Очистка сточных вод

Сущность сточных вод, нормирование качества воды в водоёмах. Характеристика механических, биохимических и физико-химических методов очистки сточных вод, способы удаления ионов тяжелых металлов из них. Замкнутые системы водоиспользования на предприятиях.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 26.03.2015
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Нормирование качества воды в водоёмах

2. Методы очистки сточных вод

2.1 Механические методы

2.2 Биохимические методы

2.3 Физико-химические методы

2.4 Методы удаления ионов тяжелых металлов

2.5 Методы удаления поверхностно-активных веществ и фенолов

3. Замкнутые системы водоиспользования на предприятиях

Заключение

Список литературы

Введение

Сточные воды -- любые воды и атмосферные осадки, отводимые в водоёмы с территорий промышленных предприятий и населённых мест через систему канализации или самотёком, свойства которых оказались ухудшенными в результате деятельности человека.

Очистка сточных вод -- комплекс мероприятий по удалению загрязнений, содержащихся в бытовых и промышленных сточных водах.

Вода - ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания.

Рост городов, бурное развитие промышленности, интенсификация сельского хозяйства, значительное расширение площадей орошаемых земель, улучшение культурно-бытовых условий и ряд других факторов все больше усложняет проблемы обеспечения водой.

Потребности в воде огромны и ежегодно возрастают. Ежегодный расход воды на земном шаре по всем видам водоснабжения составляет 3300-3500 км3. При этом 70% всего водопотребления используется в сельском хозяйстве.

Много воды потребляют химическая и целлюлозно-бумажная промышленность, черная и цветная металлургия. Развитие энергетики также приводит к резкому увеличению потребности в воде. Значительное кол-во воды расходуется для потребностей отрасли животноводства, а также на бытовые потребности населения. Большая часть воды после ее использования для хозяйственно-бытовых нужд возвращается в реки в виде сточных вод.

Дефицит пресной воды уже сейчас становится мировой проблемой. Все более возрастающие потребности промышленности и сельского хозяйства в воде заставляют все страны, ученых мира искать разнообразные средства для решения этой проблемы.

На современном этапе определяются такие направления рационального использования водных ресурсов: более полное использование и расширенное воспроизводство ресурсов пресных вод; разработка новых технологических процессов, позволяющих предотвратить загрязнение водоемов и свести к минимуму потребление свежей воды.

1. Нормирование качества воды в водоёмах

Вода в природе находится в непрерывном движении во всех основных сферах Земли: гидросфере, атмосфере, литосфере и биосфере. Общий объем гидросферы на Земле оценивается в 1389 млн. км3. Вода занимает 3/4 поверхности земного шара. Однако ресурсы пресной воды на Земле по сравнению с соленой невелики и составляют по расчетам различных авторов 35--39 млн. км3, т.е. 2,0--2,5% от всех мировых запасов. Потребление пресной воды в мире достигает 3900 млрд. м3/год. Из этого количества половина теряется безвозвратно, а другая половина переходит в сточные воды.

Основными источниками пресной воды являются полярные льды и ледники -- 29 * 106, грунтовые воды -- 9,5 * 106, вода в озерах -- 120 * 103, вода в реках -- 12 * 103, вода в почве -- 21 * 103 и влага в атмосфере -- 13 * 103 км3.

Под действием солнечного тепла вода с поверхности земли и водных бассейнов испаряется в атмосферу, а затем выпадает в виде осадков. С водой связаны основные процессы формирования лика Земли: эрозия горных пород и почв, перемещение и накопление огромных масс взвешенных и растворимых веществ. Вода играет решающую роль во многих процессах, протекающих в природе, и в обеспечении самой жизни на Земле. Вода участвует в биологическом круговороте, являясь важнейшей составной частью фауны и флоры.

Природная вода -- универсальный растворитель. В результате постоянной циркуляции на поверхности Земли, в почвенных слоя и подземных толщах она в большей или меньшей степени загрязняется различными солями (хлоридами, сульфатами, карбонатами натрия и кальция, железа, марганца и др.), органическими веществами (гуминовыми и фульвокислотами), производственными и транспортными отходами и газами, а также глинистыми частицами, стоками с полей и живыми организмами (планктоном, различными бактериями и вирусами). Поэтому в чистом виде вода в природе не встречается.

Пресные воды подразделяются на воды малой минерализованности (до 200 мг/л), средней (200--500 мг/л) и повышенной (500--1000 мг/л). Воды большинства рек Казахстана относятся к первым двум группам. По преобладающему аниону воды делятся на гидрокарбонатные, сульфатные и хлоридные.

Наличие в воде солей кальция и магния определяют ее жесткость. Различают карбонатную и некарбонатную жесткость. Карбонатная жесткость связана с присутствием в воде бикарбонатов кальция и магния, а некарбонатная -- сульфатов, хлоридов, нитратов кальция и магния.

Качество воды рек, озер и водохранилищ определяется в соответствии с «Санитарными правилами и нормами охраны поверхностных вод от загрязнений», согласно которым устанавливается две категории водоемов: I -- водоемы питьевого и культурно-бытового назначения и II -- водоемы рыбохозяйственного назначения. Состав и свойства воды водных объектов первого типа должны соответствовать нормам в створах, расположенных в водостоках на расстоянии одного километра выше ближайшего по течению, а в непроточных водоемах -- в радиусе одного километра от пункта водоиспользования. Состав и свойства воды в рыбохозяйственных водоемах должны соответствовать нормам в месте выпуска сточных вод при рассеивающем выпуске (наличие течений), а при отсутствии рассеивающего выпуска не далее, чем в 500 м от всего выпуска.

Для определения содержания в сточных водах токсичных примесей с целью выбора метода очистки, возврата в оборот, слива в канализацию, а также возможности их сброса в водоем необходим анализ химического состава. Вредные и ядовитые вещества разнообразны по своему составу и свойствам, в связи с чем их содержание нормируют по принципу лимитирующего показателя вредности (ЛПВ), под которым понимают наиболее вероятное неблагоприятное воздействие каждого вещества. При нормировании качества воды в водоемах питьевого и культурно-бытового назначения используют три вида ЛПВ: санитарно-токсикологический, общесанитарный и органолептический.

Контроль состава сточных вод заключается в определении следующих показателей: температуры, цвета, запаха, прозрачности по шрифту, рН (водородный показатель), содержания взвешенных веществ, величины сухого остатка, общей кислотности и щелочности, окисляемости, химического потребления кислорода (ХПК), биохимического потребления кислорода (ВПК), содержания хлоридов и сульфатов.

Важным показателем чистоты и свойств состава воды является рН. Согласно ГОСТ 2874-81 «Вода питьевая» допускаются его колебания в пределах 6,5--8,5. Отклонение рН от этих значений указывает на нарушение стабильности воды и возможное ее загрязнение.

Содержание грубодисперсных взвешенных веществ выражают в мг/л и определяют фильтрованием 1 л воды через бумажный фильтр, который затем высушивают при 105-- 110°С до постоянной массы. Вес высушенного остатка определяет содержание в воде взвешенных веществ.

Окисляемость воды выражается в миллиграммах кислорода, расходуемого для окисления веществ, содержащихся в 1 л воды. В зависимости от используемых окислителей и полноты окисления органических веществ различают перманганатную и бихроматную окисляемость. Перманганатная окисляемость характеризует количество легко окисляющихся органических примесей и обычно используется при анализе природных вод.

Показателем содержания органических примесей в сточных водах является ХПК, определяемое с помощью бихромата калия в присутствии серной кислоты, В этом случае происходит практически полное окисление растворимых, коллоидных и нерастворимых органических примесей. Степень окисления органических веществ обычно составляет 95--98%. Степень загрязненности сточных вод выражается также количеством кислорода, необходимого для окисления органических веществ микроорганизмами в аэробных условиях БПК. Практически полным его значением считается количество кислорода, необходимого для окисления органических веществ до начала нитрификации -- БПКПОЛН. Наряду с ним определяется биохимическое потребление кислорода в течение 5 суток -- БПК5.

Разность между ХПК и БПК характеризует наличие примесей в воде, не окисляющихся биохимическим путем. Для бытовых сточных вод БПКПОЛН составляет 85--90% от ХПК. По величине соотношения БПКПОЛН/ХПК можно судить о возможности применения определенного метода очистки сточных вод. Если БПКПОЛИ/ХПК > 0,5, то это указывает на возможность применения биохимической очистки сточных вод. При БПКПОЛН/ХПК < 0,5 использование этого метода малоэффективно, так как в воде содержится значительное количество биологически неокисляемых веществ. Для таких сточных вод более целесообразным является применение физико-химических и химических методов очистки.

Предельно-допустимая концентрация (ПДК) вредного (загрязняющего вещества) в воде водоема -- концентрация, которая не оказывает вредного воздействия на организм человека при употреблении воды для питья, приготовления пищи, гигиенических целей и для отдыха. Для разных категорий водоемов устанавливаются различные значения ПДК загрязняющих веществ. При оценке опасности загрязнений следует учитывать фауну водоемов. Рыбы по сравнению с теплокровными животными более чувствительны к токсичным веществам. Для ассимиляции необходимого количества кислорода из внешней среды рыбы пропускают его вместе с водой через жабры и вводят в организм больше токсичного вещества, чем теплокровные животные пропускают с воздухом через легкие. Например, для карпов смертельная концентрация фенола при поступлении через жабры в 50 раз меньше, чем при попадании через ротовое отверстие.

Вода, используемая для питья, не должна содержать никаких патогенных микробов, являющихся причиной заболевания живых организмов. Качество питьевой воды оценивается косвенными бактериологическими показателями. К ним относятся кишечная палочка и общее количество бактерий -- метатрофов. В качестве единиц бактериального загрязнения служат колититр и колииндекс.

Таким образом, при оценке степени загрязненности воды и обосновании ПДК вредных веществ в водоемах необходимо учитывать весь комплекс влияния вредных веществ на качество воды, используемой для различных целей.

2. Методы очистки сточных вод

Производственные сточные воды железнодорожных предприятий представляют собой сложные системы, содержащие минеральные и органические вещества, состав и количество которых, как правило, определяется характером технологических процессов. Загрязнения могут находиться в воде в виде взвешенных частиц различного размера (дисперсные системы -- взвеси и коллоидные растворы) и в истинно растворенном состоянии. Взвеси характеризуются размером частиц более 0,1 мкм (суспензии и эмульсии), а коллоидные растворы -- 0,1--0,0001 мм. В истинных растворах размеры частиц соизмеримы с размерами отдельных молекул или ионов. Взвеси делятся на суспензии -- твердая фаза распределена в жидкой и эмульсии -- жидкая фаза диспергирована в жидкости.

Очистка сточных вод предприятий железнодорожного транспорта может осуществляться механическими, физико-химическими, химическими, биологическими и другими методами. Взвешенные вещества, плавающие нефтепродукты и т.п. удаляются механическими методами -- отстаиванием, фильтрацией, центрифугированием и др. Мелкодисперсные, коллоидно-растворенные и растворенные примеси удаляются физико-химическими способами, которые включают в себя коагуляцию, флотацию, сорбцию, флокуляцию, ионный обмен, ультрафильтрацию, электродиализ I и химическими -- озонирование, реагентное воздействие, умягчение и др.

Из-за сложного состава сточных вод при их очистке используются комбинации различных методов. Во всех случаях первой стадией является механическая очистка, способствующая удалению взвешенных частиц.

2.1 Механические методы

Для удаления взвешенных частиц (твердых и жидких) используют гидромеханические способы очистки, а также фильтрование. Выбор метода зависит от размера частиц примесей, их свойств, концентрации, расхода сточных вод и необходимой степени очистки. Для предварительной очист¬ки сточные воды пропускают через решетки, с отверстиями 10--12мм, устанавливаемые перед отстойниками, с целью извлечения крупных механических примесей, которые могут засорить трубы и каналы. Решётки бывают подвижными неподвижными. Их располагают в приемных колодцах. Наи¬большее распространение получили неподвижные решетки, совмещенные с дробилками.

Рис. 5.1. Песколовка ще-левая: / -- колодец железобетонный; 2 -- труба; 3 -- лоток.

Отстаивание Применяется для осаждения из сточных вод грубодисперсных примесей в песколовках, отстойниках, гидроциююнах и осветлителях. В осветлителях одновременно с отстаиванием происходит фильтрация сточных вод через слой взвешенных частиц. Песколовки (щелевые, горизонтальные, вертикальные) применяют для предварительного выделения минеральных и органических загрязнений (0,2 0,25 мм). Они устанавливаются перед отстойниками и позволяют выделять минеральные примеси и грубодисперсные частицы, содержащие нефтепродукты. При расходе сточных вод до 100 м3/ч применяют щелевые песколовки (рис. 5.1), при большом расходе -- горизонтальные и вертикальные. Скорость движения сточной воды в горизонтальных песколовках принимают в пределах 0,1--0,3 м/с, а в вер тикальных -- 0,02--0,05 м/с при времени пребывания воды в отстойнике 30--60 с. Постоянная скорость потока жидкости обеспечивается конструктивными особенностями песколовок.

Основные размеры горизонтальной песколовки, схема которой дана на рис. 5.2, определяются по формулам;

L=vHK/u -- длина проточной части;

В =Q/(Hvu) -- ширина отделения песколовки;

F=Q/u -- площадь в плане,

где v -- скорость движения сточной воды, м/с (v = 0,004--0,006 м/с); Н-- глубина проточной части песколовки, м; К -- коэффициент, учитывающий вихревые и струйные образования; и -- скорость осаждения механических частиц, м/с; Q -- расход сточных вод, м3/сут.

Скорость осаждения частиц зависит от гидравлической крупности и0 (мм/с) и среднего значения вертикальной составляющей продольной скорости IV:

Горизонтальная песколовка задерживает 15 -- 20% минеральных примесей из сточных вод. Вертикальная песколовка -- отстойник из сборного железобетона -- по эффективности работы аналогична горизонтальным песколовкам.

Отстойники (нефтеловушки) применяют в качестве первой ступени очистных сооружений для удаления из сточных вод основной массы взвешенных веществ и нефтепродуктов. По направлению движения воды они разделяются на горизонтальные, вертикальные и радиальные (рис. 5.3 а, б, в).

Горизонтальный отстойник (рис. 5.3 а) представляет собой прямоугольный резервуар, имеющий два или более одновременно работающих отделения. Вода движется от одного конца отстойника к другому. Равномерное распределение сточной воды достигается с помощью поперечного лотка. Горизонтальные отстойники рекомендуется применять при расходе сточных вод свыше 15 000 м3/сут.

Рис. 5.2. Отстойники:

а -- горизонтальный: / -- входной лоток; 2 -- отстойная камера; 3 -- выходной лоток; 4 -- приямок; 6 -- вертикальный: / -- цилиндрическая часть; 2 -- центральная труба; 3 -- желоб; 4 -- коническая часть; в -- радиальный: / -- корпус; 2 -- желоб; 3 -- распределительное устройство; 4 -- успокоительная камера; 5 -- скребковый механизм

Эффективность отстаивания достигает 60%. Горизонтальная скорость движения воды в отстойнике не превышает 0,01 м/с. Продолжительность отстаивания составляет 1--3 часа. Вертикальный отстойник (рис. 5.3 б) представляет собой цилиндрический или квадратный резервуар с коническим днищем. Сточная вода подводится по центральной трубе и движется снизу вверх по желобу. Осаждение происходит в восходящем потоке, скорость движения которого составляет 0,5--0,6 мм/с. Высота зоны осаждения А--5 мм. Эффективность осаждения в вертикальных отстойниках меньше, чем в горизонтальных на 10--20%. Радиальный отстойник

Рис. 5.3. Нефтеловушка: / -- скребковый механизм; 2 -- нефтесборная труба; 3 -- гидроэлеватор.

Для очистки сточных вод от основной массы нефтепродуктов (более 100 мг/л) применяются нефтеловушки преимущественно горизонтального типа (рис. 5.4). Принцип их работы основан на различии в плотности нефтепродуктов и механических примесей. Всплывающую нефть собирают щелевыми поворотными трубами, а твердый осадок удаляют через донный клапан или гидроэжектором. Для обогрева всплывающего слоя нефтепродуктов в зимнее время предусмотрен паровой подогреватель. Эффективность очистки сточных вод от нефтепродуктов в горизонтальных нефтеловушках составляет 60--70%, а в многополочных достигает 98%.

Осветлители (рис. 5.5) применяют для очистки сточной воды, содержащей органически загрязнёния, путем предварительной ее аэрации, флокуляции и отстаивания с последующей фильтрацией через образующийся слой взвешенного осадка в восходящем потоке. Воду с коагулянтом подают в нижнюю часть осветлителя. Хлопья коагулянта и увлекаемые им частицы взвеси поднимаются восходящим потоком воды до тех пор, пока скорость выпадения их не станет равной скорости восходящего потока (сечение I -- I). Выкис этого сечения образуется слой осадка, через который фильтруется осветленная вода. Осадок удаляется в осадкоуплотнитель, а осветленная вода поступает в желоб, из которого направляется на дальнейшую очистку. Эффективность осветления сточных вод, способных к флокуляции, составляет 70%, в то время как в вертикальных отстойниках она не превышает 40%. Конструкции осветлителей разнообразны и различаются по форме рабочей камеры, наличию или отсутствию дырчатого днища под слоем взвешенного осадка, способу удаления избыточного осадка, конструкции и месту расположения осадкоуплотнителей.

Для выделения из сточных вод тонкодисперсных или жидких веществ, удаление которых отстаиванием затруднительно, применяют фильтрование через фильтры с сетчатыми элементами (микрофильтры, барабанные сетки) и фильтры с фильтрующим зернистым слоем. Фильтры с зернистым слоем получили большое распространение. Они подразделяются на медленные и скоростные (скорые), открытые и закрытые. Высота слоя в открытых фильтрах равна 1--2 м, в закрытых -- 0,5--1 м. Напор воды в закрытых фильтрах создается насосами.

Медленные фильтры используют для фильтрования некоагулированных сточных вод. Скорость фильтрования в них зависит от концентрации взвешенных частиц. При содержании взвешенных примесей в сточных водах до 25 мг/л принимают скорость фильтрования 0,2--0,3 м3/ч; при 25-- 50 мг/л ОД--0,2 м3/ч. Достоинством таких фильтров является высокая степень очистки, недостатком -- большие размеры, высокая стоимость и сложность удаления осадков.

Скоростные фильтры (рис. 5.6) могут быть двух типов: однослойные и многослойные. У однослойных фильтров фильтрующий слой состоит из однородного материала, у многослойных -- из смеси различных материалов (песок, антрацит и др.). Сточная вода проходит через фильтрующий материал и удаляется из фильтра. После засорения фильтрующего материала проводят его промывку, подавая промывную воду снизу вверх. Общая высота слоя загрузки составляет 1,5--2,0 м. Скорость фильтрования принимается равной 12--20 м/ч. Для более эффективной очистки фильтров используют водо-воздушную промывку, при которой зернистый слой сначала продувается воздухом для взрыхления, а затем подается вода. Интенсивность подачи воздуха изменяется в пределах от 18 до 22 л (м2/с), а воды -- от 6 до 7 л (м2/с). После отстаивания сточные воды содержат тонкодиспергированные нефтепродукты, которые можно выделить фильтрованием. В качестве фильтрующего материала применяют кварцевый песок, керамзит, графит, кокс, полимерные материалы. При фильтровании сточных вод, содержащих нефть, через песчаный фильтр адгезия гидрофильных зерен песка и гидрофобных нефтяных частиц происходит в результате неодинаковых гидрофильных свойств отдельных участков поверхности зерен песка. Сила адгезии частиц нефтепродуктов зависит от энергии поверхностного натяжения и размера частиц нефтепродуктов. Для нормальной работы фильтра исходное содержание нефтепродуктов в сточной воде не должно превышать 60--80 мг/л, а механических примесей -- 50 мг/л.

Для очистки нефтесодержащих сточных вод внедрена промышленная установка «Кристалл» (рис. 5.7). На этой установке были испытаны клеевые объемные фильтровальные материалы сипрон и вазопрон, которые показали высокую адсорбционную активность к нефтепродуктам. Практичен кое применение находит эффективный фильтрующий материал пенополиуретан (ППУ), 1 дм2 которого поглощает 950--980 г нефтепродуктов. Пенополиуретан регенерируют так же, как нетканые материалы; при этом с него удаляется до 95% нефтепродуктов. Применение этого материала позволяет проводить фильтрование со скоростью 15--30 м3/ч. На основе пенополиуретана разработаны фильтры «Полимер» для очистки сточных вод от масел и нефтепродуктов. Фильтры представляют собой прямоугольные в плане емкости, заполненные измельченным пенополиуретаном (рис. 5.8). Сточные воды поступают в верхнюю часть фильтра и равномерно распределяются по всей площади загрузки. Пройдя слой ППУ, стоки освобождаются от масел, нефтепродуктов, взвешенных веществ и по обводному трубопроводу выводятся из фильтра, регенерация которого осуществляется механическим отжимом.

Общая схема очистных сооружений включает песколовки, нефтеловушки и фильтры «Полимер». Работа по та кой схеме позволяет получить высокую степень очистки, обеспечивающую возможность использования воды в обороте, а также дает большую экономию средств. Внедрение фильтров «Полимер» более чем в 20 раз повышает грязсемкость кварцевого песка и полистирола, а количество регенерата, образующегося в процессе механического отжатия ППУ, в 30--50 раз меньше количества промывных вод, образующихся при регенерации песчаных и полистироловых фильтров. Производительность такой установки составляет до 600 м3/ч.

Для механической очистки сточных вод от нефтепродуктов применяются также гидроциклоны и центрифуги. Используются напорные и открытые низконапорные гидроциклоны. Первые применяются доя осаждения твердых примесей, вторые - - для удаления осаждающихся и всплывающих примесей. Эти циклоны характеризуются высокой производительностью и небольшой стоимостью. Гидроциклоны рекомендуется применять взамен песколовок или отстойников при недостатке площади для их размещения (около моечных машин для грубой очистки моющего раствора, установок наружной обмывки локомотивов, автомашин и т.п.), а также для концентрирования и отмывки от нефти осадка из отстойных сооружений. В гидроциклонах действуют центробежные силы, отбрасывающие тяжелые частицы к периферии потока. При высокой скорости вращения центробежные силы значительно больше сил тяжести. Из напорных гидроциклонов наибольшее распространение получил аппарат конической формы. Сточная вода подается внутрь гидроциклона. При вращении воды под действием центробежной силы внутри гидроциклона образуется ряд потоков. Жидкость, войдя в цилиндрическую часть, приобретает вращательное движение и движется около стенок по винтовой спирали вниз к сливу. Часть ее крупными частицами удаляется из гидроциклона. Другая, осветленная часть, поворачивает и движется вверх по оси гидроциклона. В центре образуется воздушный столб, давление которого меньше атмосферного. Он оказывает влияние на эффективность работы гидроциклонов.

Напорные гидроциклоны применяют для выделения из воды грубодисперсных минеральных примесей с плотностью 2--3 г/см3 (песка, частиц кирпича, шлака) при размерах частиц свыше 0,05--0,1 мм и гидравлической крупности 2--5 мм/с. Эффект очистки от взвешенных веществ в напорных гидроциклонах для щелочных моющих растворов составляет 40--50%, а для стоков от промывки грузовых вагонов -- 30--40%. Открытые безнапорные гидроциклоны применяют для грубой очистки сточных вод от крупных примесей (более 5 мм/с) и нефтепродуктов. От напорных гидроциклонов они отличаются большей производительностью и меньшим гидравлическим сопротивлением. Эффект очистки в открытых гидроциклонах составляет 50--60%.

Для удаления осадков из сточных вод могут быть использованы фильтрующие и отстойные центрифуги. Фильтрующие центрифуги применяют для разделения суспензий, когда требуется высокая степень обезвоживания осадка и эффективная его промывка, а также в тех случаях, когда используется обезвоженный осадок и достаточно чистый фильтрат. Из отстойных центрифуг непрерывного действия в системах очистки сточных вод наибольшее распространение получили горизонтальные шнековые центрифуги типа ОГШ. Их используют для выделения частиц гидравлической крупностью примерно 0,2 мм/с (противоточные) и 0,05 мм/с (прямоточные).

2.2 Биохимические методы

После механической и физико-химической очистки сточные воды, содержащие нефтепродукты и другие растворенные загрязнения (например, фенолы), направляются на биологическую очистку, сущность которой заключается в окислении органических загрязнений микроорганизмами.

Биологическое окисление проводят как в естественных условиях на полях фильтрации, орошения и в биологических прудах, так и в искусственно созданных условиях на биофильтрах и в аэротанках. Поля фильтрации, орошения и биофильтры функционируют за счет почвенных биоценозов, биологические пруды и аэротанки -- за счет биоценозов этих водоемов. Биоценоз состоит из множества различных бактерий, простейших и более высокоорганизованных организмов -- водорослей и т.д., связанных между собой в единый комплекс. На объектах, где происходит утечка нефтепродуктов, используют капельные и высоконагруженные биофильтры.

В капельных биофильтрах в качестве фильтрующего материала используют шлак, гранитный щебень, кокс, известняк, антрацит и другие водоустойчивые материалы. Обмен воздуха в биофильтре происходит путем естественной вентиляции (при высоте загрузки 1,5--2 м) и принудительной вентиляции (при высоте загрузки более 2 м). Для обеспечения жизнедеятельности микроорганизмов сточная вода, поступающая на фильтр, должна содержать не более 25 мг/л нефтепродуктов и не более 10 г/л растворенных солей. На каждые 100 мг/л сточных вод должно содержаться не менее 5 мг азота и не менее 1 мг фосфора.

Процесс очистки протекает следующим образом. Нерастворимые загрязнения образуют на поверхности биофильтра биологическую пленку, густо заселенную микроорганизмами. В процессе работы биофильтра пленка отмирает. Очищенную в биофильтре воду хлорируют, и она поступает во вторичных отстойник, где отмершая пленка задерживается. Очищенную воду спускают в водоем. Для обеспечения нормальной работы в биофильтр первоначально подают хозяйственно-бытовые стоки слабой концентрации. В фильтр вводят биогенные элементы в виде солей азота и фосфора и по мере образования биопленки постепенно добавляют нефтесодержащие сточные воды. Период адаптации микроорганизмов длится 2--4 недели. В течение этого времени объемное содержание нефтесодержащих и хозяйственно-бытовых стоков доводят до соотношения 1:1. Для обеспечения нормальной жизнедеятельности микроорганизмов биологические фильтры вводят в эксплуатацию при температуре около 20°С.

Наряду с капельными биофильтрами используются высоконагруженные фильтры. Они отличаются от капельных биофильтров более высокой окислительной мощностью, которая достигается за счет увеличения крупности зерен загрузки и изменения конструкции биофильтра. Особая конструкция днища и дренажа обеспечивает искусственную продувку сооружения воздухом. Сравнительно большая скорость движения сточной жидкости в биофильтре обеспечивает постоянный вынос из него задержанных трудноокисляемых нерастворимых веществ и отмершей биологической пленки.

Аэротенки применяются для очистки сточных вод шпалопропиточных заводов, дезинфекционно-промывочных станций и при совместной доочистке бытовых и производственных вод других предприятий. Допустимые концентрации загрязнений в воде, поступающей в аэротенк, составляют 100мг/л по фенолам, 25 мг/л по веществам, экстрагируемым эфиром, и ВПК -- 500 мг О2/л, ХПК -- 1000 мг О2/л. В основу работы аэротенков положена деятельность микроорганизмов, обитающих в природных водоемах. Они носят название активного ила. Аэротенки подразделяются на аэротенки с регенерацией и без регенерации активного ила, аэротенки-смесители, аэротенки-вытеснители и аэротенки-отстойники. В зависимости от применяемых аэрационных устройств имеются аэротенки с механической, пневматической и пневмомеханической аэрацией.

По степени очистки аэротенки подразделяются на высоконагруженные, с частичной очисткой (остаточное БПКПОЛН > 10--15 мг/л), нормальнонагруженные с полной биоочисткой (БПК = 10--15 мг/л) и низконагруженные (с частичной и полной очисткой).

Промышленность выпускает аэротенки низкой нагрузки, среди которых наибольшее применение нашли установки марки КУ производительностью от 12 до 200 м3/сут. Для очистки сточных вод при относительно высокой концентрации активного ила используют комбинированные сооружения, выполняющие функции аэротенка и вторичного отстойника. К ним относятся аэроакселераторы, оксидаторы, циклейторы, реактиваторы и др., в которых в разных комбинациях сочетаются процессы биокоагуляции, отстаивания, осветления во взвешенном слое осадка и аэробного биохимического окисления. Одной из модификаций комбинированных сооружений является противоточный аэротенк, разработанный ВНИИ ВОДГЕО. В этом аэротенке обеспечивается длительный контакт иловой смеси с пузырьками движущегося навстречу потока воды, что повышает эффективность использования кислорода. ВНИИЖТом разработана более простая и надежная струйная система аэрации на базе центробежного насоса, позволяющая путем несложного переоборудования увеличить производительность эксплуатируемых аэротенков на 30--50% без дополнительных капитальных затрат. Особого внимания заслуживают получившие большое распространение акселераторы, которые в зависимости от концентрации загрязнений, характера сточной воды и периода аэрации могут работать на полную или неполную биологическую очистку бытовых и производственных сточных вод.

За рубежом применяют шахтные аэротенки, которые позволяют в несколько раз сократить производственные площади и существенно снизить энергозатраты на аэрацию Шахтный аэротенк с эрлифтной циркуляцией представляет собой цилиндрический вертикальный резервуар диаметром от 0,6 до 3 м и высотой 12--100 м. Он может быть заглублен или установлен на поверхности земли в виде колонны. В поперечном сечении аэротенк разделяется на две части, в одной из которых предусматривается система пневматической аэрации с помощью фильтросных труб или тканевых аэраторов, а в другой размещается насос или эрлифт, обеспечивающий циркуляцию иловой смеси и подачу ее в аэрационную часть. В этой части иловая смесь движется вниз со скоростью 1--2 м/с, увлекая за собой пузырьки воздуха, поступающего из аэратора. Длительное пребывание воздуха при повышенном давлении обуславливает эффективное использование кислорода (до 90%).

Для очистки и доочистки от растворенных загрязнений сточных вод до достижения предельно допустимых концентраций эффективно используется адсорбция микропористыми сорбентами. Для сорбционной очистки и доочистки сточных вод от органических веществ может быть использовано множество материалов естественного и искусственного происхождения. Однако чаще других применяют гранулированный активированный уголь, имеющий частицы размером более 0,10 мм, на 85--90% состоящий из углерода и способный самопроизвольно отделяться от воды. Исходным сырьем для получения активированного угля служат любые углеродосодержащие материалы -- уголь, торф, древесина и др. Процесс изготовления таких высококачественных углей сложен и дорог.

Аппаратурное оформление процесса адсорбционной очистки -- общепринятое в химической технологии. Это -- напорные фильтры с плотным слоем гранулированных углей, перед которыми расположены механические фильтры. Использование высококачественных дорогостоящих сорбентов, прежде всего, активированных углей, целесообразно лишь при их эффективной регенерации с полным восстановлением их сорбционной емкости. Для такой регенерации одной тонны углей расходуется 1000 м3 природного газа, 10 000 м3 воздуха и 0,5 т пара. После каждой регенерации сорбент может быть использован до 10 раз с потерями 10%..

2.3 Физико-химические методы

Для удаления из сточных вод тонкодисперсных взвешенных и коллоидных частиц, растворимых газов, минеральных и органических веществ используются физико-химические методы, к которым относят коагуляцию, флотацию, адсорбцию, ионный обмен, ультрафильтрацию и др.

Выбор метода зависит от технологических и санитарных требований, состава сточных вод, концентрации загрязнений, а также наличия необходимых материальных, энергетических ресурсов и экономичности процесса.

На коллоидные частицы действуют в противоположных направлениях две силы: силы тяжести и диффузии. Под действием силы тяжести они стремятся опуститься на дно, а силы диффузии распределяют частицы равномерно по всему объему системы. В результате действия этих сил в системе устанавливается равномерное распределение частиц по высоте.

Дисперсные системы могут существовать, не разрушаясь, длительное время. Различают кинетическую и агрегативную устойчивость таких систем. Способность дисперсных систем сохранять определенное распределение по объему называется кинетической устойчивостью. Грубодисперсные системы кинетически неустойчивы, их частицы оседают под действием силы тяжести. Молекулярные системы (смесь газов и растворы) обладают очень высокой кинетической устойчивостью. Кинетическая устойчивость коллоидных систем зависит от размеров частиц: чем меньше размер их частиц, тем более кинетически устойчив коллоидный раствор. Агрегативная устойчивость выражается в том, что частицы не укрупняются (не слипаются) при столкновении друг с другом. Коллоидные частицы, лишенные агрсгативной устойчивости, слипаются в более крупные агрегаты (коагулируют) и выпадают из коллоидного раствора в осадок.

В электрическом поле коллоидные растворы подвергаются изменению при приложении разности потенциалов: в них происходит движение частиц и жидкости. Эти процессы получили общее название электрокинетических явлений. Явление переноса частиц дисперсной фазы (взвешенных частиц) в электрическом поле называется электрофорезом, а движение жидкости дисперсионной среды (растворитель) также в электрическом поле -- электроосмосом. Электрокинетические явления можно объяснить существованием на поверхности дисперсионной фазы двойного электрического слоя и возникновением разности потенциалов между дисперсной фазой и дисперсной средой. Если дисперсная фаза несет заряды одного знака, а жидкая среда противоположного, то под действием внешнего электрического поля эти фазы приходят в движение относительно друг друга.

Коллоидная система состоит из дисперсионной фазы -- мицелл и дисперсной среды -- воды. Основной частью мицеллы является агрегат состоящий из атомов, ионов или молекул, как правило малорастворимого в воде химического соединения. На поверхности такого агрегата, получившего название ядро, фиксируются ионы стабилизатора, которые определяют знак и величину термодинамического потенциала (потенциалопределяющие ионы). Вокруг ядра располагается часть противоионов стабилизатора - адсорбционный слой. Ядро вместе с адсорбционным слоем противоионов составляет коллоидную частицу, заряд которой соответствует знаку заряда потенциалопределяющих ионов.

Коллоидные частицы могут иметь различную форму в зависимости от их химического состава: ленточную, пластинчатую, а иногда -- палочек. По своим размерам мицеллы значительно больше обычных молекул. Так, например, молекула воды имеет диаметр 0,27 нм, а средний диаметр коллоидной частицы Ре(ОН)3 составляет 20--40 нм при толщине пластинки 4 им. Каждая такая частица состоит из 400--500 молекул Fе(ОН)3. Коллоидная частица золота имеет около миллиона атомов этого элемента.

Мицелла имеет сложное строение. Проиллюстрируем это на примере строения мицеллы гидроксида железа. Оно имеет следующий вид (рис. 5.10). Химическая формула мицеллы может быть изображена следующим образом:

Нерастворимое в воде ядро мицеллы содержит т 400--500 молекул Fе(ОН)3. Ионным стабилизатором служит электролит FеОСl, который в интермицеллярной жидкости обратимо диссоциирует по уравнению:

Катионы FеО+ избирательно адсорбируются на поверхности коллоидного ядра, заряжая его положительно. Поэтому указанные ионы называются потенциалопределяющими. Если адсорбировать п ионов FеО+, то в растворе находятся и п анионов С1~. Последние имеют знак заряда, противоположный потенциалопределяющим ионам и называются противоионами. Таким образом, на поверхности раздела фаз «коллоидная частица -- интермицеллярная жидкость» образуется двойной электрический слой (рис. 5.11).

Гидратированные анионы С1- в жидкой фазе находятся под воздействием двух взаимно противоположных сил: электростатических, стягивающих мицеллу, и диффузионных, стремящихся рассеять анионы. В результате совместного действия этих сил состояние отдельных анионов оказывается неодинаковым. Часть из них, обозначенная через х, образует диффузный слой -- ионную атмосферу мицеллы.

Рис. 5.11. Строение двойного электрического слоя:. потенциалопределяющие ионы; 2-- адсорбционный слой противо-ионов; 3 -- диффузионный слой противоионов; АВ -- плоскость скольжения

Это -- так называемые, свободные противоионы. Другая часть противоионов, равная (л - х), более или менее прочно связана с потенциалопределяющими ионами (6), с которым она на поверхности ядра создает плотный адсорбционный слой. Они называются связанными противоионами. Ионы диффузного слоя непрерывно обмениваются с одноименными ионами адсорбционного слоя, поэтому они называются также обменными. Здесь устанавливается подвижное равновесие, зависящее от состава интермицеллярной жидкости, температуры и других условий.

На границе подвижного и неподвижного слоев возникает разность потенциалов, которую называют электрокинетическим потенциалом или дзетапотенциалом. Следовательно, электрокинетический потенциал является разностью потенциалов на границе неподвижного (адсорбционного) слоя жидкого и подвижного (диффузионного). Между твердой фазой и жидкостью возникает разность потенциалов -- термодинамический потенциал (ф), определяемый плотностью зарядов потенциал определяющих ионов на единице поверхности. По мере удаления от поверхности твердой фазы термодинамический потенциал уменьшается. В адсорбционном слое от уменьшается по прямой (рис. 5.12), как в плоском конденсаторе. В диффузионном слое снижение потенциала происходит по кривой, так как противоионы в нем распределены неравномерно.

Рнс. 5.14. Взаимодействие ионов диффузионных слоев чи целл при их сближении

Электрокинетический потенциал является частью термодинамического и поэтому всегда меньше его и определяется числом противоионов диффузионного слоя. Если по каким ионов из него переходит за границу скольжения в адсорбционный слой. Термодинамический потенциал при этом не изменится, а электрокинетический -- уменьшится (рис, 5.13). Чем меньше толщина диффузионного слоя, тем больше противоионов этого слоя перейдет за границу скольжения и тем меньше будет значение электрокинетического потенциала.

При броуновском движении частицы коллоидных систем могут сталкиваться друг с другом и образовывать крупные агрегаты, что приводит к нарушению их агрегативной устойчивости. Поскольку крупные агрегаты при этом теряют способность к свободному распределению по всему объему системы, то она утрачивает и кинетическую устойчивость, что приводит к разрушению коллоидной системы. В этом случае частицы дисперсной фазы будут оседать или всплывать.

Для коллоидных систем с водной дисперсионной средой (гидрозолей) установлена связь между агрегативной устойчивостью и скоростью электрофореза. Чем золь более устойчив, тем у него выше скорость электрофореза. Электрофорез, с свою очередь, обусловлен существованием двойного ионного слоя мицеллы, и скорость его пропорциональна электрокинетическому потенциалу. Следовательно, агрегативная устойчивость гидрозолей связана с двойным электрическим слоем и силы отталкивания, возникающие между мицеллами, имеют электрическую природу.

При сближении двух мицелл сначала взаимодействуют ионы диффузионных слоев (рис. 5.14). Так как они одноименно заряжены и достаточно подвижны, то, отталкиваясь друг от друга, диффузионные слои будут деформироваться, «стекая» на противоположные стороны. При дальнейшем сближении мицеллы уже взаимодействуют друг с другом не диффузионными слоями, а одноименно заряженными частицами, заряд которых равен электрокинетическому потенциалу. Чем больше электрокинетический потенциал, тем больше силы отталкивания и, следовательно, тем выше агрегативная устойчивость золя.

Коагуляцией называется процесс соединения коллоидных частиц в крупные агрегаты с последующей потерей кинетической устойчивости коллоидной системы. Нарушение агрегативной устойчивости в коллоидных растворах происходит в тех случаях, когда силы притяжения у отталкивающихся друг от друга частиц больше, чем силы электростатического отталкивания ионных слоев. Коагуляцию коллоидных растворов можно вызвать нагреванием, замораживанием, интенсивным перемешиванием, а также добавлением различных электролитов. Вес эти воздействия, различные по своей природе, или уменьшают силы отталкивания, или увеличивают силы притяжения.

При нагревании возрастает кинетическая энергия коллоидных частиц, увеличивается скорость их движения, и силы электростатического отталкивания уже не могут препятствовать агрегатированию мицелл.

Добавление электролитов к коллоидному раствору приводит к снижению электрокинетического потенциала. Этот процесс характеризуется определенными закономерностями, которые можно объединить в следующие общие правила. Во-первых, все электролиты вызывают коагуляцию коллоидных растворов при увеличении концентрации до некоторого значения. Минимальная концентрация электролита, вызывающая коагуляцию коллоидного раствора, называется порогом коагуляции. Во-вторых, коагулирующим действием обладает не весь электролит, а только тот его ион, который имеет заряд, одноименный с зарядом противоионов мицеллы. В-третьих, коагулирующая способность иона зависит от его заряда: ионы с большим зарядом вызывают коагуляцию при гораздо меньших концентрациях, чем ионы с более низким. Если принять коагулирующую способность однозарядного иона за единицу, то коагулирующая способность двухзарядного иона будет больше в несколько десятков раз, а трехзарядного -- в несколько сот раз. В четвертых, коагулирующая способность ионов одинакового заряда возрастает с увеличением радиуса нона. Ионы органических соединений всегда обладают более высокой коагулирующей способностью. Наконец, при увеличении концентрации электролита в растворе уменьшается электрокинетический потенциал, а коагуляция наступает при его определенном значении - критическом потенциале. В большинстве случаев критический потенциал равен 0,03 В.

Различают два вида коагуляции растворов электролитами -- концентрационную и нейтрализационную. Концентрационная коагуляция наблюдается при увеличении концентрации электролита, не вступающего в химическое взаимодействие с компонентами коллоидного раствора. Такие электролиты называются индифферентными. Они не должны иметь ионов, способных достраивать кристаллическую решетку ядра и вступать в реакцию с потенциалопределяющими ионами. При увеличении концентрации индифферентного электролита диффузный слой противоионов мицеллы сжимается, переходя в адсорбционный слой. В результате электрокинетический потенциал уменьшается и может стать равным нулю (см. рис. 5.14). Такое состояние коллоидной системы называется изоэлектрическим. С уменьшением электрокинетического потенциала агрегативная устойчивость коллоидного раствора снижается, и при критическом значении дзеттапотенциала начинается коагуляция. Термодинамический потенциал при этом не изменяется.

При нейтрализационной коагуляции ионы прибавляемого электролита нейтрализуют потенциалопределяющие ионы, при этом уменьшается термодинамический и электрокинетический потенциал (рис. 5.15).

Коагуляцию широко используют при очистке воды для удаления взвешенных веществ. В качестве коагулянтов обычно используют соли алюминия, железа или их_ смеси. Выбор коагулянта зависит от его состава, физико-химических свойств и стоимости, концентрации примесей в воде, от рН и солевого состава воды. При использовании смесей А12(5О4)з и РеС13 в соотношениях от 1:1 до 1:2 достигается лучший результат коагулирования, чем при раздельном использовании этих реагентов. Кроме этих коагулянтов, для обработки сточных вод могут быть использованы различные глины, алюминийсодержащие отходы производства и др. Для осаждения взвешенных частиц, в сточную воду часто добавляют высокомолекулярные соединения. Такой процесс называется флокуляцией. В отличие от коагуляции при флокуляции агрегация происходит не только при непосредственном контакте частиц, но и в результате взаимодействия молекул адсорбированного на частицах высокомолекулярного вещества (флокулянта). Флокуляцию производят для интенсификации процесса образования хлопьев гидроксидов алюминия и железа и увеличения скорости их осаждснид. Использование, флокулянтов позволяет снизить дозы коагулянтов, уменьшить продолжительность процесса коагуляции и повысить скорость осаждения образующихся хлопьев. Наиболее широко для очистки сточных вод в качестве флокулянта используется полиакриламид.

Процесс очистки сточных вод коагуляцией и флокуляцией состоит из следующих стадий: дозирование и смешение реагентов со сточной водой, хлопьеобразование и осаждение хлопьев.

Наиболее эффективным методом для удаления из сточных вод нерастворимых диспергированных примесей, а также нефтепродуктов, которые самопроизвольно плохо отстаиваются, является флотация. Достоинством флотации является непрерывность процесса, широкий диапазон применения, небольшие капитальные и эксплуатационные затраты, простота аппаратуры, селективность выделения примесей по сравнению с отстаиванием, большая скорость процесса, высокая степень очистки (95--98%), возможность рекуперации удаляемых веществ. Флотация сопровождается аэрацией сточных вод, снижением концентрации поверхностно-активных веществ (ПАВ), лскгоокисляемых веществ, бактерий и микроорганизмов. Все это способствует успешному проведению последующих стадий очистки сточных вод.

Процесс, на котором основана флотация, состоит в том, что при сближении поднимающегося в воде пузырька воздуха с твердой гидрофобной частицей разделяющая их прослойка воды при некоторой критической толщине прорывается и происходит слипание пузырька с частицей. Затем комплекс «пузырскчастцица» поднимается на поверхность воды, где пузырьки собираются, и возникает пенный слой с более высокой концентрацией частиц, чем в исходной сточной воде. Эффект разделения флотацией зависит от размера и количества пузырьков. На величину смачиваемости поверхности взвешенных частиц влияют адсорбционные явления и присутствие в воде примесей ПАВ, электролитов и др.

Присоединение частиц к пузырьку воздуха сопровождается уменьшением поверхностной энергии натяжения пограничных слоев и возникновением сил, стремящихся уменьшить площадь контакта воды с частицей. Смачиваемость определяется косинусом краевого угла, образуемого поверхностями контакта трех фаз (нефтепродукт-вода-воздух). В соответствии со схемой, изображенной на рис. 5.16, на границе соприкосновения трех фаз действует сила поверхностного натяжения на границах нефтепродукт-вода аи в, нефтепродукт-воздух ааг и сила сцепления Р", удерживающая пузырек воздуха на поверхности нефтепродукта:

сточный вода очистка металл

Взаимодействие трех фаз показывает, что чем большей гидрофобностью обладает поверхность частицы, тем больше вероятность присоединения частицы к воздушному пузырьку при столкновении, так как газы также относятся к гидрофобным веществам. С другой стороны, чем более гидрофобная частица, тем вероятнее образование на ней пузырьков газа, выделяющихся из раствора.

Различают следующие способы флотационной обработки сточных вод: с выделением воздуха из растворов, с механическим диспергированием воздуха, с подачей воздуха через пористые материалы, электрофлотацию и химическую флотацию.

Флотация с выделением воздуха из раствора применяется для очистки сточных вод, которые содержат очень мелкие частицы загрязнения. Сущность способа заключается в создании пересыщенного раствора воздуха в воде. При уменьшении давления из раствора выделяются пузырьки воздуха, которые флотируют загрязнения. В зависимости от способа создания пересыщенного раствора воздуха в воде различают вакуумную и напорную флотацию.

При вакуумной флотации сточную воду предварительно насыщают воздухом при атмосферном давлении в аэрациошюй камере, а затем направляют во флотационную камеру, где вакуум-насосом поддерживают разряжение 29,9-- 39,9 кПа (225--300 мм рт. ст.). Выделяющиеся в камере пузырьки выносят часть загрязнений. Процесс флотации длится около 20 мин. Образование пузырьков газа и их слипание с частицами происходит в спокойной среде, затрата энергии на процесс минимальна. Из-за незначительной степени насыщения стоков пузырьками газа этот способ нельзя применять при высокой концентрации взвешенных частиц (не более 250--300 мг/л).

Напорные установки больше распространены, чем вакуумные. Они просты и надежны в эксплуатации. Напорная флотация позволяет очищать сточные воды с концентрацией взвеси до А--5 г/л. Для увеличения степени очистки в воду добавляют коагулянты. Процесс напорной флотации осуществляется в две стадии: насыщение воды воздухом под давлением и выделение растворенного газа под атмосферным давлением. Напорные флотационные установки имеют производительность от 5 до 2000 м3/ч. Они работают при изменении параметров в следующих пределах: давление в напорной емкости 0,17--0,35 МПа; время пребывания воды во флотационной камере 10--20 мин. Объем засасываемого воздуха составляет 1,5--5% объема очищаемой воды. Значения параметров зависят от концентрации и свойств загрязнений. Схема установки напорной флотации показана на рис. 5.17. В зависимости от объема и степени загрязнения сточных вод нефтепродуктами используются горизонтальные (рис. 5.18), вертикальные и радиальные (рис. 5.19) флотаторы. Производительность горизонтальных и вертикальных флотаторов составляет до 100 м3/ч, радиальных -- более 100 м3/ч. Напорные флотационные установки рекомендуется устанавливать после нефтеловушек и отстойников для дополнительной очистки от нефтепродуктов сточных вод перед выпуском их в бытовую канализацию или при использовании очищенной воды в обороте. При проектировании очистных сооружений рекомендуется предусматривать применение многокамерных флотаторов типа ЦНИИ-5 производительностью 10--20 м3/с.

...

Подобные документы

  • Физико-химическая характеристика сточных вод. Механические и физико-химические методы очистки сточных вод. Сущность биохимической очистки сточных вод коксохимических производств. Обзор технологических схем биохимических установок для очистки сточных вод.

    курсовая работа [1,0 M], добавлен 30.05.2014

  • Основные способы переработки текстильных отходов. Технология локальной очистки сточных вод от аммиака, красителей и тяжелых металлов. Эффективность использования 8-оксихинолина при удалении ионов тяжелых металлов из сточных вод текстильных предприятий.

    курсовая работа [399,7 K], добавлен 11.10.2010

  • Методы очистки производственных сточных вод. Электрохимическая очистка от ионов тяжелых металлов. Описание принципиальной технологической схемы. Расчет решетки, песколовки, нефтеловушки, усреднителя, барботера, вертикального отстойника, адсорбера.

    курсовая работа [688,5 K], добавлен 26.05.2009

  • Характеристика современной очистки сточных вод для удаления загрязнений, примесей и вредных веществ. Методы очистки сточных вод: механические, химические, физико-химические и биологические. Анализ процессов флотации, сорбции. Знакомство с цеолитами.

    реферат [308,8 K], добавлен 21.11.2011

  • Состояние сточных вод Байкальского региона. Влияние тяжелых металлов на окружающую среду и человека. Специфика очистки сточных вод на основе отходов. Глобальная проблема утилизации многотонажных хлорорганических и золошлаковых отходов, способы ее решения.

    реферат [437,5 K], добавлен 20.03.2014

  • Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа [3,0 M], добавлен 04.10.2009

  • Характеристика сточной воды предприятия и условия сброса очищенной воды. Предельно допустимые концентрации веществ, входящих в состав сточных вод. Выбор технологической схемы очистки. Анализ эффективности очистки сточных вод по технологической схеме.

    курсовая работа [1,1 M], добавлен 12.11.2011

  • Общая характеристика проблем защиты окружающей среды. Знакомство с этапами разработки технологической схемы очистки и деминерализации сточных пластовых вод на месторождении "Дыш". Рассмотрение методов очистки сточных вод нефтедобывающих предприятий.

    дипломная работа [2,2 M], добавлен 21.04.2016

  • Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Выбор технологической схемы очистки сточных вод. Физико-химические методы очистки сточных вод с применением коагулянтов. Отделение взвешенных частиц от воды.

    реферат [29,9 K], добавлен 05.12.2003

  • Определение концентрации загрязнений сточных вод. Оценка степени загрязнения сточных вод, поступающих от населенного пункта. Разработка схемы очистки сточных вод с последующим их сбросом в водоем. Расчет необходимых сооружений для очистки сточных вод.

    курсовая работа [2,3 M], добавлен 09.01.2012

  • Очистка промышленных сточных вод с использованием электрохимических процессов и мембранных методов (ультрафильтрация, нанофильтрация, обратный осмос). Новые изобретения для очистки и обеззараживания коммунально-бытовых и сельскохозяйственных сточных вод.

    курсовая работа [1,3 M], добавлен 09.12.2013

  • Санитарно-гигиеническое значение воды. Характеристика технологических процессов очистки сточных вод. Загрязнение поверхностных вод. Сточные воды и санитарные условия их спуска. Виды их очистки. Органолептические и гидрохимические показатели речной воды.

    дипломная работа [88,8 K], добавлен 10.06.2010

  • Анализ методов очистки сточных вод при производстве сплавов. Оценка перспективных электрохимических методов очистки. Результаты исследований электрокоагуляторов по обезвреживанию шестивалентного хрома в сточных водах, содержащих другие тяжелые металлы.

    реферат [11,8 K], добавлен 11.03.2012

  • Очистка сточных вод как комплекс мероприятий по удалению загрязнений, содержащихся в бытовых и промышленных водах. Особенности механического, биологического и физико-химического способа. Сущность термической утилизации. Бактерии, водоросли, коловратки.

    презентация [580,0 K], добавлен 24.04.2014

  • Проблема влияния целлюлозно-бумажного производства на состояние водных экосистем. Физико-химические методы очистки сточных вод с применением коагулянтов. Дезинфекция сточных вод. Производственный контроль качества воды. Расчет вертикального отстойника.

    курсовая работа [477,2 K], добавлен 14.05.2015

  • Круг проблем в области очистки химически загрязненных сточных вод предприятий метизной промышленности. Анализ системы формирования, сбора, очистки сточных вод ОАО "Северсталь-метиз", разработка технических решений по достижению их нормированного качества.

    дипломная работа [2,3 M], добавлен 20.03.2013

  • Состав сточных вод. Характеристика сточных вод различного происхождения. Основные методы очистки сточных вод. Технологическая схема и компоновка оборудования. Механический расчет первичного и вторичного отстойников. Техническая характеристика фильтра.

    дипломная работа [2,6 M], добавлен 16.09.2015

  • Загрязнения, содержащиеся в бытовых сточных водах. Биоразлагаемость как одно из ключевых свойств сточных вод. Факторы и процессы, оказывающие влияние на очистку сточных вод. Основная технологическая схема очистки для сооружений средней производительности.

    реферат [17,8 K], добавлен 12.03.2011

  • Классификация и принципы электрохимической и термической очистки сточных вод. Сравнительный анализ ветроэнергетики и гелиоэнергетики. Современные способы применения энергии ветра в механических целях. Основные функции солнечных нагревательных систем.

    контрольная работа [698,1 K], добавлен 28.04.2009

  • Загрязнение водных ресурсов сточными водами. Влияние выпуска сточных вод металлургических предприятий на санитарное и общеэкологическое состояние водоемов. Нормативно-правовая база в области очистки сточных вод. Методика оценки экологических аспектов.

    дипломная работа [214,2 K], добавлен 09.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.