Экосистемы биосферы

Техногенные экосистемы биосферы, их разновидности и сравнительная характеристика. Описание и главные источники фотохимического тумана. Направления и перспективы борьбы со смогом. Радиационное и электромагнитное загрязнение, его влияние на биосферу.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 19.05.2015
Размер файла 116,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

биосфера экосистема радиационный электромагнитный

Фотохимический смог или по-другому фотохимический туман - это относительно новый тип атмосферного загрязнения. Он является актуальной экологической проблемой наиболее крупных городов, где сконцентрировано огромное количество транспортных средств.

Проблема фотохимического смога особенно остро стоит для таких стран как США, Япония, Канада, Великобритания, Мексика, Аргентина. Проблема загрязнения атмосферного воздуха стала мировой, глобальной, так как имеет серьезные последствия для окружающей среды и здоровья человека. [3]

Особое место в процессах загрязнения техногенных экосистем занимает радиоактивное загрязнение. Радиоактивное загрязнение характеризуется присутствием радиоактивных веществ на поверхности, внутри материала, в воздухе, в теле человека или в другом месте в количестве, превышающем установленные уровни. [10]

Интенсивное использование электромагнитной и электрической энергии в современном информационном обществе привело к тому, что в последней трети XX века возник и сформировался новый значимый фактор загрязнения окружающей среды - электромагнитный. К его появлению привело развитие современных технологий передачи информации и энергии, дистанционного контроля и наблюдения, некоторых видов транспорта, а также развитие ряда технологических процессов. В настоящее время мировой общественностью признано, что электромагнитное поле искусственного происхождения является важным значимым экологическим фактором с высокой биологической активностью. [8]

Проблема электромагнитной безопасности и защиты окружающей природной среды от воздействия ЭМП приобрела большую актуальность и социальную значимость, в том числе на международном уровне

1. Техногенные экосистемы биосферы

Они формируются в результате хозяйственной деятельности человека, существенно изменяющей состав литосферы, гидросферы, атмосферы и органической части биосферы. На планете расширяются культурные и сокращаются естественные ландшафты, интенсивно загрязняются атмосфера, гидросфера, почвенный покров, вся окружающая природная среда. Нами выделены и кратко охарактеризованы главные источники и вещества химического (геохимического) загрязнения биосферы: урбанизированного и индустриального, сельскохозяйственного и естественного типов.

В настоящее время под геоэкосистемами урбанизированного и индустриального типов (городскими и сельскими строениями, наземными коммуникациями, горными разработками и водохранилищами, пашнями и пастбищами) занято около 40% суши. Число городских жителей выросло с 1,5 млрд. в 1990 году до 3,6 млрд. в 2011 году - это более половины населения земного шара[1]. С ростом городов и промышленных узлов расширяются зоны влияния их на окружающую среду. В ряде стран Европы и в США города сливаются, образуя единые городские агломерации и индустриальные центры.

В индустриальных центрах и агломерациях основными загрязнителями окружающей среды являются производственная пыль, металлические, неметаллические и органические компоненты, поступающие в твердой, жидкой и газообразной форме. Ландшафты и экосистемы таких урбанизированных и индустриальных территорий часто претерпевают коренные изменения: здесь исчезают лесные сообщества, их покидают многие виды животных, увеличиваются поступление в водоемы горячих сточных вод и расход кислорода на промышленные и транспортные нужды, растет процент заболеваемости раком, нарушений деятельности сердечно-сосудистой системы, смертности и т.д. Так, концентрация пыли в воздухе многих крупных городов США, Японии и Западной Европы превосходит допустимую норму в 5-10 раз, окиси углерода - в 20-30, сернистого газа в 4-8 раз. Зимой здесь наблюдается вдвое больше туманов, выпадает на 5 - 10% больше осадков, уровень солнечной радиации, достигающей Земли, на 15-30% ниже, среднегодовая температура на 0,5-1° выше, средняя скорость ветра ниже на 20-30%[2].

В урбанизированных и индустриальных экосистемах возрастает шумовое «загрязнение», особенно вблизи аэропортов и насыщенных транспортом улиц. Уровень шума иногда достигает 85-100 дБ, что примерно в 2 раза превышает допустимые нормы. Серьезной стала проблема мусора и других бытовых отходов, которая осложняется несовершенством способов их утилизации и повторного использования.

В этой группе геоэкосистем можно выделить специфические подсистемы и провинции, насыщенные отходами промышленного производства, кислотами, щелочами, биоцидами, соединениями тяжелых металлов, углеродистыми и углекислыми газами, серой, сероводородом, продуктами нефтеперерабатывающей и горнодобывающей промышленности и др. В зависимости от выбрасываемых компонентов формируются геоэкологические территории с кислой, сильиокислой, щелочной, окислительной, восстановительной, сульфатной, хлоридной и другими типами природно-техногенной среды.

Структура и особенности сельскохозяйственной группы ландшафтов и экосистем в огромной мере определяются специализацией сельскохозяйственного производства, техническими и экономическими мероприятиями, направленными на повышение плодородия почв и урожайности сельскохозяйственных культур.

Вырубка лесов и другие виды хозяйственной деятельности способствуют эрозии почв, развитию оврагов, возникновению селевых потоков в горных районах. От ядовитых загрязнений (радиоактивных веществ и токсичных химических элементов) снижаются самоочистительные функции биосферы, ухудшаются экологические условия жизни организмов. Поэтому оценка последствий этих отрицательных явлений очень важна для решения проблем охраны окружающей среды и рационального использования природных богатств биосферы.

На естественные экосистемы вредное воздействие оказывают понижение уровня подземных вод, неумеренная пастьба скота, поступление дождевых вод, содержащих токсичные вещества, промышленные стоки в водоемы и аккумуляция в ландшафтах различных ядохимикатов.

В настоящее время имеется достаточно данных, позволяющих определить характер влияния хозяйственной деятельности человека и продуктов техногенеза на биосферу и ее отдельные компоненты, степень воздействия на эволюцию экосистем и их продуктивность, на здоровье человека, развитие животных и растений. Так, увеличение содержания С02, производственной пыли и аэрозолей в атмосфере, уменьшение количества кислорода, образование кислотных дождей, содержащих серную, азотную и другие кислоты, приводят к накоплению ядохимикатов, металлов в почвах, природных водах и живом веществе, формированию неогеохимических территорий, насыщенных тяжелыми металлами, радиоактивными и другими токсическими веществами.

2. Фотохимический туман (смог)

Фотохимический туман - это многокомпонентная смесь газов и аэрозольных частиц первичного и вторичного происхождения. Основными компонентами смога являются озон, оксиды азота и серы, многочисленные органические соединения пер кисной природы, которые в совокупности называются фотооксидантами. Фотохимический смог образуется в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и повышенной не менее суток инверсии. Устойчивая безветренная погода, которая обычно сопровождается инверсиями, нужна для создания высокой концентрации реагирующих веществ. Такие условия возникают чаще в июне-сентябре и реже зимой. Во время продолжительной ясной погоды солнечная радиация становится причиной расщепления молекул диоксида азота и образует оксид азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом образуют озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не случается. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительное количество озона. Начинается циклическая реакция, результатом которой становится постепенное накапливание озона. Этот процесс в ночное время прерывается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере скапливаются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние становятся источником так называемых свободных радикалов, отличающихся особой реактивной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной систем и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

3. Борьба со смогом

Так как современные автомобили являются источником основных компонентов смога (оксидов углерода, азота, углеводородов, окислителей и т.д.), то в первую очередь необходимо совершенствовать технические параметры выпускаемых автомобилей. Надо совершенствовать технологии! Такие сдвиги уже есть. Углеводороды, освобождающиеся ранее из цилиндров автомобильных двигателей, в настоящее время возвращаются в камеры сгорания. Углеводороды, которые испарялись из карбюраторов и топливных баков, также возвращаются в рабочий цикл. Выбросы углеводородов с выхлопными газами сокращаются за счет повышения доли воздуха в горючей смеси, что способствует более полному сгоранию бензина. С 1980-х годов многие машины снабжаются каталитическими системами, в которых несгоревшие углеводороды окисляются до воды и углекислого газа. Для автомобилей с такой системой надо использовать бензин без добавок свинца, чтобы избежать процесса «отравления» катализатора. Создан и другой тип каталитической системы, который позволяет уменьшить выбросы оксидов азота. В таких системах оксиды азота превращаются в молекулярный азот.

Важным шагом в борьбе со смогом является контроль уровня озона, который также присутствует в составе смога. А ведь это сильнейший окислитель! Сейчас хотя в странах американского континента и достигнуты положительные результаты в снижении уровня оксидов азота, которые приводят к образованию озона, каждого конкретного автомобиля, но больших результатов уровня озона по статистике нет, так как он растет за счет увеличения количества автомобилей на 25% в год. Здесь возникает вопрос, который должен поставить перед собой каждый разумный человек: а может мне достаточно иметь один автомобиль, а не 2-3 и более? Это уже современные реалии. Ведь доходы населения растут и современные ли могут себе все чаще позволить такие покупки. Но в западных странах разработаны различные системы оперативного оповещения населения о состоянии окружающей среды, наиболее примечательной из которых является методика американского Агентства по Защите Окружающей Среды (ЕРА), где основными индикаторами приняты озон и взвешенные частицы. По их суммарной концентрации, состояние воздуха в конкретный момент характеризуется по опасности для населения. Также, локальные или региональные власти зачастую оповещают население о различных проведенных в этом направлении исследованиях и рекомендуют средства защиты от смога. Важным моментом в борьбе со смогом имеет информационное просвещение населения по метам профилактики и борьбы. Так, при наступлении смога необходимо плотно закрывать окна и двери, не выходить на улицы города без надобности, при выходе в город пользоваться защитными масками для органов дыхания. Тело прикрывать одеждой максимально, чтобы уменьшить контакт вредных веществ с кожей. Также необходимо знать о наличии медицинских препаратов, выполняющих роль антидотов угарного газа и других продуктов горения, например, препарат ацизол. Ацизол - препарат для лечения пациентов с отравлениями угарного газа, позволяет увеличивать выживаемость пораженных, сокращать вдвое период лечения в стационаре. Применяется с профилактической целью в загазованных районах. Восстанавливает способность гемоглобина к транспортировке кислорода в крови человека, способствует разрушению химических связей между гемоглобином крови и угарным газом. [4]

4. Радиационное загрязнение

Радиационное загрязнение - наиболее опасный вид физического загрязнения окружающей среды, связанный с воздействием на человека и другие виды организмов радиационного излучения. В развитых странах в настоящее время радиационное загрязнение окружающей среды представляет наибольшую опасность вследствие того, что один из основных источников этого вида загрязнения - ядерная энергетика в последнее время развивается наиболее быстрыми темпами. По оценкам экспертов, этот вид загрязнения среды в нашей стране и в других государствах СНГ находится на втором месте после химического загрязнения.

К радиационному загрязнению относятся:

1) собственно радиационное загрязнение, под которым понимается физическое загрязнение среды, связанное с действием альфа- и бета-частиц и гамма-излучений, возникающих в результате распада радиоактивных веществ,

2) загрязнение окружающей среды радиоактивными веществами, т.е. по существу химическое загрязнение среды, связанное с превышением естественного уровня содержания (природного фона) радиоактивных веществ в окружающей среде.

Второй вид загрязнения среды проявляется в результате действия излучений, сопровождающих радиоактивный распад. Поэтому и контроль содержания радиоактивных веществ, и оценка их действия на живые организмы производится путем регистрации излучений. В связи с этим принято объединять эти два вида загрязнения и рассматривать их в качестве радиационного загрязнения окружающей среды.

Риск радиационной опасности. Результаты сравнительной оценки индивидуального среднего риска фатального исхода в год по данным, относящимся ко всему населению США, показывают, что индивидуальный риск погибнуть в результате катастрофы, связанной с аварией ядерного реактора, крайне мала по сравнению с другими факторами техногенного риска. Приведем также данные для США:

автомобильный транспорт - 3х10-4,

воздушный транспорт - 9х10-6,

железнодорожный транспорт - 4х10-6,

молния - 5х10-7,

ядерная энергетика - 2х10-10.

Здесь средний риск - количественная оценка степени опасности гибели человека - определяется как отношение числа неблагоприятных последствий (т.е. смертельных исходов) к их возможному числу за определенный интервал времени. Оценки риска для ядерной энергетики проведены с расчетом на 100 американских ядерных реакторов. Сравнивая приведенные выше количественные оценки риска, можно сделать вывод, что ядерная энергетика (по данным США) создает риск опасности для жизни человека в миллион раз меньший, чем риск погибнуть в дорожно-транспортных происшествиях, и в 10 тысяч раз меньший, чем погибнуть в железнодорожных авариях. Принципы конструирования и строительства ядерных реакторов примерно одинаковы во всех странах, развивающих атомную энергетику, и уровень надежности и безопасности реакторов считается достаточным, чтобы риск для населения был минимален.

Однако риск радиационной опасности не определяется только безопасностью ядерных реакторов, он зависит от степени радиационного загрязнения территорий, связанных с производством и испытанием ядерного оружия, с работой предприятий, занимающихся добычей, обогащением и переработкой ядерных материалов и т.п. Более того, риск радиационной опасности оценивается не только вероятностью фатальных исходов, но и вероятностью получения дозы облучения и последующих разнообразных заболеваний. В настоящее время в литературе оценки риска указанных факторов радиационной опасности не рассматриваются. Ясно, что в целом риск радиационной опасности значительно (и возможно, во много раз) больше, чем оцененный выше только по вероятности аварий в ядерной энергетике. Поэтому неудивительно, что интуитивно воспринимаемая обществом радиационная опасность сравнима с опасностью химического загрязнения среды.

Источники радиационного загрязнения. Факторы радиационной опасности разделяются по происхождению на естественные и антропогенные. К естественным факторам относятся ископаемые руды, излучение при распаде радиоактивных элементов в толще земли и др. Антропогенные факторы радиационной опасности связаны с добычей, переработкой и использованием радиоактивных веществ, производством и использованием атомной энергии, разработкой и испытанием ядерного оружия и т.п. Наибольшую опасность для здоровья человека представляют антропогенные факторы радиационной опасности, связанные со следующими видами и отраслями человеческой деятельности:

- атомная промышленность;

- ядерные взрывы;

- ядерная энергетика;

- медицина и наука.

Они имеет свои основные источники загрязнения среды как радиоактивными элементами, так ирадиационными излучениями. Кроме того, атомная промышленность и ядерная энергетика являются основными источниками радиоактивных отходов (РАО), исключительно опасных для всего живого на планете, что создало сравнительно новую проблему человечества - проблему захоронения, утилизации, складирования РАО, решение которой до сих пор не существует. Другая новая проблема вызвана реализацией достигнутых между ядерными державами соглашений по ядерному разоружению - это проблема ликвидации ядерного оружия, связанная в основном с демонтированием и безопасной транспортировкой, складированием и хранением большого количества ядерных боеголовок (до нескольких десятков тысяч с двух сторон - с российской и американской). Обе проблемы требуют колоссальных экономических затрат, сравнимых с национальным доходом развитых стран. В ближайшее время к этим двум добавится и третья проблема, вызванная окончанием срока эксплуатации десятков ядерных реакторов атомных электростанций (АЭС) и атомного подводного флота.

Ниже приведены данные о величине периода полураспада некоторых радиоактивных элементов (радионуклидов), имеющих важное значение с точки зрения экологии:

Наиболее опасны стронций и цезий, которые трудно выводятся из организма. Обладая периодом полураспада, приблизительно равным средней продолжительности жизни человека, они создают опасность онкологических заболеваний и генетических нарушений.

Атомная промышленность. Атомная промышленность занимается добычей, переработкой и обогащением радиоактивного сырья, используемого далее либо как топливо в ядерной энергетике, либо для создания систем ядерного оружия (ядерные боеголовки). Следовательно, предприятия атомной промышленности имеют дело непосредственно с радиоактивными веществами, часть которых неизбежно попадает в окружающую человека среду в виде отходов либо рассеивается в почве, атмосфере, водоемах.

Известно, что в России насчитывается около 800 ядерных объектов. С 1938 по 1993 гг. в мире было добыто около 1,7-1,8 млн. т природного урана. Сейчас суммарные запасы его оцениваются в 104-125 тыс. т в западных странах и 100 - 200 тыс. т в бывшем СССР. По экспертным оценкам, в мире произведено около 1100 т плутония (в том числе, 250-400 т оружейного плутония), из которых от 7 до 10 т распылено в окружающей среде. Учитывая очень большой период полураспада этого элемента, очевидно, что его вредное воздействие на биосферу и здоровье человека будет ощущаться многие сотни и даже тысячи лет. Отметим, что для человека смертельно опасны при попадании внутрь всего 2 мкг плутония. Согласно подсчетам известного ученого-ядерщика академика А.Д. Сахарова, которого называют «отцом советской водородной бомбы», рассеянные в биосфере 7-10 т плутония ответственны за гибель от рака и лейкемии более 5 млн. жителей планеты.

Ядерные взрывы. По официальным данным, к началу 1993 года на существующих в мире пяти ядерных полигонах - Невада (США, Великобритания), Новая земля (СССР, ныне Россия), Семипалатинск (Казахстан), Муруроа (Франция), Лобнор (Китай) было произведено более 2000 ядерных взрывов:

Как известно, наибольший ущерб биосфере и человечеству был нанесен испытаниями ядерного оружия в атмосфере, которые продолжались до 1980 г. (Китай), хотя ведущие ядерные державы завершили их в 1962 (СССР) и 1963 (США) годах. Особенно сильно способствовал радиоактивному загрязнению Азиатского материка мощнейший (до 3 мегатонн) воздушный ядерный взрыв в Китае, последствия которого на территориях Средней и Центральной Азии, Сибири и Дальнего Востока прослеживаются до сих пор.

Испытания ядерного оружия привели к распространению радиоактивных продуктов по всему земному шару. Продукты эти с осадками попадают из атмосферы в почву, грунтовые воды и, следовательно, в пищу человека и живых существ. Согласно некоторым оценкам, на долю наземных ядерных взрывов приходится более половины (до 5 т) рассеянного в настоящее время в биосфере плутония.

Как видно из вышеприведенной таблицы, большая часть взрывов военного назначения относится к подземным испытаниям, которые также вносили свою, хотя и меньшую, долю выбросов радиоактивных веществ в окружающую среду. Наряду с такими подземными ядерными взрывами (ПЯВ) в мире с конца 50-х годов проводились подземные ядерные взрывы в мирных целях, т.е. для нужд народного хозяйства, например, для сооружения водохранилищ, подземных хранилищ вредных отходов, при добыче полезных ископаемых и т.п. Первый ПЯВ в мирных целях был осуществлен в США в 1957 г., а на территории России - в 1965 г. Такие взрывы проводились практически до начала 90-х годов. За этот период на территории СНГ, только по официальным данным, было проведено 116 взрывов, в том числе на территории России 90, (в европейской части - 59 взрывов, в Сибири - 31).

Следовательно, к пяти ядерным суперполигонам надо добавить еще около двух сотен полигонов на земном шаре, которые также способствовали широкому распространению радиоактивного загрязнения биосферы.

Ядерная энергетика. Первая в мире АЭС (атомная электростанция) была построена в СССР в 1954 году в Обнинске под Москвой. В настоящее время уже около 30 стран производят электроэнергию на АЭС, а темпы прироста этого вида электроэнергии в мире в два раза превышают темпы прироста всех видов электроэнергии, несмотря на то, что ряд стран (Австрия, Россия, Швейцария) заморозили свои ядерно-энергетические программы после Чернобыльской катастрофы. Доля ядерной электроэнергетики в мире составляет 17%. Ведущей в этой области в настоящее время является Франция, которая вырабатывает на АЭС 75% электроэнергии. В России выработка электроэнергии на АЭС составляет около 12%. В списке стран, имеющих АЭС, Россия по производству электроэнергии на АЭС занимает 18-е место. Для сравнения отметим, что США со своими 19% в этом списке находятся на 11-м месте. Одной из экологически важных проблем развития ядерной энергетики является упоминаемая ранее проблема хранения и переработки радиоактивных отходов.

Медицина и наука. Использование изотопов радиоактивных элементов в медицине для диагностики и в лечебных процедурах также способствует широкому территориальному распространению радиационного загрязнения. Если ядерные взрывы практически прекращены, то медицина остается действующим в настоящее время фактором радиационной опасности. Другим действующим до сих пор фактором радиационного загрязнения среды являются многочисленные исследовательские ядерные реакторы, существующие в университетах и научно-исследовательских центрах (лабораториях, институтах и др.) в разных странах мира. Исследовательские реакторы широко используются в экспериментах, при получении изотопов, проведении нейтронно-активационного анализа материалов, создании перспективных типов реакторов и т.д. Столь широкий диапазон работ привел к тому, что к концу 1991 г. в мире было около 500 реакторов, в том числе в США - 94, в СНГ - 66, в Германии - 25, во Франции и Японии - по 19, в Канаде - 14, в Китае - 12. [5]

5. Борьба с радиационным загрязнением

Необходимость разработки и внедрения стандартов радиационной защиты была понята еще в начале века. В 1925 г. в качестве допустимой была предложена 1/10 часть дозы, вызывающей эритему (покраснение) почки за 30 суток. В 1928 г. создана Международная комиссия по радиационной защите МКРЗ и опубликованы ее рекомендации. В 1934 г. - первые официальные рекомендации МКРЗ для национальных комитетов, где в качестве толерантной (переносимый) была указана доза внешнего облучения 200 мР (~ 2 мГр) в сутки. По мере накопления данных и расширения масштабов использования ионизирующего излучения термин «толерантная доза» был заменен на «предельно-допустимая доза» (ПДД), а норматив снижен до 50 мР (~ 0,5 мГр) в сутки. Цель радиационной защиты по определению МКРЗ - обеспечить защиту от иониизирующего облучения отдельных лиц, их потомства и человечества в целом и создать условия для необходимой практической деятельности человека. При этом МКРЗ полагает, что необходимый для зашиты человека уровень безопасности будет достаточен для защиты других компонентов биосферы, в частности, флоры и фауны. К этому положению следует относиться с известной долей осторожности, т.к. сведений по радиоэкологии еще сравнительно немного, а дозы облучения многих биообъектов много больше доз, которые получает человек.

В настоящее время НКРЗ сформулированы следующие принципы радиационной безопасности:

1. Не превышать установленного основного дозового предела. В качестве основного дозового предела устанавливается:

Предельно-допустимая доза - наибольшее значение индивидуальной эквивалентной дозы за календарный год, при котором равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья работающих изменений, обнаруживаемых современными методами. Этот предел устанавливается для лиц - профессионально связанных с работой в условиях возможного облучения - лиц категории А (персонал по НРБ);

Предел дозы - наибольшее среднее значение индивидуальной эквивалентной дозы за календарный год у критической группы лиц, при котором равномерное облучение в течение 70 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. Этот предел устанавливается для ограниченной части населения (категория Б по НРБ), т.е. для лиц, которые не работают непосредственно с источниками ионизирующих излучений, но по условиям работы и проживания могут быть подвержены облучению.

Критическая группа, по которой определяется уровень облучения лиц категории Б, определяется из условия максимально возможного радиационного воздействия.

2. Исключить всякое необоснованное облучение.

3. Снижать дозы облучения до возможно низкого уровня.

Эти принципы исходят из принятой беспороговой концепции действия ионизирующих излучений. Поэтому любое дополнительное облучение, даже самое небольшое, увеличивает риск образования стохастических эффектов.

Полностью исключить облучение, хотя бы из-за наличия естественного фона, невозможно. Сам же естественный фон неравномерен (0,8 - 3 мЗв). Кроме того, нельзя избежать облучения от диагностических процедур, строительных материалов и т.п.

В связи с тем, что различные органы тела имеют различную чувствительность к ионизирующему излучению, их разбивают на 3 группы критических органов, облучение которых в условиях неравномерного облучения может причинить максимальный ущерб.

Дезактивация - это такое удаление радиоактивных веществ с зараженных объектов, которое исключает поражение людей и обеспечивает их безопасность. Объектами дезактивации могут быть жилые и производственные здания, участки территории, оборудование, транспорт и техника, одежда, предметы домашнего обихода, продукты питания и вода.

Конечная цель дезактивации - обеспечить людей, исключить или уменьшить вредное воздействие ионизирующего излучения на организм человека.

Характерной особенностью дезактивационных мероприятий является строго дифференцированный подход к определению объектов, которые следует дезактивировать. Такой подход позволяет из большего количества зараженных объектов выделить наиболее важные для жизнедеятельности людей и при ограниченных силах и средствах провести запланированные работы.

Заражение поверхностей может быть адгезионным, поверхностным и глубоким. При адгезионном заражении радиоактивные частицы удерживаются на поверхности силами адгезии (прилипания). Прилипшие частицы легко удаляются с поверхности в том случае, если сила отрыва будет больше силы адгезии. В водной среде силы адгезии значительно уменьшаются, поэтому применение воды в целях дезактивации вполне оправданно.

Реже можно встретиться со случаями поверхностного и глубинного заражения. Обусловлены они процессами адсорбции, ионного обмена и диффузии. При этом заражается весь верхний слой, который должен удаляться вместе с радиоактивными веществами.

Таким образом все способы дезактивации можно разделить на жидкостные и безжидкостные.

Жидкостный - удаление радиоактивных веществ струей воды или пара, либо в результате физико - химических процессов между жидкой средой и радиоактивными веществами.

Безжидкостный - механическое удаление радиоактивных веществ: сметание, отсасывание, сдувание, снятие зараженного слоя.

Эффективность жидкостного способа зависит от расхода воды, напора перед брандспойтом, расстояние до обрабатываемой поверхности и тех добавок, которые применяются. Например, наибольший коэффициент дезактивации достигается при направлении струи под углом 30 - 45о к обрабатываемой поверхности.

Для уменьшения расхода воды или дезактивирующих растворов на единицу поверхности целесообразно использовать щетки. Щетки существенно влияют на результат дезактивации, особенно в начальной стадии заражения.

Среди безжидкостных механических способов дезактивации следует выделить вакуумную очистку, сметание, удаление зараженного слоя, перепахивание грунта.

Дезактивация территорий с твердым покрытием осуществляется механическим способом (подметание, вакуумная очистка).

Дезактивирующие вещества и растворы

Для проведения дезактивационных работ используют вещества, которые позволяют повысить эффективность удаления радиоактивных частиц. К ним относятся поверхностно активные моющие вещества, отходы промышленных предприятий, органические растворители, сорбенты и ионообменные материалы.

Чтобы повысить моющую способность воды, в нее добавляют поверхностно-активные вещества (ПАВ). И добавлять их надо совсем немного 0,1 - 0,5%. ПАВ способствуют отрыву и выведению в дезактивирующий раствор радиоактивных частиц.

К ПАВ, обладающим моющим действиям, относятся обычное мыло, гардиноль, сульфанол, препараты ОП-7. ОП-10 и др.

Гардиноль - порошок белого или кремового цвета, хорошо растворимый в воде с образованием слабощелочной среды. Обладает хорошими поверхностно-активными и моющими свойствами.

Сульфанол - пастообразное или в виде пластинок коричневого цвета вещество, умеренно растворяется в воде. Обладает хорошей моющей способностью. Сульфанол используется для приготовления моющих порошков СФ-2 и СФ-2У.

Препараты ОП-7 и ОП-10 широко применяются в промышленности в качестве смачивателей и эмульгаторов. Применяют их как составную часть

дезактивирующих растворов для обработки сооружений, оборудования, техники, одежды и средств индивидуальной защиты.

Отходы промышленных предприятий. Отходы, содержащие в своем составе ПАВ. Имеются на предприятиях машиностроительной, станкостроительной, текстильной промышленности, на масложиркомбинатах, фабриках химической чистки, банно-прачечных комбинатах. В этих отходах могут присутствовать жирные кислоты, сульфонол, ОП-7, различные масла и другие вещества.

Органические растворители: среди них дихлорэтан, бензин, керосин, дизельное топливо. Дезактивировать ими рекомендуется главным образом металлические поверхности (станки, машины, технику, транспорт) Радиоактивные вещества смывают ветошью, щетками и кистями, смоченными в растворителях.

Все вышеперечисленные вещества, за исключением сорбентов и ионитов, можно использовать при приготовлении растворов для дезактивации поверхности различных сооружений, оборудования, техники и транспорта, одежды, обуви и средств защиты.

6. Электромагнитное загрязнение

Электромагнитное загрязнение (ЭМП антропогенного происхождения или электромагнитный смог) - это совокупность электромагнитных полей, разнообразных частот, негативно влияющих на человека. Некоторые исследователи называют электромагнитный смог, возникший и сформировавшийся за последние 60-70 лет, одним из самых мощных факторов, негативно влияющих на человека на сегодняшний момент. Это объясняется фактически круглосуточным его воздействием и стремительным ростом.

Электромагнитное загрязнение зависит в основном от мощности и частоты излучаемого сигнала.

Между тем, в нынешнем столетии люди резко изменили характер электромагнитной среды. Естественное планетарное поле теперь насыщено искусственными источниками электромагнитного загрязнения. В США, например, насчитывается более 500 тысяч миль высоковольтных линий передач, свыше 10 тысяч радио- и теле станций, 35 миллионов различных электрических датчиков, 10 миллионов микроволновых печей и 250 тысяч радиотелефонов вместе с трансляционными станциями. Плотность радиоволн на поверхности Земли сегодня превосходит мощность солнечного излучения в 100 миллионов раз.

Есть основания полагать, что люди, работающие в зоне загряненной электромагнитным полем высоковольтных кабелей, имеют в 5-8 раз больше шансов заболеть лейкемией. Для рабочих, обслуживающих радары, в 3-12 раз увеличивается риск заболеть полицитемией - болезнью крови, характеризующийся избытком красных кровяных телец. Установлено, что раковые клетки, подвергнутые облучению ЭМП с частотой в 60 герц, начинают расти в шесть раз быстрее обычного.

Переносные переговорные устройства сплошь и рядом превышают норму предельно допустимых доз электромагнитного воздействия на человека, установленную американским Институтом национальных стандартов еще в 1966 году.

Одним словом, не будет преувеличением сказать, что судьба человечества во многом будет зависеть от того, сумеем ли мы найти эффективный способ борьбы с электромагнитным загрязнением, созданным руками самого человека. [6]

Электромагнитные излучения техногенного происхождения являются, источниками физического загрязнения окружающей среды. Возрастание уровня электромагнитного загрязнения в последнее время говорит об электромагнитном смоге (по аналогии с химическим смогом). Электромагнитное загрязнение окружающей среды и химическое загрязнение имеют общие черты: и тот и другой вид предполагает более или менее постоянные уровни, и оба смога могут оказать неблагоприятное влияние на людей, животный и растительный мир.

Электромагнитный смог-это загрязнение среды обитания человека неионизирующими излучениями от устройств использующих, передающих и генерирующих электромагнитную энергию и возникающие из-за несовершенства техники и / или нерационального ее применения. [7]

Электромагнитный смог можно классифицировать на три вида:

- смог открытой местности (уличный),

- смог в помещениях (от осветительной системы),

- смог от устройств мобильной связи.

Электромагнитное загрязнение открытой местности возможно от различных передающих радиотехнических объектов (ПРТО), высоковольтных линий электропередачи, от использования неоновой и иной рекламы, проводов электротранспорта, электрифицированных железных дорог. Чтобы создать достаточно высокие уровни поля на открытой местности, необходимы очень мощные источники. Другое дело, если источником излучения являются антенны с очень узким «коэффициентом направленности действия» и высокой энергией.

Электромагнитный смог от функциональных передатчиков отличается по источнику и по действию, основным источником являются средства сотовой связи - сотовые телефоны и базовые станции связи.

Причиной внутреннего смога в помещениях являются паразитарные наслоения на синусоиду тока промышленной частоты. Известно, что в нашей стране используется две системы электроснабжения: промышленная, трехфазная (380 В), и осветительная, двухфазная (220 В). Правила эксплуатации, соответствующие стандарты требуют заземления всех элементов силовой промышленной сети. Для осветительной сети требование заземления или зануления распространяется только на распределительные устройства - от подстанций 0,4 кВ до распределительных коробок. Розетки, выключатели, большинство приборов не подлежат этому заземлению, и они становятся излучателями паразитарных токов, а практически, источниками электромагнитного смога. [8]

Существующая в нашей стране осветительная сеть до сих пор рассчитана на «линейных» потребителей, которые не требуют каких-либо особых устройств, отводящих лишнюю энергию - она у них не образуется. К категории «линейный потребитель» следует отнести устройства с медленным нагревом и относительным постоянством потребления энергии: ламповые приемники, электрические плитки, утюги и т.д. С конца 50-60-х годов прошлого века в стране появляются «импульсные потребители» - газоразрядные лампы, компьютеры, сканеры и другая оргтехника. Этот вид приборов и устройств отличается тем, что они потребляют электроэнергию импульсами. При этом каждый импульс вызывает ответные возмущения в самой осветительной сети, что и приводит к паразитарным наслоениям на синусоиду электрического тока.

Характерной чертой электромагнитного загрязнения городов становиться его многочастотность и многофакторность [7], когда на определенный участок городской территории оказывают воздействие несколько источников излучения с разными частотами, интенсивностью и местами расположения. Имеющаяся в распоряжении специализированных подразделений санэпидемнадзора измерительная аппаратура обладает существенным недостатком - ее применении в случае многочастотного воздействия весьма проблематично. Проведение достоверных измерений становится возможным лишь при отключении всех ПРТО за исключением контролируемого, что в пределах крупного урбанизированного центра практически невозможно.

Недооценка электромагнитных полей, как загрязняющего окружающую среду фактора, привела к ухудшению экологической ситуации в стране, что следует связывать также: с недостаточностью до 1994-1996 гг. научно обоснованной нормативно-методической базы оценки степени загрязнения окружающей среды электромагнитными полями; с преобладанием ведомственных, коммерческих и потребительских подходов к использованию технических средств, излучающих электромагнитную энергию в окружающую среду; со слабой материально-технической базой электромагнитного мониторинга; с отсутствием должного внимания к экологическому воспитанию, образованию и просвещению не только населения, но и специалистов. [9]

Заключение

По моему мнению, самым масштабным и значимым является химическое загрязнение, так как в этом случае в окружающую среду попадают несвойственные ей вещества. Также тревожит загрязнение Мирового океана нефтью, а почвы - пестицидами.

В целом все рассмотренные факторы, которым можно приписать загрязняющий эффект, оказывают заметное влияние на процессы, происходящие в биосфере.

Может пока еще рано говорить, что мир переживает экологическую катастрофу, потому что есть еще экологически девственные районы, и, в целом, если рассматривать ВЕСЬ МИР в совокупности с этими районами, все еще не так глобально плохо. Но таких уголков природы становиться все меньше, человек пытается исследовать весь мир, проникая в самые удаленные и дикие места планеты и подстраивая их под свои нужды, не заботясь об экологии таких мест.

Список литературы

1. www.finmarket.ru/main/article/3347906/

2. «Берегиня №9», сентябрь 2011

3. http://epidbiomed.ru/for-knowing/smoge.html

4. Экология города: Учебник, Под ред. Стольберга. Ф.В.-К.:Либра, 2004.

5. http://libsib.ru/ekologiya/biosfera-i-chelovek/radiatsionnoe-zagryaznenie.

6. http://www.geopatogen.ru/article11.html

7. Грачев Н.Н. Средства и методы защиты от электромагнитных и ионизирующих излучений. М., изд-во МИЭМ, 2005. - 215 с.

8. Пресман А.С. Электромагнитное поле и жизнь. М.: Наука 2003. - 215 с.

9. Пресман А.С. Электромагнитная сигнализация в живой природе. М.: Наука, 2004. - 143 с.

10. О.И. Василенко. - «Радиационная экология» - М.: Медицина, 2004. - 216 с.

Размещено на Allbest.ru

...

Подобные документы

  • Изменения биосферы под влиянием хозяйственной деятельности человека. Темпы материального производства. Природное и антропогенное загрязнения биосферы. Химическое загрязнение биосферы. Складирование и хранение радиоактивных отходов военной промышленности.

    реферат [67,6 K], добавлен 28.01.2011

  • Проблемы биосферы и их связь с нынешним состоянием окружающей среды. Химическое загрязнение атмосферы, природных вод и почвы. Основные источники загрязнения: промышленность, бытовые котельные, транспорт, тепловые электростанции, химические вещества.

    реферат [31,6 K], добавлен 22.06.2010

  • Живое вещество как основа биосферы. Свойства и функции экосистемы. Системы взглядов на существование биосферы: антропоцентрическая и биоцентрическая. Виды загрязнения окружающей среды. Способы защиты окружающей среды. Внебюджетные экологические фонды.

    лекция [64,9 K], добавлен 20.07.2010

  • Загрязнение природной среды и экологические проблемы биосферы: загрязнение атмосферы, воды, почвы. Влияние человека на растительный и животный мир. Радиоактивное загрязнение биосферы. Пути решения проблем экологии, рациональное природопользование.

    курсовая работа [40,3 K], добавлен 02.06.2008

  • Экологическое и технологическое влияние на биосферу. Обеспечение круговорота химических элементов. Основные функции биосферы. Последствия техногенного и антропогенного воздействий на биосферу. Загрязнение окружающей среды радиоактивными отходами.

    презентация [3,4 M], добавлен 22.12.2012

  • Понятие химического загрязнения биосферы, его сущность и особенности, источники и негативное влияние на окружающую среду. Основные вредные примеси пирогенного происхождения, степень их влияния на биосферу. Источники химического загрязнения вод и почвы.

    реферат [16,9 K], добавлен 04.04.2009

  • Общая характеристика естественных факторов и этапов развития природы Земли. Строение, свойства, функционирование биосферы как гигантской экологической системы. Понятие, сущность, трофические уровни, основные свойства и составные элементы экосистемы.

    реферат [901,5 K], добавлен 15.05.2010

  • Предмет, задачи, методы экологии. Место экологии в системе естественных наук. Проблемы, связанные с антропогенным воздействием на биосферу. Явление парникового эффекта и его влияние на экосистемы. Единая государственная система экологического мониторинга.

    контрольная работа [30,8 K], добавлен 21.10.2010

  • Человек - элемент биосферы. Все жизненные ресурсы - воздух, пищу, воду и значительную часть энергетических и строительных ресурсов он получает из биосферы. В биосферу человек сбрасывает и отходы: бытовые и промышленные.

    реферат [15,3 K], добавлен 27.05.2004

  • Спектральные методы мониторинга окружающей среды. Поиск границ серии Бальмера (в частотах и длинах волн), сопоставление данных с интервалами частот и длин видимого света. Электромагнитное загрязнение окружающей среды. Радиационное загрязнение биосферы.

    контрольная работа [109,5 K], добавлен 02.10.2011

  • Общая характеристика загрязнения природной среды. Экологические проблемы биосферы. Атмосфера - внешняя оболочка биосферы. Влияние человека на растительный и животный мир. Пути решения проблем экологии. Рациональное природопользование.

    реферат [32,9 K], добавлен 24.01.2007

  • Единство и целостность биосферы как глобальной экосистемы. Влияние внешней среды на здоровье человека, роль антропогенного загрязнения в развитии заболеваний. Кумулятивный эффект, порождаемый выбросами в атмосферу и водоемы, захоронением в землю отходов.

    реферат [34,1 K], добавлен 14.09.2016

  • Виды антропогенные воздействий на биосферу. Атмосфера – элемент биосферы. Источники загрязнения и влияние атмосферных загрязнений на здоровье населения. Современный газовый состав атмосферы. Основные виды вмешательства человека в экологические процессы.

    презентация [192,5 K], добавлен 15.10.2015

  • Изучение биосферы, как глобальной экосистемы, влияние на нее деятельности человека. Анализ видовой структуры биоценоза. Основные принципы охраны окружающей. Экологические последствия загрязнений, вызванных атомной промышленностью. Методы защиты атмосферы.

    контрольная работа [35,9 K], добавлен 01.04.2010

  • Анализ наиболее значимых антропогенных факторов, влияющих на состояние биосферы. Природные и антропогенные воздействия на биосферу. Мусор эпохи технической революции. Загрязнение Мирового океана. Оценивание уровня и масштабов антропогенного воздействия.

    реферат [5,9 M], добавлен 10.01.2015

  • Понятие, состав и структура биосферы. Основные функции биосферы: газовая; концентрационная; окислительно-восстановительная; информационная. Биогеохимические круговороты веществ в биосфере. Основные фазы эволюции биосферы. Закон ноосферы Вернадского.

    контрольная работа [138,4 K], добавлен 03.05.2009

  • Источники загрязнение атмосферы. Основные вредные примеси пирогенного происхождения. Воздействие фотохимического тумана на организм человека. Органические, неорганические химические загрязнители пресных и морских вод. Проблема загрязнения мирового океана.

    презентация [817,9 K], добавлен 17.11.2011

  • Природное и антропогенное загрязнение биосферы. Механические, физические, химические, биологические и биотические источники загрязняющих веществ. Фотохимический туман (смог). Расчет выбросов в атмосферу загрязняющих веществ автотранспортными средствами.

    курсовая работа [74,3 K], добавлен 20.11.2013

  • Проявление экологического действия загрязняющих агентов. Последствия загрязнения атмосферы, воды и почвы. Влияние человека на растительный и животный мир. Радиоактивное загрязнение биосферы. Пути решения проблем экологии и рациональное природопользование.

    реферат [37,1 K], добавлен 11.01.2013

  • Учение о биосфере. Круговорот веществ в биосфере. Воздействие общества на биосферу. Проблемы биосферы. Химическое загрязнение атмосферы. Химическое загрязнение природных вод. Загрязнение мирового океана. Загрязнение почвы.

    реферат [235,3 K], добавлен 05.10.2006

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.