Применение биотехнологий в охране окружающей среды

Основная характеристика выгод и проблем внедрения технологий, предназначенных для получения энергии из биомассы. Влияние нефти и нефтепродуктов на почвенные экосистемы. Особенность применения биотехнологий в очистке опоясывающей сферы от загрязнения.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 15.09.2015
Размер файла 90,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Применение биотехнологий в охране окружающей среды

1. Биотехнология в решении энергетических проблем

Вся история человечества - это история повышения потребления энергии, причем, вплоть до ХХ века основными ее источниками были древесина и органические остатки. В ХХ в. Основными источниками энергии стали ископаемые энергоносители - уголь, нефть, газ, но на протяжении столетия снижалась роль угля и повышалась роль нефти и газа, к которым во второй половине века прибавилась атомная энергетика.

Сегодня в мире на одного землянина производится 2 кВт энергии (в США - 10 кВт), предел роста энергопотребления оценивается в 20 кВт на человека, общее энергопотребление человечества при этом будет примерно равно солнечной энергии, фиксируемой растениями, в сумме с поступающим на поверхность планеты геотермальным теплом. Такой уровень энергопотребления биосфера может выдержать, но для этого необходимо примерно в 10 раз сократить загрязнение, которое сопровождает получение энергии сегодня.

По прогнозам ООН, мировое потребление энергии будет увеличиваться вплоть до 2020 г. на 2% в год. При этом в основном будут увеличиваться затраты энергии на транспорт., сегодня они растут на 1,4% в год в развитых странах и на 3,6% в развивающихся. Ожидается, что к 2020 г. затраты энергии в транспортном секторе увеличатся на 75%.

Потребление в мире энергии возрастет на 50-75%, причем в значительной мере за счет развивающихся стран. В США рост производства энергии резко замедлился, но получило развитие энергосбережение. В целом прогнозируется увеличение потребление энергии в Азии в 2,24 раза, в том числе в Китае - в 1,96 раза (по сравнению с 1990 г.).

На прогноз структуры энергетики влияет исчерпаемость ресурсов углеродистых энергоносителей, в первую очередь нефти. Ресурсов этих энергоносителей ограничены. Угля хватит на 250-400 лет, природного газа - 60-100 лет, нефти - на 40-60 лет. В России запасы нефти могут исчезнуть еще быстрее, к 2020 году. Если в 1980 г. Россия добывала 600 млн.т.нефти., то в 1996 г. была добыта только половина этого количества (в настоящее время добыча увеличилась до 400 млн.т, планируется в ближайшее время довести этот показатель до 500 млн.т).

Прогноз ученых показывает, что в ближайшие десятилетия активное развитие получат газовая, атомная энергетика, гидроэнергетика, а также энергетика на основе возобновляемых источников энергии.

По прогнозам ООН, предполагается, что в 2020 году доля энергии из нетрадиционных источников достигнет 3% от общего энергопотребления. Сейчас она составляет менее 2%.

За историю развития человеческого общества потребление энергии в расчете на одного человека возросло более чем в 100 раз. Через каждые 10-15 лет мировой уровень потребления энергии практически удваивается. В то же время запасы традиционных источников энергии - нефти, угля, газа истощаются.

Кроме того, сжигание ископаемых видов топлива приводит к нарастающему загрязнению окружающей среды. Поэтому становится очень важным получать энергию в экологически чистых технологиях.

Неиссякаемым источником энергии на Земле является Солнце. Каждый год на поверхность Земли с солнечной энергией поступает 3.2024 Дж энергии. В то же время разведанные запасы нефти, угля, природного газа и урана по оценкам эквиваленты 2.5.1022 Дж, то есть менее чем за одну неделю Земля получает от Солнца такое же количество энергии, какое содержится во всех запасах.

Ежегодно в процессах фотосинтеза образуется свыше 170 млрд. т сухого вещества, а количество энергии, связанной в нем, более чем в 20 раз превышает сегодняшнее годовое энергопотребление. Однако возникает вопрос, способна ли энергетика, основанная на использовании солнечного излучения, обеспечить все возрастающие энергетические потребности общества.

В глобальном масштабе солнечная энергетика способна обеспечить современный и будущий уровень энергзатрат человечества. Так, величина солнечной энергии, падающей на неосвоенные территории, например пустыни (около 2.107 км2), составляет около 5.1018 кВт ч. При освоении этой энергии хотя бы с 5 % к.п.д. уровень мирового производства энергии можно увеличить более чем в 200 раз. Таким образом, при возможном народонаселении в 10 млрд. человек получение энергии только с поверхности зоны пустынь будет в 10-12 раз превышать энергетические потребности человечества. При этом предвидится рост энергопотребления в расчете на душу населения в 5 раз по сравнению с настоящим уровнем.

Принципиально возможно также освоение солнечной энергии, падающей на поверхности морей и океанов. При этом в первичном процессе преобразование солнечной энергии происходит за счет синтеза биомассы фитопланктона; вторичный процесс представляет собой конверсию биомассы в метан и метанол.

Плантации микроводорослей по оценкам специалистов представляют собой наиболее продуктивные системы: 50-100т/га в год. Растительный покров Земли составляет свыше 1800 млрд. т сухого вещества, образованного в процессах фотосинтеза лесными, травяными и сельскохозяйственными экосистемами. Существенная часть энергетического потенциала биомассы потребляется человеком. Для сухого вещества простейшим способом превращения биомассы в энергию является сгорание, в процессе которого выделяется тепло, преобразуемое далее в механическую или электрическую энергию. Сырая биомасса также может быть преобразована в энергию в процессах биометаногенеза и получения спирта.

Таблица 2 Некоторые выгоды и проблемы внедрения технологий, предназначенных для получения энергии из биомассы

Выгоды

Проблемы

· Экономия энергии

· Возобновляемость

· Гибкость технологий и разнообразие продуктов, высокое удельное содержание энергии в некоторых из них

· Для внедрения уж разработанных технологий требуются небольшие капиталловложения; доступны при любом уровне доходов

· Могут быть внедрены на основе имеющейся рабочей силы и ресурсо.

· Хорошие перспективы разития биологических и инженерных основ.

· Увеличивается занятость и повышается квалификация.

· Во многих случаях умеренная стоимость.

· Экологическая безопасность.

· Не увеличивается содержание СО2 в атмосфере.

· Конкуренция за земельные и водные ресурсы.

· Необходимость отвода земель.

· На начальных этапах трудности с оценкой запасов.

· Часто сложности с оценкой себестоимости.

· Нужны удобрения, земельные площади и вода.

· Зависимость от существующих методов ведения сельского и лесного хозяйства, социальные факторы.

· Объемистое сырье: сложности с перевозкой и хранением.

· Зависимость от изменений климата.

· Малая эффективность конверсии

· Сезонность

Биомасса, если иметь в виду древесину, солому, является одним из самых древних возобновляемых энергоресурсов, используемых человеком.

В биомассе - зеленой массе растений, создаваемой в процессе фотосинтеза, - солнечная энергия запасается в виде химической энергии, которая может быть высвобождена различными путями.

Растительный покров Земли составляет более 1800 млрд. т сухого вещества, что энергетически эквивалентно 3-1022 Дж. Эта цифра соответствует известным запасам энергии полезных ископаемых. Леса составляют 68% биомассы суши, травяные экосистемы - примерно 16%, а возделываемые земли - 8%. В целом на Земле при помощи фотосинтеза ежегодно производится 173 млрд.т сухого вещества, что более чем в 20 раз повышает используемую в мире энергию и в 200 раз - энергию, содержащуюся в пище всех более 4 млрд, обитателей планеты.

Запасенная в биомассе энергия органических соединений может быть использована непосредственно в виде пищевых продуктов человеком или животными или же для получения энергии в промышленных целях.

Таблица 3 Источники биомассы для выработки топлива

Отходы

Наземные растения

Водные растения

· Навоз

· Активный ил

· Бытовой муссов

· Пищевые отходы

· Стоки

· Отходы древесины, сахарного тростника

· Солома

· Шелуха

· Корки цитрусовых

· Багасса

· Меласса

· Лигноцеллюлоза

· Деревья: эвкалипты, тополя, ели, сосны, лиственница и др.

· Культуры, содержащие крахмал: кукуруза, кассава

· Культуры, содержащие сахар: сахарный тростник, сахарная свекла

· Водоросли: одноклеточные (Chlorella, Scenedesmus, Navicula), многоклеточные (Бурые водоросли)

· Растения: водный гиацинт,

тростник, камыш

Научные и аналитические исследования последнего десятилетия приводят к выводу, что наиболее эффективными и обнадеживающими для крупномасштабного преобразования солнечной энергии являются методы, основанные на использовании биосистем. Среди этих методов - достаточно хорошо освоенные биологические технологии превращения биомассы в энергоносители в процессах биометаногенеза и производства спирта, а также принципиально новые разработки, ориентированные на модификацию и повышение эффективности самого процесса фотосинтеза, создание биотопливных элементов, получение фотоводорода, биоэлектрокатализ.

Биометаногенез - способ производства энергии из биомассы состоит в получении биогаза путем анаэробного перебраживания. Такой газ представляет собой смесь из 65% метана, 30% углекислого газа, 1% сероводорода и незначительного количества азота и водорода. Метановое "брожение", или биометаногенез, -давно известный процесс превращения биомассы в энергию. Он был открыт в 1776 г. Вольтой, который установил наличие метана в болотном газе. Бездымное горение болотного газа причиняет людям гораздо меньше неудобств по сравнению со сгоранием дров и навоза. Энергия, заключенная в 28 мі биогаза, эквивалентна энергии 16,8 мі природного газа, 20,8 л нефти или 18,4 л дизельного топлива.

Биогаз дает возможность использовать самые современные средства теплоэнергетики - газовые турбины, В этих установках газ сгорает, приводя в движение турбину, которая вращает генератор, производящий электроэнергию. В свою очередь газообразные продукты сгорания затем направляются в котел для нагревания воды и получения пара, который может быть использован в промышленности или для дополнительного производства энергии.

Газовые турбины проще и дешевле традиционных паровых. В то время как у последних эффективность не улучшалась с конца 50-х годов, газовые турбины непрерывно совершенствуются.

Наиболее многообещающим вариантом использования биомассы в газовых турбинах является ее газификация при взаимодействии с воздухом и паром при высоких давлениях и очистке газа от примесей, которые могут повредить лопасти турбин. Для повышения эффективности процесс газификации и производство электроэнергии следует смещать в одной установке.

Предварительные оценки показывают, что энергия, полученная на установке с газофицированием биомассы и газовой турбиной, по стоимости может быть сравнима с электроэнергией, производимой на обычных угольных или ядерных электростанциях в большинстве промышленных и развивающихся стран.

Одним из направлений при получении биогаза является использование органических отходов и побочных продуктов сельского хозяйства и промышленности. Производство биогаза в процессе метанового брожения - одно из возможных решений энергетической проблемы сельскохозяйственных районов. Перспективы этого направления весьма многообещающие. Действительно, если 300 млн.т сухого вещества, содержащегося в навозе, превратить в биогаз, то выход энергии составит 33 млн.т нефтяного эквивалента. Производство можно также увеличить за счет таких сельскохозяйственных отходов, как солома, жом сахарного тростника и др. В Индии с 1980 по 1984 гг. был построен 1 млн. небольших установок для производства биогаза, удовлетворяющих потребности в энергии отдельных семей.

Производство биогаза из сельскохозяйственных отходов во все более возрастающих масштабах осуществляется также в Китае. Так, уже в конце 1978 г. здесь работало 7,15 млн. установок для получения биогаза - в 15 раз больше, чем в 1975 г. К 1980 г. было построено еще 20 млн., а к 1985-70 млн., что позволяет 70% крестьянских семей использовать биогаз для приготовления пищи.

Таблица 4 Производительность биогаза в зависимости от используемого сырья за период ферментации (Archea 2000г, Германия)

Сырье (субстрат)

Биогаз (мі на мі субстрата)

Куринный помет

53,71

Конский навоз

40,60

Навоз КРС

32,40

Навоз КРС (свежий)

76,69

Овечий навоз

162,00

Свиной навоз

25,52

Преимущество производства биогаза из сельскохозяйственных отходов заключается в том, что они являются средством получения энергии, доступным даже на семейном уровне. Отходы процесса служат высококачественным удобрением, а сам процесс способствует поддержанию чистоты в окружающей среде. Однако количество биомассы данного вида ограничено земельной площадью, на которой осуществляется сельскохозяйственная деятельность. Существенное увеличение пригодных для культивирования площадей вряд ли реально. Вместе с тем имеется возможность использовать для получения биомассы водную среду, а именно - осуществлять культивирование водорослей, в частности микроводорослей.

Итак, достоинством биогаза можно считать следующее: возможность получения его из бросового сырья (сельскохозяйственных, промышленных и городских углеродосодержащих отходов), попутное получение при этом высокоэффективных удобрений и кормовых добавок, очистка сточных вод. Недостатками получения и потребления биогаза являются расход кислорода и выброс углекислого газа при сжигании биогаза, неуправляемость и длительность процесса брожения, необходимость иметь емкости значительного объема для осуществления процесса брожения.

Биометаногенез осуществляется в три этапа: растворение и гидролиз органических соединений, ацидогенез и метаногенез.

В энергоконверсию вовлекается только половина органического материала--1800 ккал/кг сухого вещества по сравнению с 4000 ккал при термохимических процессах, но остатки, или шлаки, метанового «брожения» используются в сельском хозяйстве как удобрения. В процессе биометаногенеза участвуют три группы бактерий. Первые превращают сложные органические субстраты в масляную, пропионовую и молочную кислоты; вторые превращают эти органические кислоты в уксусную кислоту, водород и углекислый газ, а затем метанообразующие бактерии восстанавливают углекислый газ в метан с поглощением водорода, который в противном случае может ингибировать уксуснокислые бактерии. В 1967 г. Брайант и др. установили, что уксуснокислые и метанообразующие микроорганизмы образуют симбиоз, который ранее считался одним микробом и назывался Methanobacillus omelianskii.

Для всех метанобактерий характерна способность к росту в присутствии водорода и углекислого газа, а также высокая чувствительность к кислороду и ингибиторам производства метана. В природных условиях метанобактерии тесно связаны с водородобразующими бактериями: эта трофическая ассоциация выгодна для обоих типов бактерий. Первые используют газообразный водород, продуцируемый последними; в результате его концентрация снижается и становится безопасной для водородобразующих бактерий.

Метановое «брожение» происходит в водонепроницаемых цилиндрических цистернах (дайджестерах) с боковым отверстием, через которое вводится ферментируемый материал. Над дайджестером находится стальной цилиндрический контейнер, который используется для сбора газа; нависая над бродящей смесью в виде купола, контейнер препятствует проникновению внутрь воздуха, так как весь процесс должен происходить в строго анаэробных условиях. Как правило, в газовом куполе имеется трубка для отвода биогаза. Дайджестеры изготовляют из глиняных кирпичей, бетона или стали. Купол для сбора газа может быть изготовлен из нейлона; в этом случае его легко прикреплять к дайджестеру, изготовленному из твердого пластического материала. Газ надувает нейлоновый мешок, который обычно соединен с компрессором для повышения давления газа.

В тех случаях, когда используются отходы домашнего хозяйства или жидкий навоз, соотношение между твердыми компонентами и водой должно составлять 1:1 (100 кг отходов на 100 кг воды), что соответствует общей концентрации твердых веществ, составляющей 8--11% по весу. Смесь сбраживаемых материалов обычно засевают ацетогенными и метаногенными бактериями или отстоем из другого дайджестера. Низкий рН подавляет рост метаногенных бактерий и снижает выход биогаза; такой же эффект вызывает перегрузка дайджестера. Против закисления используют известь. Оптимальное «переваривание» происходит в условиях, близких к нейтральным (рН 6,0--8,0). Максимальная температура процесса зависит от мезофильности или термофильности микроорганизмов (30--40° С или 50--60° С); резкие изменения температуры нежелательны.

Обычно дайджестеры загружают в землю, чтобы использовать изоляционные свойства почвы. В странах с холодным климатом их нагревают при помощи устройств, которые применяют при компостировании сельскохозяйственных отходов. С точки зрения питательных потребностей бактерий избыток азота (например, в случае жидкого навоза) способствует накоплению аммиака, который подавляет рост бактерий. Для оптимальной переработки соотношение C/N должно быть порядка 30:1 (по весу). Это соотношение можно изменять, смешивая субстраты, богатые азотом, с субстратами, богатыми углеродом. Так, C/N навоза можно изменить добавлением соломы или жома сахарного тростника.

Отходы пищевой промышленности и сельскохозяйственного производства характеризуются высоким содержанием углерода (в случае перегонки свеклы на 1 литр отходов приходится до 50 граммов углерода), поэтому они лучше всего подходят для метанового «брожения», тем более, что некоторые из них получаются при температуре, наиболее благоприятной для этого процесса. Желательно перемешивать суспензию сбраживаемых веществ, чтобы воспрепятствовать расслаиванию, которое подавляет брожение. Твердый материал необходимо раздробить, так как наличие крупных комков препятствует образованию метана. Обычно длительность переработки навоза крупного рогатого скота составляет две--четыре недели. Двухнедельной переработки при температуре 35° С достаточно, чтобы убить все патогенные энтеробактерии и энтеровирусы, а также 90% популяции Ascaris lumbricoides и Ancylostoma.

Еще в 1979 году конференция ООН по науке и технике для развивающихся стран и эксперты "Экономической и социальной комиссии по странам Азии и Тихого океана" подчеркивали достоинства интегрированных сельскохозяйственных программ, использующих биогаз.

Такие программы направлены на разработку пищевых культур, а также на производство белка культурами водорослей, создание рыбных ферм, переработку отходов и превращение различных отбросов в удобрения и энергию в виде метана. Надо отметить, что 38% от 95-миллионного поголовья крупного рогатого скота в мире, 72% остатков сахарного тростника и 95% отходов бананов, кофе и цитрусовых приходятся на долю стран Африки, Латинской Америки, Азии и Ближнего Востока.

Не удивительно, что в этих регионах сосредоточены огромные количества сырья для метанового «брожения». Следствием этого явился поворот некоторых стран с сельскохозяйственно ориентированной экономикой на биоэнергетику. Например, одним из основных принципов энергетической политики Индии является производство биогаза в сельских районах. В конце 1979 г. в Индии работало менее 100 000 установок. В Китае в этот же период насчитывалось 10 млн. установок. Сырьем для загрузки установок в этих странах являются отходы животноводческих ферм и птицефабрик. В Центральной Америке построены установки, работающие на отходах производства кофе. В Масатенанго была построена фабрика, выпускающая 90 м3 биогаза в сутки и 900 т органических удобрений в год из отходов кофе. Биогаз обеспечивает работу двигателя мощностью 35 л. с., являющегося частью устройства, которое лущит кофе со скоростью 3 т/ч, вырабатывает 1500 Ватт электроэнергии и обеспечивает работу компрессора. В Израиле с 1974 г. производством биогаза занимается «Ассоциация киббуци индастриз» (KIA). Проведены фундаментальные исследования процесса метаногенеза при активном участии нескольких университетов и промышленных исследовательских институтов под эгидой министерства энергетики. Анаэробное брожение происходит при 55° С. Исследователям удалось добиться повышения выхода биогаза до 4--6,5 м3 в сутки на каждый кубометр объема цистерны дайджестера (что в десять раз превышает обычный выход).

В России сейчас производством и внедрением установок для получения биогаза занимается НТЦ «Агроферммашпроект», который предлагает запатентованные в России современные энергосберегающие технологии и оборудование для переработки органических отходов животноводства, полеводства в эффективное экологически чистое удобрение и энергию.

Биотехнология в состоянии внести крупный вклад в решение проблем энергетики посредством производства достаточно дешевого биосинтетического этанола, который кроме того является и важным сырьем для микробиологической промышленности при получении пищевых и кормовых белков, а также белково-липидных кормовых препаратов. Крупнейшие мировые производители спирта (по данным на 2000г.): Бразилия - 10,6 млрд.л; США - 6,5 млрд.л; Китай - 3 млрд.л; Индия - 1,7 млрд.л; Россия - 1,3 млрд.л. Стратегическую роль в бразильской экономике спирт приобрел в середине 70-ых годов с введением программы Proalcool, запущенной в 1975 году после мирового нефтяного кризиса в начале 70-ых. В Бразилии производится два вида этилового спирта: негидрированный - используется в качестве добавки к бензину в пропорции 20-24% и не требует изменений в двигателе; гидрированный - используется в качестве топлива и требует специального двигателя, работающего на спирте. Бразилия является первой страной, начавшей использовать негидрированный спирт в качестве добавки к топливу.

Сырьем для процессов спиртового брожения могут быть разнообразные биомассы, включая крахмалсодержащие (зерно, картофель), сахаросодержащие материалы (меласса, отходы деревоперерабатывающей промышленности), а также биомасса специально выращенных пресноводных и морских растений и водорослей. Процесс складывается из нескольких стадий, включающих подготовку сырья, процесс брожения, отгонку и очистку спирта, денатурацию, переработку кубовых остатков.

Этиловый спирт обычно получают из гексоз в процессах брожения, вызываемых бактериями (Zymomonas mobilis, Z. anaerobica, Sarcina ventriculi), клостридиями (Clostridium thermocellum) и дрожжами (Saccharomyces cerevisiae):

С6H12O6 > 2 CH3CH2OH + 2 CO2.

Главная задача, которую приходится решать при получении спиртов технического назначения, это замена дорогостоящих крахмалсодержащих субстратов дешевым сырьем непищевого назначения. Образование этанола дрожжами - это анаэробный процесс, однако для размножения дрожжей в незначительных количествах нужен и кислород.

Энергию можно получить из сельскохозяйственных культур, специально выращиваемых для этой цели. Это могут быть особые виды быстрорастущих деревьев, растения, богатые углеводами, из которых получают этиловый спирт (этанол). Для производства этилового спирта из такой растительной биомассы необходимо экстрагировать и подвергнуть гидролизу запасенные углеводы с последующим их сбраживанием в спирт.

Из растений, продуцирующих этиловый спирт, наиболее широко используется сахарный тростник. Этанол из сахарного тростника в больших количествах производится в Бразилии. В связи с растущим дефицитом торгового баланса, вызванного резким увеличением цен на нефть в последние годы, в Бразилии было решено использовать в качестве автомобильного топлива не бензин, а чистый этанол и смесь этанола с бензином. По сравнению с бензином этанол обладает не только экономическими, но и техническими преимуществами, например более высоким октановым числом. Производство этанола путем ферментации сока сахарного тростника возросло с 900 млн.л в 1973 г. до 6 млрдл в 1992 г., из них 2,2 млрд.л пошли на получение смеси безводного этанола с бензином. Благодаря использованию эта-нолового топлива воздух в таких загрязненных городах, как Сан-Паоло и Рио-де-Жанейро, стал значительно чище. Стоимость этанола, производимого на юге Бразилии, составляет в среднем 18,5 цента за 1 л. При такой стоимости он мог бы легко конкурировать с импортной нефтью, если бы цена на мировом рынке оставалась равной 24 долл. за баррель. Эффективная стоимость этанола может снизиться еще более, если пар, полученный при сжигании выжимок сахарного тростника, использовать для выработки электроэнергии. В настоящее время паровые турбины низкого давления способны производить около 20 кВт/ч, электроэнергии при сжигании выжимок, полученных из 1 т сахарного тростника. С помощью паровых турбин высокого давления можно было бы производить в 3 раза, а с помощью газовых - в 10 раз больше электроэнергии. Комбинации подобных технологий представляются весьма перспективными, и благодаря им сахарные заводы могут стать экспортерами энергии.

В США небольшое количество этанола, получаемого из зерновых, используется в качестве добавки к бензину. Этот этанол относительно дорог, однако в настоящее время разрабатывается технология получения сырья с использованием ферментов. Специалисты из научно-исследовательского института солнечной энергии считают, что к 2000 г. этанол, получаемый из дешевых источников, будет конкурентоспособен по отношению к бензину.

О субстратах. Выпуск спиртов в качестве моторных топлив предполагает большие объемы их производства, десятки млн. тонн. В качестве исходного субстрата для получения технического спирта экономически оправдано использование отходов сахарного тростника - багассы, а также маниока, батата, сладкого сорго, топинамбура. Однако эти культуры характерны для стран с теплым климатом, например, Латинской Америки. Для регионов с умеренным климатом, обладающих большими массивами лесов, приемлемым оказывается использование гидролизатов древесных отходов. Но для этого требуется достаточно энергоемкий и дорогой процессразрушения лигнина и целлюлозы с образованием водорастворимых сахаров. Процесс гидролиза непрерывно совершенствуется. Для повышения выхода сахаров в процессе гидролиза и снижения энергозатрат разрабатываются новые методы деструкции лигноцеллюлоз с привлечением физических, химических, ферментативных методов, а также в их сочетании. Помимо отходов лесопиления и деревообработки, возможно привлечение также соломы, торфа, тростника.

Экологические преимущества получения и применения этанола в качестве топлива очевидны. Что же касается экономических, - они определяются рядом условий: климатом и продуктивностью зеленой биомассы, себестоимостью сельскохозяйственной продукции и наличием (либо отсутствием) энергоносителей в виде нефти, природного газа или угля.

Источником углеводородов также могут служить водоросли. У широко распространенной зеленой водоросли Botryococcus braunii (обитающей в пресной и солоноватой воде умеренных и тропических зон) углеводороды в зависимости от условий роста и разновидностей могут составлять до 75% сухой массы. Они накапливаются внутри клеток, и водоросли, в которых их много, плавают на поверхности. После сбора водорослей эти углеводороды легко отделить экстракцией каким-нибудь растворителем или методом деструктивной отгонки. Таким путем может быть получено вещество, аналогичное дизельному топливу и керосину.

Встречается несколько разновидностей B.braunii, отличающихся пигментацией и структурой синтезируемых углеводородов. Зеленая разновидность содержит линейные углеводороды с нечетным (25-31) числом атомов углерода, бедных двойными связями. Красная водоросль содержит углеводороды с 34-38 атомами углерода и несколькими двойными связями; это так называемые "ботриококкцены". Смысл существования двух разновидностей в настоящее время изучается. Углеводороды накапливаются в клеточной стенке, их синтез связан с метаболической активностью водоросли в фазе роста. Выход углеводородов при создании оптимальных условий культивирования может достигать 60 т/га/год для культуры водорослей, выращиваемой в толще воды в природных или искусственных условиях. Исследования, связанные с выделением и возможностью утилизации углеводородов B.braunii, могут также способствовать лучшему пониманию вопроса о происхождении нефти.

Извлечь углеводороды без разрушения клеток можно центрифугированием биомассы водоросли, в ходе которого углеводороды «вытекают» из клеток. Последние можно вновь поместить с среду в условия аккумуляции углеводородов. Варьируя условия роста, освещенность, температуру, концентрацию солей, исследователям из Французского института нефти удалось сократить время удвоения от семи до двух суток, при этом выход углеводородов составил 0.09 г/л в сутки, что соответствует 60 т/га в год. Фракция углеводородов, синтезируемая водорослью, аналогична керосину или дизельному топливу.

Эта водоросль, как оказалось, достаточно широко распространена в природе, встречается в самых разных местах: от солоноватых озер Австралии до водохранилищ в окрестностях Лондона. Обнаруженные в прошлом в Австралии высохшие остатки этой водоросли под названием «коорнангит» явились даже поводом для возникновения своеобразной нефтяной «лихорадки». Сходные породы (остатки углеводородпродуцирующей водоросли) время от времени обнаруживают в различных частях света - в районе оз. Мозамбик в Африке («N?haugellite»), в Казахстане в районе озера Балхаш («балхашит»).

В настоящее время признано эффективным использовние этих углеводородов в фармацевтической промышленности. В США действует ферма для выращивания водоросли B. braunii с суммарной площадью водоема 52 тыс. га. Продуктивность процесса получения углеводородов составляет до 4800 м3 в сутки. Для улучшения топливных характеристик водорослевые углеводороды гидрируют.

Прежде чем делать выводы о перспективности данного способа для восполнения ресурсов жидких углеводородов, следует решить комплекс вопросов научного и опытно-конструкторского уровня, в том числе выяснить роль бактерий, развивающихся вместе с водорослью в процессе синтеза углеводородов, оптимизировать условия биосинтеза и экстракции, разработать соответствующую аппаратуру и условия для искусственного разведения водоросли в больших масштабах, а также оценить перспективность применения получаемых углеводородов в той или иной области.

Следует отметить, что изучение механизма синтеза углеводородов водорослями, будет способствовать познанию процесса нефтеобразования в природе в целом, так как клеточная стенка водоросли может служить модельным объектом, на котором можно попытаться проследит процесс образования нефти в земной коре, длительность которого исчисляется миллионами лет. Если удастся воспроизвести генезис ископаемых видов топлив, появится возможность определить время трансформации керогена -предшественника жидкой нефти, в нефть. Это позволит вычислить нефтяной потенциал маточной породы, содержащей кероген.

В США из молочая чиновидного, распространенного в Калифорнии, получают 3000 л масла с 1 га. Такое же количество дает молочай, культивируемый в Японии. Из нефтяного ореха, растущего на Филиппинах, получают 300 л масла, содержащего 75-80 долей октана.

Клеточные мембраны некоторых галобактерий также рассматриваются как альтернативные источники получения энергии. Были получены фотогальванические элементы на основе бактериородопсина, генерировавшие электрический ток. Кроме того, отличным экологически чистым и возобновляемым источником энергии является фотоводород, который получают с использованием мембран хлоропластов.

2. Применение биотехнологий в очистке окружающей среды от загрязнения

Биологическая очистка сточных вод

Биологическая очистка сточных вод представляет собой биологическое окисление - широко применяемый на практике метод очистки сточных вод для хозяйственно-бытовой и производственной деятельности, позволяющий очистить их от многих органических примесей с использованием установки биологической очистки воды .

Биологическая очистка воды происходит в результате жизнедеятельности сообщества микроорганизмов (биоценоза), включающего множество различных бактерий, простейших и ряд более высокоорганизованных организмов -- водорослей, грибов и т. д., связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антагонизма).

Методы биологической очистки воды могут осуществляться в сооружениях различного типа, начиная с простых технологий (капельные биофильтры и аэротенки), заканчивая современными системами биологической очистки воды с активным илом и реакторами с прикрепленной (иммобилизированной) микрофлорой.

Сравнительно простые технологии биологической очистки сточных вод используются главным образом для удаления органики (БПК, ХПК).

Технологии с применением иммобилизированных микроорганизмов, работающих в анаэробных и аэробных условиях, позволяют производить глубокую очистку сточных вод от органических загрязнений и соединений азота. Использование данной технологии позволяет снизить количество избыточного активного ила и обеспечивает высокую окислительную мощность вне зависимости от колебаний расходов и перепада температуры.

При очистке сточных вод выполняют четыре основные операции:

1. При первичной переработке происходит усреднение и осветление сточных вод от механических примесей (усреднители, песколовки, решетки, отстойники).

2. На втором этапе происходит разрушение растворенных органических веществ при участии аэробных микроорганизмов. Образующийся ил, состоящий главным образом из микробных клеток, либо удаляется, либо перекачивается в реактор. При технологии, использующей активный ил, часть его возвращается в аэрационный тенк.

3. На третьем (необязательном) этапе производится химическое осаждение и разделение азота и фосфора.

4. Для переработки ила, образующегося на первом и втором этапах, обычно используется процесс анаэробного разложения. При этом уменьшается объем осадка и количество патогенов, устраняется запах и образуется ценное органическое топливо - метан.

Сточные воды поступают в усреднитель, где происходит интенсивное перемешивание стоков с различным качественным и количественным составом. Перемешивание осуществляется за счет подачи воздуха. В случае необходимости в усреднитель подаются также биогенные элементы в необходимых количествах и аммиачная вода для создания определенного значения рН. Время пребывания в усреднителе составляет обычно несколько часов. При очистке фекальных стоков и отходов нефтепереработки необходимым элементом очистных сооружений является система механической очистки - песколовки и первичные отстойники. В них происходит отделение очищаемой воды от грубых взвесей и нефтепродуктов, образующих пленку на поверхности воды.

Биологическая очистка воды происходит в аэротенках. Аэротенк представляет собой открытое железобетонное сооружение, через которое проходит сточная вода, содержащая органические загрязнения и активный ил.

Суспензия ила в сточной воде на протяжении всего времени нахождения в аэротенке подвергается аэрации воздухом. Интенсивная аэрация суспензии активного ила кислородом приводит к восстановлению его способности сорбировать органические примеси.

В основе биологической очистки воды лежит деятельность активного ила (АИ) или биопленки, естественно возникшего биоценоза, формирующегося на каждом конкретном производстве в зависимости от состава сточных вод и выбранного режима очистки. Активный ил представляет собой темно-коричневые хлопья, размером до нескольких сотен микрометров. На 70% он состоит из живых организмов и на 30% - из твердых частиц неорганической природы. Живые организмы вместе с твердым носителем образуют зооглей - симбиоз популяций микроорганизмов, покрытый общей слизистой оболочкой. Микрооганизмы, выделенные из активного ила относятся к различным родам: Actynomyces, Azotobacter, Bacillus, Bacterium, Corynebacterium, Desulfomonas, Pseudomonas, Sarcina и др. Наиболее многочисленны бактерии рода Pseudomonas, о всеядности которых упоминалось ранее. В зависимости от внешней среды, которой в данном случае является сточная вода, та или иная группа бактерий может оказаться преобладающей, а остальные становятся спутниками основной группы.

Существенная роль в создании и функционировании активного ила принадлежит простейшим. Функции простейших достаточно многообразны; они сами не принимают непосредственного участия в потреблении органических веществ, но регулируют возрастной и видовой состав микроорганизмов в активном иле, поддерживая его на определенном уровне. Поглощая большое количество бактерий, простейшие способствуют выходу бактериальных экзоферментов, концентрирующихся в слизистой оболочке и тем самым принимать участие в деструкции загрязнений. В активных илах встречаются представители четырех классов простейших: саркодовые (Sarcodina), жгутиковые инфузории (Mastigophora), реснитчатые инфузории (Ciliata), сосущие инфузории (Suctoria).

Показателем качества активного ила является коэффициент протозойности, который отражает соотношение количества клеток простейших микроорганизмов к количеству бактериальных клеток. В высококачественном иле на 1 миллион бактериальных клеток должно приходиться 10-15 клеток простейших. При изменении состава сточной воды может увеличится численность одного из видов микроорганизмов, но другие культуры все равно остаются в составе биоценоза.

На формирование ценозов активного ила могут оказывать влияние и сезонные колебания температуры, обеспеченность кислородом, присутствие минеральных компонентов. Все это делает состав или сложным и практически невоспроизводимым. Эффективность работы очистных сооружений зависит также от концентрации микроорганизмов в сточных водах и возраста активного ила. В обычных аэротенках текущая концентрация активного ила не превышает 2-4 г/л.

Увеличение концентрации ила в сточной воде приводит к росту скорости очистки, но требует усиления аэрации, для поддержания концентрации кислорода на необходимом уровне. Таким образом, аэробная переработка стоков включает в себя следующие стадии:

1) адсорбция субстрата на клеточной поверхности;

2) расщепление адсорбированного субстрата внеклеточными ферментами;

3) поглощение растворенных веществ клетками;

4) рост и эндогенное дыхание;

5) высвобождение экскретируемых продуктов;

6) "выедание" первичной популяции организмов вторичными потребителями.

В идеале это должно приводить к полной минерализации отходов до простых солей, газов и воды. На практике очищенная вода и активный ил из аэротенка подаются во вторичный отстойник, где происходит отделение активного ила от воды. Часть активного ила возвращается в систему очистки, а избыток активного ила, образовавшийся в результате роста микроорганизмов, поступает на иловые площадки, где обезвоживается и вывозится на поля. Избыток активного ила можно также перерабатывать анаэробным путем. Переработанный активный ил может служить и как удобрения, и как корм для рыб, скота.

Система полной доочистки может состоять из множества элементов, которые определяются дальнейшим назначением сточной воды.

Возможно применение биологических прудов, где биологически очищенная вода проходит осветление и насыщается кислородом. Пруды также относятся к системе биологической очистки, в которой под воздействием биоценоза активного ила происходит окисление органических примесей. Состав биоценозов биологических прудов определяется глубиной нахождения данной группы микроорганизмов.

В верхних слоях развиваются аэробные культуры, в придонных - факультативные аэробы и анаэробы, способные осуществлять процессы метанового брожения или восстановление сульфатов. Насыщение воды кислородом происходит за счет процессов фотосинтеза, осуществляемого водорослями, из которых особенно широко представлены Clorella, Scenedesmus, встречаются эвгленовые, вольвоксовые и т.д. В прудах также в той или иной мере представлена микро- и макрофауна: простейшие, черви, коловратки, насекомые и др. В биопрудах из воды хорошо удаляются нефтепродукты, фенолы и другие органические соединения. В некоторых случаях воду после биологической очистки подвергают реагентной обработке - хлорированию или озонированию.

Интенсифицировать процессы биологической очистки можно путем аэрации суспензии активного ила чистым кислородом. Этот процесс можно осуществить в модифицированных аэротенках закрытого типа - окситенках, с принудительной аэрацией сточной воды.

В отличие от аэротенков в биофильтрах (или перколяционных фильтрах) клетки микроорганизмов находятся в неподвижном состоянии, так как прикреплены к поверхности пористого носителя. Образовавшуюся таким образом биопленку можно отнести к иммобилизованным клеткам. В этом случае иммобилизована не монокультура, а целый консорциум, неповторимый по качественному и количественному составу и различающийся в зависимости от его местонахождения на поверхности носителя. Очищаемая вода контактирует с неподвижным носителем, на котором иммобилизованы клетки и за счет их жизнедеятельности происходит снижение концентрации загрязнителя.

Преимущество применения биофильтров состоит в том, что формирование конкретного ценоза приводит к практически полному удалению всех органических примесей. Недостатками этого метода можно считать:

· нереальность использования стоков с высоким содержанием органических примесей;

· необходимость равномерного орошения поверхности биофильтра сточными водами, подаваемыми с постоянной скоростью;

· сточные воды перед подачей должны быть освобождены от взвешенных частиц во избежание заиливания.

В качестве носителей можно использовать керамику, щебень, гравий, керамзит, металлический или полимерный материал с высокой пористостью. Для биофильтров характерно наличие противотока воды, которая поступает сверху и воздуха, подающегося снизу. Оторвавшиеся частицы микробной пленки после отделения их во вторичном отстойнике не возвращаются обратно в биофильтр, а идут на иловые площадки или в анаэробную переработку.

Существуют также системы, сочетающие в себе как систему биофильтров, так и активного ила в аэротенках. Это так называемые аэротенки-вытеснители. В аэрируемую сточную воду помещают либо стеклоерши, либо создают систему сеток внутри тенка, в которые вкладываются прокладки из пористого полиэфира. В пустотах этих прокладок и на поверхности стеклоершей происходит накопление биоценоза активного ила. Носитель периодически удаляется из тенка, биомасса снимается, после чего носитель возвращается в реактор.

Система с иммобилизованными на мобильном носителе клетками отличается от биофильтров своей экономичностью, так как используются высокие концентрации микроорганизмов и нет необходимости осаждать конечные продукты. Такая система может найти применение в очистке локальных стоков, с узким спектром загрязнений. Их целесообразно очищать в самостоятельных биологических системах, не смешивая со стоками других производств. Это позволяет получить биоценозы микроорганизмов , адаптированные к данному узкому спектру загрязнений, при этом скорость и эффективность очистки резко возрастают.

Сущность процесса биологической очистки на полях орошения и полях фильтрации заключается в контакте загрязнителей сточных вод, которые находятся во взвешенном, коллоидальном, или растворенном состоянии, с иммобилизованными микроорганизмами почвенного слоя. Эти микроорганизмы сосредоточены, в основном, на глубине до 0,4 м, что обеспечивает оптимальную аэрацию. Во время этого контакта за счет процессов биосорбции, биоразложения и механической фильтрации сточных вод происходит их очистка.

Поля орошения и поля фильтрации представляют собой специально подготовленные и спланированные участки земли карты, являются одними из первых сооружений биологической очистки сточных вод в естественных условиях и известны с давних времен. Использование сточных вод в сельском хозяйстве известно с древнейших времён (Рим, Афины, Вавилон и др.). В Германии (Бунцлау) поля орошения. существовали с 1559, в Великобритании (Эдинбург) с 1709, во Франции (Париж) с 1868; в России -- с 1887 в Одессе, с 1895 в Киеве, с 1898 в Москве. В СССР орошение сточными водами в сельском хозяйстве применяется с 1922, в 1931 под Москвой организован совхоз «Люберецкие поля орошения». Земледельческие поля орошения существуют под Киевом (Бортнические), в Ухтомском районе Московской области, в Кустанайской области (г. Рудный) и др. местах. В 1973 их площадь в СССР составляла более 60 тыс. га. Орошение сельскохозяйственных культур сточными водами распространено во многих странах. На полях орошения возделывают в основном кормовые растения: кукурузу на силос, корнеплоды (урожаи их достигают 1000 ц с 1 га), многолетние травы.

Концентрация питательных элементов (азота, фосфора и калия) в бытовых сточных водах зависит от нормы водоотведения и в среднем составляет: азота 15-60 мг/л; фосфора 3-12 мг/л и калия 6-25 мг/л. Из всей массы удобрительных веществ, внесенных со сточными водами, растениями используется только их часть, приблизительно: азота 50%, фосфора 40% , и калия 90%. Остальная часть питательных веществ выносится вместе с дренажной водой, а азот частично улетучивается в атмосферу. Предварительное отстаивание сточной жидкости, перед ее подачей на поля, позволяет выделить из нее 50-60% общего числа бактерий и 50-60% (а после горизонтальных отстойников и 95%) яиц гельминтов. Общее снижение концентрации загрязнений по БПКП0ЛН и взвешенным веществам может составлять 100%.

Существуют коммунальные поля орошения, которые используются в основном для очистки сточных вод, а выращивание сельскохозяйственной продукции играет вспомогательную роль, и земледельческие поля орошения, которые служат для полной биологической очистки сточных вод и планового выращивания сельхозпродукции.

Отличаются поля орошения от полей фильтрации тем, что на полях орошения выращиваются овощи, злаки, плодовые и декоративные деревья и кустарники, технические культуры и т.п., утилизируя тем самым биогенные элементы (азот, фосфор, калий и др.), а поляфильтрации служат только для очистки сточных вод. Поля орошения могут устраиваться во всех климатических зонах за исключением районов Крайнего Севера и районов вечной мерзлоты. Глубина залегания грунтовых вод на территории, используемой под поля орошения,должна быть не менее 1,5м.

Оптимальные грунты для устройства полей орошения песчаные и супесчаные, фильтрационная способность суглинков и черноземов ниже. Торфяные грунты необходимо предварительно осушать, а на тяжелых суглинках и глинах устройство полей орошения невозможно.

Не допускается применение полей орошения на территории, расположенной в области питания артезианских и грунтовых безнапорных вод, а также при наличии трещиноватых пород и карстовых пустот, не перекрытых водоупорным слоем.

К отрицательным последствиям применения почвенного метода очистки сточных вод на полях следует отнести возможность накопления в почве биологически неокисляемых загрязнений, попадания в нее со сточными водами компонентов, губительно влияющих на почвенную флору фауну, растущую стоимость и трудность приобретения земельных участков вокруг населенных пунктов. Таким образом, устройство полей орошения или полей фильтрации следует рассматривать как возможную временную меру, с последующим переходом на сооружения искусственной биологической очистки.

Показатели загрязненности сточных вод. На всех этапах очистки сточных вод ведется строгий контроль за качественным составом воды. При этом проводится детальный анализ состава сточной воды с выяснением не только концентраций тех или иных соединений, но и более полное определение качественного и количественного состава загрязнителей. Необходимость такого анализа определяется спецификой системы переработки, так как в сточных водах могут присутствовать токсические вещества, способные привести к гибели микроорганизмов и вывести систему из строя.

Определение таких показателей, как органолептические (цвет, вид, запах, прозрачность, мутность), оптическая плотность, рН, температура не вызывает трудностей. Сложнее определить содержание органических веществ в сточной воде, которое необходимо знать для контроля работы очистных сооружений, повторного использования сточных вод в технологических процессах, выбора метода очистки и доочистки, окончания процесса очистки, а также оценки возможности сброса воды в водоемы.

При определении содержания органических веществ широко используются два способа: химическое потребление кислорода и биохимическое потребление кислорода. В первом случае методика основана на окислении веществ, присутствующих в сточных водах, 0,25% раствором бихромата калия при кипячении пробы в течение 2 часов в 50% (по объему) растворе серной кислоты. Для полноты окисления органических веществ используется катализатор - сульфат серебра. Бихроматный способ достаточно прост и легко автоматизируется, что обуславливает его широкое распространение.

Биохимическое потребление кислорода измеряется количеством кислорода, расходуемым микроорганизмами при аэробном биологическом разложении веществ, содержащихся в сточных водах при стандартных условиях за определенный интервал времени. Определение биохимического потребления кислорода требует специальной аппаратуры. В герметичный ферментер помещается определенное количество исследуемой сточной воды, которую засевают микроорганизмами. В процессе культивирования регистрируется изменение количества кислорода, пошедшего на окисление соединения, присутствующего в сточных водах. Лучше всего культивировать микроорганизмы из уже работающих биологических систем, адаптированных к данному спектру загрязнений.

Определение лишь одного из показателей качества сточной воды (химического или биохимического потребления кислорода) не всегда позволяет оценить как ее доступность для биологической очистки, так и степень конечной очистки. Так, например, имеется целые группы соединений, определение химического потребления кислорода для которых невозможно, хотя эти соединения вполне доступны для биохимического определения кислорода и наоборот. Все это говорит о том, что для оценки чистоты сточных воды необходимо использовать одновременно оба метода.

Биотехнология будет оказывать многообразное и все возрастающее влияние на способы контроля за окружающей средой и на ее состояние. Хорошим примером такого рода служит создание новых, более совершенных способов переработки отходов, однако применение биотехнологии в данной сфере отнюдь не ограничивается этим. Биотехнология будет играть все большую роль в химической промышленности и сельском хозяйстве, помогая создать замкнутые и полузамкнутые технологические циклы, решая хотя бы отчасти существующие здесь проблемы.

...

Подобные документы

  • Понятие и роль биотехнологий, используемых для очистки различных загрязнений окружающей среды: переработки отходов, защиты атмосферы, рекультивация, очистки вод, переработки отходов растительности, охраны земель, очистка почв от нефти и нефтепродуктов.

    курсовая работа [218,6 K], добавлен 17.06.2013

  • Особенности создании необходимых для человека продуктов, явлений и эффектов с помощью микроорганизмов. Применение биотехнологий для решения экологических проблем. Биологическая очистка сточных вод, охрана лесов от вредителей и защита воздуха в городах.

    реферат [229,0 K], добавлен 16.12.2011

  • История развития экологии. Видовая и пространственная структура биоценоза. Природные ресурсы земли. Виды загрязнения гидросферы и биосферы отходами производства и потребления. Роль биотехнологий и государственных органов в охране окружающей среды.

    контрольная работа [34,8 K], добавлен 02.06.2010

  • Состояние гидросферы, литосферы, атмосферы Земли и причины их загрязнения. Методы утилизации отходов предприятий. Способы получения альтернативных источников энергии, не наносящих вреда природе. Влияние загрязнений окружающей среды на здоровье человека.

    реферат [28,0 K], добавлен 02.11.2010

  • Загрязнения окружающей среды разливами нефти, виды ответственности за причиненный вред. Разлив нефти в Балтийском море в 1969 г. Реабилитация животных, пострадавших от загрязнения. Промышленные предприятия Астраханской области и окружающая среда.

    курсовая работа [55,7 K], добавлен 22.05.2009

  • Классификация и формы загрязнения окружающей среды. Состояние здоровья населения, уменьшение его здорового числа. Факторы, влияющие на здоровье и продолжительность жизни. Медико-санитарное обеспечение безопасности человека. Решение экологических проблем.

    реферат [39,6 K], добавлен 10.12.2011

  • Подготовка АЗС к эксплуатации в осенне-зимних и весенне-летних условиях, отпуск, хранение и прием нефтепродуктов. Защита металлоконструкций АЗС от коррозии. Мероприятия по охране окружающей среды. Новые сорбенты по очистке литосферы и гидросферы.

    курсовая работа [84,5 K], добавлен 16.10.2009

  • Строение и жизнедеятельность бактерий. Микробная индикация биологического, фекального и техногенного загрязнения водных экосистем. Микробиологическое исследование почвы. Влияние пестицидов на почвенные микроорганизмы. Загрязнение почв тяжелыми металлами.

    реферат [335,0 K], добавлен 01.10.2015

  • Технологии газификации биомассы, получения жидкого топлива быстрым пиролизом. Сжигание древесины с целью получения тепловой и электрической энергии. Переработка твердых бытовых отходов на энергетических установках. Очистка сточных вод от загрязнений.

    курсовая работа [1,6 M], добавлен 15.01.2015

  • Участники, цели и основная деятельность международных организаций по охране окружающей среды. Исследование состояния природы и происходящих в ней изменений с помощью систем мониторинга и наблюдения. Сотрудничество в рамках СНГ по вопросам экологии.

    презентация [863,7 K], добавлен 02.05.2013

  • Последствия загрязнения окружающей среды, которые отражаются на растениях. Характеристика биоиндикации и биотестирования. Принципы организации биологического мониторинга. Основные формы отклика живых организмов, области применения биоиндикаторов.

    курсовая работа [65,1 K], добавлен 20.04.2011

  • Охрана окружающей среды. Общества по охране окружающей среды, движения и дружины по охране природы. Заповедники. Заказники и памятники природы. Меры по предотвращению загрязнения атмосферного воздуха. Рациональное использование водных ресурсов.

    реферат [31,0 K], добавлен 24.08.2008

  • Понятие и сущность биотехнологий; их использование для очистки углеводородов нефти. Биопрепараты-нефтедеструкторы: "Родер", "Суперкрмпост пикса", "Охромин", бактерии Pseudomonas - экологически безопасные методы восстановления нефтезагрязненных почв.

    курсовая работа [921,5 K], добавлен 23.02.2011

  • Анализ потребления древесины в России. Сельскохозяйственные отходы растительного происхождения как источник строительного сырья. Использование древесной биомассы для получения энергии. Сущность крупнокусковых отходов, представляющих наибольшую ценность.

    контрольная работа [426,7 K], добавлен 14.10.2011

  • Радиоактивное загрязнение биосферы, влияние антропогенного фактора. Основная радиационная опасность, захоронение отходов. Полигоны в Казахстане. Признаки техногенного загрязнения. Обзор основных радиоактивных компонентов. Их влияние на людей и животных.

    презентация [528,0 K], добавлен 28.05.2014

  • Характеристика загрязнения окружающей среды, как глобальной проблемы человечества. Изучение причин загрязнения водных ресурсов (минеральные, органические, биологические и бактериальные), атмосферы, почвы. Меры, применяемые для охраны окружающей среды.

    реферат [18,3 K], добавлен 17.02.2010

  • Классификация типов загрязнений окружающей среды, рассмотрение причин их возникновения и варианты решения складывающихся проблем. Воздействие различных видов загрязнений на человека, животный и растительный мир. Источники антропогенного загрязнения.

    реферат [208,4 K], добавлен 12.07.2011

  • Проблемы нефтяного загрязнения почвы и подземных вод. Санитарно-эпидемиологические правила и гигиенические нормативы по содержанию нефти и нефтепродуктов в окружающей среде. Предупреждение аварийных выбросов, мероприятия по ликвидации их последствий.

    курсовая работа [93,0 K], добавлен 19.04.2011

  • Загрязнение окружающей среды, масштабы его распространения на современном этапе. Особенности использования нанотехнологий в охране окружающей среды: очистка вод, керамические мембраны, нанотрубки, использование диоксина, адсорбция загрязняющих веществ.

    курсовая работа [1,1 M], добавлен 05.04.2011

  • Живое вещество как основа биосферы. Свойства и функции экосистемы. Системы взглядов на существование биосферы: антропоцентрическая и биоцентрическая. Виды загрязнения окружающей среды. Способы защиты окружающей среды. Внебюджетные экологические фонды.

    лекция [64,9 K], добавлен 20.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.