на дерево никак не влияют.
Хищничество - тип антибиоза, при котором представители одного вида питаются представителями другого вида. Хищничество широко распространено в природе, как среди животных, так и среди растений. Примеры: насекомоядные растения; лев, поедающий антилопу и т.д.
Конкуренция - тип биотических взаимоотношений, при котором организмы или виды соперничают друг с другом в потреблении одних и тех же обычно ограниченных ресурсов. Конкуренцию подразделяют на внутривидовую и межвидовую.
Внутривидовая конкуренция - соперничество за одни и те же ресурсы, происходящее между особями одного и того же вида. Это важный фактор саморегулирования популяции. Примеры: птицы одного вида конкурируют из-за места гнездования. Самцы многих видов млекопитающих (например, оленей) в период размножения вступают друг с другом в борьбу за возможность обзавестись семьей.
Межвидовая конкуренция - соперничество за одни и те же ресурсы, происходящее между особями разных видов. Примеры межвидовой конкуренции многочисленны. И волки, и лисы охотятся на зайцев. Поэтому между этими хищниками возникает конкуренция за пищу. Это не значит, что они непосредственно вступают в борьбу друг с другом, но успех одного означает неуспех другого.
Паразитизм - форма антибиоза, когда представители одного вида используют питательные вещества или ткани особей другого вида, а также его самого в качестве временного или постоянного местообитания.
Например, миноги нападают на треску, лососей, корюшку, осетров и других крупных рыб и даже на китов. Присосавшись к жертве минога питается соками ее тела в течение нескольких дней, даже недель. Многие рыбы погибают от нанесенных ею многочисленных ран.
Все перечисленные формы биологических связей между видами служат регуляторами численности животных и растений в сообществе, определяя его устойчивость.
3. Кислотные осадки: причины образования, влияние на экосистемы
Кислотные осадки (дожди, туманы, снег) - это осадки, кислотность которых выше нормальной. Мерой кислотности является значение pH (водородный показатель). Шкала значения pH идет от 02 (крайне высокая кислотность), через 7 (нейтральная среда) до 14 (щелочная среда), причем нейтральная точка (чистая вода) имеет pH=7. Дождевая вода в чистом воздухе имеет pH=5,6. Чем ниже значение pH, тем выше кислотность. Если кислотность воды ниже 5,5, то осадки считаются кислотными. На обширных территориях промышленно развитых стран мира выпадают осадки, кислотность которых превышает нормальную от 10 - 1000 раз (рН= 5-2,5).
Химический анализ кислотных осадков показывает присутствие серной (H2SO4) и азотной (HNO3) кислот. Наличие серы и азота в этих формулах показывает, что проблема связана с выбросом данных элементов в атмосферу. При сжигании топлива в воздух попадает диоксид серы, также происходит реакция атмосферного азота с атмосферным кислородом и образуются оксиды азота.
Эти газообразные продукты (диоксид серы и оксид азота) реагируют с атмосферной водой с образованием кислот (азотной и серной).
В водных экосистемах кислотные осадки вызывают гибель рыб и других водных обитателей. Подкисление воды рек и озер серьезно влияет и на сухопутных животных, так как многие звери и птицы входят в состав пищевых цепей, начинающихся в водных экосистемах.
Вместе с гибелью озер становится очевидной и деградация лесов. Кислоты нарушают защитный восковой покров листьев, делая растения более уязвимыми для насекомых, грибов и других патогенных микроорганизмов. Во время засухи через поврежденные листья испаряется больше влаги.
Выщелачивание биогенов из почвы и высвобождение токсичных элементов способствует замедлению роста и гибели деревьев. Можно предположить, что происходит и с дикими видами животных, когда погибают леса.
Если разрушается лесная экосистема, то начинается эрозия почвы, засорение водоемов, наводнение и ухудшение запасов воды становятся катастрофическими.
В результате закисления в почве происходит растворение питательных веществ, жизненно необходимых растениям; эти вещества выносятся дождями в грунтовые воды. Одновременно выщелачиваются из почвы и тяжелые металлы, которые затем усваиваются растениями, вызывая у них серьезные повреждения. Используя такие растения в пищу, человек также получает вместе с ними повышенную дозу тяжелых металлов.
Когда деградирует почвенная фауна, снижаются урожаи, ухудшается качество сельскохозяйственной продукции, а это, как мы знаем, влечет за собой ухудшение здоровья населения.
Под действием кислот из горных пород и минералов высвобождается алюминий, а также ртуть и свинец. которые затем попадают в поверхностные и грунтовые воды. Алюминий способен вызывать болезнь Альцгеймера, разновидность преждевременного старения. Тяжелые металлы, находящиеся в природных водах, отрицательно влияют на почки, печень, центральную нервную систему, вызывая различные онкологические заболевания. Генетические последствия отравления тяжелыми металлами могут проявиться через 20 лет и более не только у тех, кто употребляет грязную воду, но и у их потомков.
Кислотные дожди разъедают металлы, краски, синтетические соединения, разрушают архитектурные памятники.
4. Основные загрязняющие вещества в выбросах химико-фармацевтических предприятий. Методы анализа
В настоящее время перед фармотраслью остро встают проблемы управления отходами, т.к. в процессе производства лекарственных средств (ЛС) на образуется их большое количество. Это связано с высокой материалоемкостью фармацевтического производства (материальные затраты составляют около 75% от себестоимости готовых ЛС), с выпуском широкого ассортимента ЛС, а следовательно, использованием довольно большой номенклатуры субстанций и материалов, применяемых в производственном процессе. Для решения экологических проблем фармпредприятиям необходимо внедрение реверсивной логистики, т.е. логистических подходов к оптимизации движения отходов.
Классификация отходов:
Отходы - это любое вещество (субстанции, материалы или ЛС), предназначенное или подлежащее утилизации в соответствии с положениями национального законодательства.
Большинство отходов фармпроизводства можно отнести к опасным, что связано с физическими, химическими и биологическими свойствами веществ.
К отходам фармпроизводства относятся:
- отбракованные субстанции и материалы; - возвращенные потребителями ЛС;
- возвращенные ЛС, поставки которых осуществлялись с нарушением условий договора (с нарушением времени или объема поставок);
- возвращенные ЛС, не соответствующие стандартам качества;
- ЛС, поврежденные в процессе транспортировки;
- отбракованные ЛС, не принятые отделом технического контроля;
- использованная тара;
- использованная упаковка;
- ЛС, срок хранения которых истек;
- субстанции и материалы с истекшим сроком годности.
На основании приведенной классификации различных видов отходов очевидно, что их образование связано с разными видами брака при:
производстве ЛС;
упаковке; складировании и хранении субстанций, материалов и ЛС;
транспортировке ЛС.
В процессе производства готовых ЛС образуются твердые, газообразные (отходы в виде выбросов в атмосферу) и жидкие (отходы в виде сточных вод) отходы. Пример распределения отходов в зависимости от консистенции приведен на рисунке 1.
Вид, номенклатура и количество отходов фармпроизводства определяется видом ЛС, выпускаемых фармпредприятием, характером и объемом производства. Состав и место образования отходов приведены в таблице 2.
В связи с широкой номенклатурой отходов и мест их образования стратегия и тактика решения проблем управления отходами предприятия должны основываться на концепции устойчивого развития, включающей экологический, экономический и социальный аспекты. Экологические аспекты фармпредприятия, в первую очередь, связаны с минимизацией вредного воздействия отходов на человека и окружающую среду за счет выбора обоснованного способа их утилизации. Социальные аспекты заключаются в минимизации объемов отходов путем внедрения современных технологий, валидации оборудования и технологических процессов. Экономические аспекты - минимизация затрат на производство ЛС и утилизацию отходов за счет оптимизации движения опасных отходов.
Выбор модели управления запасами отходов
Реверсивная логистика связана со всеми функциональными сферами фармпредприятия: разработкой и созданием субстанций и ЛС, закупкой, производством, транспортировкой, складированием, сбытом, финансированием и т.д., поэтому оптимизация движения отходов позволяет сэкономить ресурсы и достичь целей, поставленных перед фармпредприятиями относительно экологической безопасности. Важным элементом логистики рециклинга на предприятии является оптимизация подходов к управлению запасами отходов на складах запрещенного товара. На основании проведенных исследований доказано, что эффективным является использование системы с фиксированным размером запаса.
В модели управления запасами с фиксированным размером запаса объем вывоза отходов является постоянной величиной. Предельно допустимый объем запаса отходов определяет уровень запаса, при достижении которого осуществляется заказ транспортных средств, необходимых для вывоза отходов, и рассчитывается по критерию минимизации совокупных затрат для рациональной загрузки площадей склада запрещенного товара.
При управлении отходами фармацевтическое предприятие стремится, во-первых, к минимизации расходов на складирование, хранение и транспортировку отходов, во-вторых, к сокращению штрафов за хранение сверхнормативных объемов отходов и времени их хранения. Предельно допустимый объем запасов отходов должен быть не меньше (в денежном выражении) расходов на их транспортировку. При этом модель управления запасами должна обеспечивать реализацию целей и функций фармпредприятия при уменьшении объема загрязнения окружающей среды.
Выбор данной модели, с одной стороны, обусловлен высокими расходами на транспортировку отходов и незначительным влиянием изменения объема отходов на расходы, связанные с их хранением (расходы на хранение больших объемов отходов значительно ниже расходов на их частую транспортировку), но при этом необходимо учитывать токсичность отходов, их влияние на работников предприятия и штрафы за несанкционированное хранение сверхнормативных объемов отходов. Несмотря на все преимущества, предложенная система имеет недостатки - необходимость постоянного контроля за уровнем запасов отходов. Таким образом предложена типовая логистическая цепь процесса управления отходами, разработана модель и программа управления предельно допустимыми объемами запасов отходов на фармпредприятиях.
5. Физическое загрязнение окружающей природной среды. Тепловое загрязнение водных объектов: источники, последствия, пути преодоления
Загрязнением называют привнесение в окружающую природную среду новых, не характерных для нее агентов: химических (твердых, жидких и газообразных веществ), физических (энергий - в виде звуков, шумов, излучений), биологических (микроорганизмов) в количествах, вредных для здоровья человека, животных, состояния растений и экосистем или превышение естественного уровня этих агентов в среде.
По видам загрязнения выделяют: 1) химические (тяжелыми металлами, пестицидами, отдельными химическими веществами и элементами, синтетическими поверхностно-активными веществами (СПАВ), пластмассами), 2) физические (тепловое, шумовое, радиоактивное, электромагнитное), 3) биологические (биогенное, микробиологическое, продукты и живые организмы, появляющиеся в результате исследований в области генной инженерии).
Физические загрязнения, в свою очередь, подразделяются на: тепловые, шумовые, радиоактивные, электромагнитные. Рассмотрим источники, действие каждого из этих подвидов на окружающую среду и здоровье человека.
Тепловое загрязнение. Наиболее масштабное однократное употребление воды - производство электроэнергии, где она используется главным образом для охлаждения и конденсации пара, вырабатываемого турбинами тепловых электростанций. При этом вода нагревается в среднем на 7° С, после чего сбрасывается непосредственно в реки и озера, являясь основным источником дополнительного тепла, который который называют "тепловым загрязнением".
Тепловое загрязнение - (син. термическое загрязнение), один из видов физического загрязнения, происходящего в результате повышения температуры среды за счет использования человеком энергии, главным образом при сжигании ископаемого топлива (90%).
Повышение температуры в водоемах пагубно влияет на жизнь водных организмов. В процессе эволюции холоднокровные обитатели водной среды приспособились к определенному интервалу температур. Для каждого вида существует температурный оптимум, который на определенных стадиях жизненного цикла может несколько изменяться. В каких-то пределах эти организмы способны приспосабливаться к жизни при более высоких или более низких температурах. Если организм живет в условиях самых высоких значений присущего ему температурного интервала, он настолько к ним приспосабливается, что гибель его может наступать при температурах несколько более высоких, чем для организма, постоянно живущего в условиях более низких температур. Большая часть водных организмов быстрее приспосабливается к жизни в более теплой воде, нежели в более холодной. Однако способность к адаптации не имеет абсолютных максимальных или минимальных пределов и меняется в зависимости от вида.
В естественных условиях при медленных повышениях или понижениях температур рыбы и другие водные организмы постепенно приспосабливаются к изменениям температуры окружающей среды. Но если в результате сброса в реки и озера горячих стоков с промышленных предприятий быстро устанавливается новый температурный режим, то времени для акклиматизации не хватает, живые организмы получают тепловой шок и погибают.
Тепловой шок - это крайний результат теплового загрязнения. Результатом сброса в водоемы нагретых стоков могут быть и иные, более серьезные, последствия. Одним из них является влияние на процессы обмена веществ. Согласно закону Ван Хоффа, скорость химической реакции удваивается с увеличением температуры на каждые 10 °С. Поскольку температура тела холоднокровных организмов регулируется температурой окружающей водной среды, повышение температуры воды усиливает скорость обмена веществ у рыб и водных беспозвоночных. В свою очередь, это повышает их потребность в кислороде. В результате же возрастания температуры воды содержание в ней кислорода падает. Нехватка кислорода вызывает жестокий физиологический стресс и даже смерть.
В летнее время повышение температуры воды всего на несколько градусов может вызвать 100%-ную гибель рыб и беспозвоночных, особенно тех, которые обитают у южных границ температурного интервала. Искусственное подогревание воды может существенно изменить и поведение рыб -- вызвать несвоевременный нерест, нарушить миграцию. Если разрушающая сила электростанций превышает способность видов к самовосстановлению, популяция приходит в упадок.
Если тепловое загрязнение усугубляется поступлением в водоем органических и минеральных веществ (смыв удобрений с полей, навоза с ферм, бытовые стоки), происходит процесс эвтрофикации, т. е. резкого повышения продуктивности водоема. Азот и фосфор, служа питанием для водорослей, в том числе микроскопических, позволяют последним резко усилить свой рост. Размножившись, они начинают закрывать друг другу свет, в результате чего происходит их массовое отмирание и гниение. Процесс сопровождается ускоренным потреблением кислорода: он может оказаться полностью исчерпанным, а это грозит гибелью всей экосистемы.
Кроме того, что электростанции способны изменять среду обитания водных организмов, они могут оказывать на них и физическое влияние. Соленая вода, использующаяся для охлаждения, оказывает значительное коррозирующее влияние на металлические поверхности и вызывает высвобождение ионов металлов, особенно меди, в воду. Ракушечные животные накапливают медь в таких количествах, что становятся опасными при использовании их в пищу.
Все перечисленные выше последствия теплового загрязнения водоемов наносят огромный вред природным экосистемам и приводят к пагубному изменению среды обитания человека. Ущерб в результате теплового загрязнения можно условно разделить на несколько направлений:
- экономический (потери вследствие снижения продуктивности водоемов, затрат на ликвидацию последствий от загрязнения);
- социальный (эстетический ущерб вследствие деградации ландшафтов);
- экологический (необратимые разрушения уникальных экосистем, исчезновение видов, генетический ущерб).
6. Космическое пространство. Международные правовые акты об охране космоса от загрязнения
Космическое пространство (синоним понятия Вселенная) - весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которую принимает материя в процессе своего развития. Выделяют так называемый "ближний космос", исследуемый при помощи ИСЗ, космических аппаратов и межпланетных станций, и "дальний космос" - мир звезд и галактик.
При запуске и полете большинства космических аппаратов выбрасывается большое количество окислов азота. В составе твердого топлива ракет используются перхлораты, которые служат источниками поступления в атмосферу хлора. Тведотопливные ускорители американских "Шаттлов" интенсивно загрязняют атмосферу и разрушают озоновый слой. Один запуск "Шаттла" уничтожает до 1 млн т озона. Ракеты "Энергия" используют в качестве топлива в основном кислород, водород и частично керосин. Такое топливо тоже не безвредно за счет содержания в нем разных добавок, но оно причиняет меньший ущерб окружающей среде. С развитием космонавтики возникла проблема загрязнения околоземного пространства обломками космических аппаратов. Космический мусор появляется в процессе работы орбитальных космических аппаратов, их последующей преднамеренной ликвидации. Он включает в себя также отработавшие космические аппараты, разгонные блоки, отделяемые элементы конструкций типа переходников пироболтов, крышек, обтекателей, последние ступени ракетоносителей и т.п. По имеющимся данным в настоящее время в ближнем космосе находится около 3 тыс. т космического мусора, что составляет около 1% от массы всей верхней атмосферы выше 200 км. Растущее засорение космоса представляет серьезную опасность для космических станций и пилотируемых полетов.
Космический мусор опасен не только для космонавтов и космической техники, но и для землян. Специалисты подсчитали, что из каждых 150 достигающих поверхности Земли обломков космических аппаратов один с большой вероятностью может серьезно ранить и даже убить человека. Начиная с 4 октября 1957 года и по настоящее время более десяти тысяч предметов "вернулись" на Землю. При этом в 1969 году фрагмент, потерянный советским космическим кораблем, упал на японское торговое судно и ранил пятерых моряков.
В настоящее время над Землей вращаются 58 ядерных энергетических установок. Большей частью это реакторы спутников, завершивших свою работу. Чтобы они не упали на Землю, их выводят на стационарные высокие орбиты. Однако реакторы излучают радиацию, и она ощущается за сотни километров. Суммарная масса радиоактивных веществ, находящихся на этих объектах, составляет 1 т. Они являются основным источником гамма-нейтронного и электронного излучения, которое может изменить естественный фон этих излучений в околоземном космическом пространстве, а испускание электронов может привести к вариациям электронной плотности в ионосфере и изменениям потоков электронов в радиационных полюсах Земли. Известны случаи, когда из-за технических неполадок радиоактивные материалы попадали из космоса в атмосферу и даже на поверхность нашей планеты. В 1964 году американский спутник "Снеп_9А" не вышел на орбиту и выбросил в атмосферу радиоактивный плутоний. В 1978 году советский спутник "Космос_954" вошел в плотные слои атмосферы и распался, потеряв над территорией Канады ядерную установку.
Космическое пространство не находится под юрисдикцией какого-либо государства. Это в чистом виде международный объект охраны. Свое отношение к Космосу мировое сообщество выразило в двух документах: в Декларации правовых принципов деятельности государств по использованию космического пространства, принятой Генеральной Ассамблеей ООН (1963 г.), и в Договоре о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела (1967 г.). В этих документах нашли свое отражение основные принципы космического правопорядка: Космос - достояние человечества; недопустимость национального присвоения частей космического пространства; использование космического пространства исключительно в мирных целях; недопустимость вредного воздействия на Космос и загрязнения космического пространства.
Список использованной литературы
1. Данилов-Данильян В.И. "Экология, охрана природы и экологическая безопасность" М.: МНЭПУ, 1997 г.
2. Протасов В.Ф. "Экология, здоровье и охрана окружающей среды в России", М.: Финансы и статистика, 1999 г.
3. Белов С.В. "Безопасность жизнедеятельности" М.: Высшая школа, 1999 г.
4. Данилов-Данильян В.И. "Экологические проблемы: что происходит, кто виноват и что делать?" М.: МНЭПУ, 1997 г.
5. Агаджанян Н.А., Торшин В.И. Экология человека. Избранные лекции. - М.: Крук, 1994. - 256 с.
6. Алексеев В.П. Очерки экологии человека. - М.: Наука, 1993. - 191 с.32
7. Экология человека: Словарь-справочник // Н.А. Агаджанян, И.Б. Ушаков, В.И. Торшин, П.С. Турзин и др. - М.: Крук, 1997. - 208 с.
Размещено на Allbest.ru
...Подобные документы
Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.
методичка [66,2 K], добавлен 07.01.2012Структура современной экологии, основные экологические понятия и термины. Учение В.И. Вернадского о биосфере, биогеохимические циклы. Антропогенный фактор в биосфере и основы социоэкологии. Последствия загрязнения атмосферного воздуха и водных ресурсов.
курс лекций [60,7 K], добавлен 15.02.2012Влажность как экологический фактор. Кислотные дожди: их причина и вредное влияние, последствия выпадений для водоёмов. Особо охраняемые природные территории. Государственные природные заповедники, примеры. Малый и большой круговорот воды в биосфере.
контрольная работа [827,4 K], добавлен 22.10.2012Что такое биосфера, ее особенности и закономерности в теории Вернадского. Идеи о живом веществе, учение Вернадского о биосфере как ключевая, центральная концепция современного естествознания. Учение о ноосфере как качественно новом состоянии биосферы.
реферат [29,4 K], добавлен 03.10.2009Определение уровня кислотности у любой дождевой воды. Влияние ее на здоровье человека и животных. Причины образования и последствия кислотных осадков в природе, технике, архитектуре. Изменение экосистемы водоемов и прудов, их заболачивание, засорение.
презентация [1,6 M], добавлен 16.04.2014Предмет и задачи экологии. Учение Вернадского о биосфере. Классификация экологических факторов. Абиотические факторы наземной среды. Лучистая энергия солнца. Влажность атмосферного воздуха, атмосферные осадки. Газовый состав атмосферы. Давление атмосферы.
лекция [141,8 K], добавлен 01.01.2009Изучение взаимодействия объектов железнодорожного транспорта с окружающей средой. Анализ экологической обстановки в районах сельскохозяйственной деятельности. Обзор закона незаменимости биосферы, биогенной миграции атомов, структуры и функций экосистем.
реферат [34,9 K], добавлен 18.01.2012Биологическое разнообразие планеты, функциональные блоки биосферы как самой большой экосистемы; цианеи, растения, бактерии, животные. Основные циклы и кругообороты веществ в биосфере. Глобальные нарушения в результате хозяйственной деятельности человека.
реферат [18,0 K], добавлен 10.01.2010Зарождение и становление экологии как науки. Взгляды Ч. Дарвина на борьбу за существование. Оформление экологии в самостоятельную отрасль знаний. Свойства "живого вещества" согласно учению В.И. Вернадского. Превращение экологии в комплексную науку.
реферат [36,5 K], добавлен 21.12.2009Пути миграции углекислого газа в биосфере Земли. Процессы, возмещающие потери азота. Особенности миграции углекислого газа. Организмы биосферы участвующие в круговороте веществ. Формы проявления серы в почве. Роль фотосинтеза в круговороте веществ.
презентация [667,7 K], добавлен 17.02.2013Появление и развитие жизни на Земле - уникальное явление во всей Солнечной системе. Актуальность и необходимость знаний о биосфере в современном мире. Учение Вернадского о биосфере. Процесс качественных изменений организмов в ходе геологического времени.
контрольная работа [23,8 K], добавлен 12.11.2013Ухудшение природной обстановки. Мероприятия, связанные с охраной природы. Законы американских ученых. Новые экосистемы, созданные человеком. Всемирная стратегия охраны окружающей среды. Экономическое, историческое и социальное значение охраны природы.
контрольная работа [44,6 K], добавлен 20.10.2013Биосфера как арена жизни, основные ее черты. Характеристика воздушной, водной и почвенной оболочки земного шара. Понятие и химический состав живого вещества, его средообразующие свойства и функции. Влияния деятельности человека на биосферные процессы.
реферат [33,5 K], добавлен 21.11.2010Общее определение и основные направления экологии. Сущность и составные элементы экосистемы. Трофические связи в экосистемах. Вклад В.И. Вернадского в развитие науки. Основные экологические проблемы современности и влияние общества на экологию.
реферат [23,1 K], добавлен 13.05.2011Факторы, определяющие длину пищевых цепей и механизм передачи энергии по ним. Особенности функционирования типичных наземных экосистем. Сущность предельно-допустимой концентрации загрязняющих веществ в атмосфере. Животные в круговороте веществ в природе.
контрольная работа [249,5 K], добавлен 17.06.2009Большой и Малый Арал, краткая история образования. Причина высыхания Аральского моря. Изменение климата Приаралья. Пути стабилизации экосистемы района. Причины падения уровня воды в море, меры предупреждения. Особенности восстановления ирригационной сети.
презентация [294,0 K], добавлен 25.02.2015Понятие, структура и виды экосистем. Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах. Особенности циркуляции солнечной энергии. Биосфера как глобальная экосистема; взаимодействие живого и неживого, биогенная миграция атомов.
курсовая работа [67,1 K], добавлен 10.07.2015Основные этапы исторического развития экологии; зарождение и популяризация дисциплины в период античности и в Средневековье. Формирование зоологии и анатомии как отраслей экологического знания. Раскрытие понятия о биосфере Земли в трудах Вернадского.
контрольная работа [25,7 K], добавлен 26.10.2011Вещества, загрязняющие атмосферу и их состав в выбросах, основные загрязнители атмосферы. Методы расчетов выбросов загрязняющих веществ в атмосферу, характеристика предприятия как источника загрязнения атмосферы. Результаты расчетов выбросов веществ.
курсовая работа [48,1 K], добавлен 13.10.2009Эффекты воздействия токсичных веществ на экосистемы и их круговорот в биосфере. Источники поступления токсикантов в биосистемы. Токсические эффекты действия химических веществ на живые организмы. Устойчивость биосистем к токсическому загрязнению.
контрольная работа [28,7 K], добавлен 13.09.2013