Очистка сточных вод

Нормирование качества воды в водоёмах. Физико-химические и биохимические методы очистки сточных вод. Удаление ионов тяжелых металлов. Методы избавления от поверхностно-активных веществ и фенолов. Ресурсы замкнутой системы водопользования на предприятии.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 09.12.2015
Размер файла 49,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ПТС

РЕФЕРАТ

На тему: "Очистка сточных вод"

Выполнил:

Гайнутдинов Р.Ф.

Казань

2013

Содержание

Введение

1. Нормирование качества воды в водоёмах

2. Методы очистки сточных вод

2.1 Механические методы

2.2 Физико-химические методы

2.3 Биохимические методы

2.4 Методы удаления ионоя тяжелых металлов

2.5 Методы удаления поверхностно-активных веществ и фенолов

3. Замкнутые системы водоиспользования на предприятиях

Заключение

Список литературы

Введение

Сточные воды -- любые воды и атмосферные осадки, отводимые в водоёмы с территорий промышленных предприятий и населённых мест через систему канализации или самотёком, свойства которых оказались ухудшенными в результате деятельности человека.

Очистка сточных вод -- комплекс мероприятий по удалению загрязнений, содержащихся в бытовых и промышленных сточных водах.

Вода - ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания. Рост городов, бурное развитие промышленности, интенсификация сельского хозяйства, значительное расширение площадей орошаемых земель, улучшение культурно-бытовых условий и ряд других факторов все больше усложняет проблемы обеспечения водой.

Потребности в воде огромны и ежегодно возрастают. Ежегодный расход воды на земном шаре по всем видам водоснабжения составляет 3300-3500 км3. При этом 70% всего водопотребления используется в сельском хозяйстве. Дефицит пресной воды уже сейчас становится мировой проблемой. Все более возрастающие потребности промышленности и сельского хозяйства в воде заставляют все страны, ученых мира искать разнообразные средства для решения этой проблемы.

На современном этапе определяются такие направления рационального использования водных ресурсов: более полное использование и расширенное воспроизводство ресурсов пресных вод

1. Нормирование качества воды в водоёмах

Вода в природе находится в непрерывном движении во всех основных сферах Земли: гидросфере, атмосфере, литосфере и биосфере. Общий объем гидросферы на Земле оценивается в 1389 млн. км3. Вода занимает 3/4 поверхности земного шара. Однако ресурсы пресной воды на Земле по сравнению с соленой невелики и составляют по расчетам различных авторов 35--39 млн. км3, т.е. 2,0--2,5% от всех мировых запасов. Потребление пресной воды в мире достигает 3900 млрд. м3/год. Из этого количества половина теряется безвозвратно, а другая половина переходит в сточные воды.

Под действием солнечного тепла вода с поверхности земли и водных бассейнов испаряется в атмосферу, а затем выпадает в виде осадков. С водой связаны основные процессы формирования лика Земли: эрозия горных пород и почв, перемещение и накопление огромных масс взвешенных и растворимых веществ. Вода играет решающую роль во многих процессах, протекающих в природе, и в обеспечении самой жизни на Земле. Вода участвует в биологическом круговороте, являясь важнейшей составной частью фауны и флоры.

Природная вода -- универсальный растворитель. В результате постоянной циркуляции на поверхности Земли, в почвенных слоя и подземных толщах она в большей или меньшей степени загрязняется различными солями (хлоридами, сульфатами, карбонатами натрия и кальция, железа, марганца и др.), органическими веществами (гуминовыми и фульвокислотами), производственными и транспортными отходами и газами, а также глинистыми частицами, стоками с полей и живыми организмами (планктоном, различными бактериями и вирусами). Поэтому в чистом виде вода в природе не встречается.

Пресные воды подразделяются на воды малой минерализованности (до 200 мг/л), средней (200--500 мг/л) и повышенной (500--1000 мг/л). Воды большинства рек России относятся к первым двум группам. По преобладающему аниону воды делятся на гидрокарбонатные, сульфатные и хлоридные.

Наличие в воде солей кальция и магния определяют ее жесткость. Различают карбонатную и некарбонатную жесткость. Карбонатная жесткость связана с присутствием в воде бикарбонатов кальция и магния, а некарбонатная -- сульфатов, хлоридов, нитратов кальция и магния.

Качество воды рек, озер и водохранилищ определяется в соответствии с "Санитарными правилами и нормами охраны поверхностных вод от загрязнений", согласно которым устанавливается две категории водоемов: I -- водоемы питьевого и культурно-бытового назначения и II -- водоемы рыбохозяйственного назначения. Состав и свойства воды водных объектов первого типа должны соответствовать нормам в створах, расположенных в водостоках на расстоянии одного километра выше ближайшего по течению, а в непроточных водоемах -- в радиусе одного километра от пункта водоиспользования. Состав и свойства воды в рыбохозяйственных водоемах должны соответствовать нормам в месте выпуска сточных вод при рассеивающем выпуске (наличие течений), а при отсутствии рассеивающего выпуска не далее, чем в 500 м от всего выпуска.

Для определения содержания в сточных водах токсичных примесей с целью выбора метода очистки, возврата в оборот, слива в канализацию, а также возможности их сброса в водоем необходим анализ химического состава. Вредные и ядовитые вещества разнообразны по своему составу и свойствам, в связи с чем их содержание нормируют по принципу лимитирующего показателя вредности (ЛПВ), под которым понимают наиболее вероятное неблагоприятное воздействие каждого вещества. При нормировании качества воды в водоемах питьевого и культурно-бытового назначения используют три вида ЛПВ: санитарно-токсикологический, общесанитарный и органолептический.

Контроль состава сточных вод заключается в определении следующих показателей: температуры, цвета, запаха, прозрачности по шрифту, рН (водородный показатель), содержания взвешенных веществ, величины сухого остатка, общей кислотности и щелочности, окисляемости, химического потребления кислорода (ХПК), биохимического потребления кислорода (ВПК), содержания хлоридов и сульфатов.

Окисляемость воды выражается в миллиграммах кислорода, расходуемого для окисления веществ, содержащихся в 1 л воды. В зависимости от используемых окислителей и полноты окисления органических веществ различают перманганатную и бихроматную окисляемость. Перманганатная окисляемость характеризует количество легко окисляющихся органических примесей и обычно используется при анализе природных вод. водоём биохимический метал фенол

Показателем содержания органических примесей в сточных водах является ХПК, определяемое с помощью бихромата калия в присутствии серной кислоты, В этом случае происходит практически полное окисление растворимых, коллоидных и нерастворимых органических примесей. Степень окисления органических веществ обычно составляет 95--98%. Степень загрязненности сточных вод выражается также количеством кислорода, необходимого для окисления органических веществ микроорганизмами в аэробных условиях БПК. Практически полным его значением считается количество кислорода, необходимого для окисления органических веществ до начала нитрификации -- БПКПОЛН. Наряду с ним определяется биохимическое потребление кислорода в течение 5 суток -- БПК5.

Предельно-допустимая концентрация (ПДК) вредного (загрязняющего вещества) в воде водоема -- концентрация, которая не оказывает вредного воздействия на организм человека при употреблении воды для питья, приготовления пищи, гигиенических целей и для отдыха. Для разных категорий водоемов устанавливаются различные значения ПДК загрязняющих веществ. При оценке опасности загрязнений следует учитывать фауну водоемов. Рыбы по сравнению с теплокровными животными более чувствительны к токсичным веществам. Для ассимиляции необходимого количества кислорода из внешней среды рыбы пропускают его вместе с водой через жабры и вводят в организм больше токсичного вещества, чем теплокровные животные пропускают с воздухом через легкие. Например, для карпов смертельная концентрация фенола при поступлении через жабры в 50 раз меньше, чем при попадании через ротовое отверстие.

Вода, используемая для питья, не должна содержать никаких патогенных микробов, являющихся причиной заболевания живых организмов. Качество питьевой воды оценивается косвенными бактериологическими показателями. К ним относятся кишечная палочка и общее количество бактерий -- метатрофов. В качестве единиц бактериального загрязнения служат колититр и колииндекс.

Таким образом, при оценке степени загрязненности воды и обосновании ПДК вредных веществ в водоемах необходимо учитывать весь комплекс влияния вредных веществ на качество воды, используемой для различных целей.

2. Методы очистки сточных вод

Производственные сточные воды железнодорожных предприятий представляют собой сложные системы, содержащие минеральные и органические вещества, состав и количество которых, как правило, определяется характером технологических процессов. Загрязнения могут находиться в воде в виде взвешенных частиц различного размера (дисперсные системы -- взвеси и коллоидные растворы) и в истинно растворенном состоянии. Взвеси характеризуются размером частиц более 0,1 мкм (суспензии и эмульсии), а коллоидные растворы. В истинных растворах размеры частиц соизмеримы с размерами отдельных молекул или ионов. Взвеси делятся на суспензии -- твердая фаза распределена в жидкой и эмульсии -- жидкая фаза диспергирована в жидкости.

Очистка сточных вод предприятий железнодорожного транспорта может осуществляться механическими, физико-химическими, химическими, биологическими и другими методами. Взвешенные вещества, плавающие нефтепродукты и т.п. удаляются механическими методами -- отстаиванием, фильтрацией, центрифугированием и др. Мелкодисперсные, коллоидно-растворенные и растворенные примеси удаляются физико-химическими способами, которые включают в себя коагуляцию, флотацию, сорбцию, флокуляцию, ионный обмен, ультрафильтрацию, электродиализ I и химическими -- озонирование, реагентное воздействие, умягчение и др.

Из-за сложного состава сточных вод при их очистке используются комбинации различных методов. Во всех случаях первой стадией является механическая очистка, способствующая удалению взвешенных частиц.

2.1 Механические методы

Отстаивание Применяется для осаждения из сточных вод грубодисперсных примесей в песколовках, отстойниках, гидроциююнах и осветлителях. В осветлителях одновременно с отстаиванием происходит фильтрация сточных вод через слой взвешенных частиц. Песколовки (щелевые, горизонтальные, вертикальные) применяют для предварительного выделения минеральных и органических загрязнений (0,2 0,25 мм). Они устанавливаются перед отстойниками и позволяют выделять минеральные примеси и грубодисперсные частицы, содержащие нефтепродукты. При расходе сточных вод до 100 м3/ч применяют щелевые песколовки (рис. 5.1), при большом расходе -- горизонтальные и вертикальные. Скорость движения сточной воды в горизонтальных песколовках принимают в пределах 0,1--0,3 м/с, а в вер-- тикальных -- 0,02--0,05 м/с при времени пребывания воды в отстойнике 30--60 с. Постоянная скорость потока жидкости обеспечивается конструктивными особенностями песколовок.

Горизонтальная песколовка задерживает 15 -- 20% минеральных примесей из сточных вод. Вертикальная песколовка -- отстойник из сборного железобетона -- по эффективности работы аналогична горизонтальным песколовкам.

Отстойники (нефтеловушки) применяют в качестве первой ступени очистных сооружений для удаления из сточных вод основной массы взвешенных веществ и нефтепродуктов. По направлению движения воды они разделяются на горизонтальные, вертикальные и радиальные.

Скоростные фильтры (рис. 5.6) могут быть двух типов: однослойные и многослойные. У однослойных фильтров фильтрующий слой состоит из однородного материала, у многослойных -- из смеси различных материалов (песок, антрацит и др.). Сточная вода проходит через фильтрующий материал и удаляется из фильтра. После засорения фильтрующего материала проводят его промывку, подавая промывную воду снизу вверх. Общая высота слоя загрузки составляет 1,5--2,0 м. Скорость фильтрования принимается равной 12--20 м/ч. Для более эффективной очистки фильтров используют водо-воздушную промывку, при которой зернистый слой сначала продувается воздухом для взрыхления, а затем подается вода. Интенсивность подачи воздуха изменяется в пределах от 18 до 22 л (м2/с), а воды -- от 6 до 7 л (м2/с). После отстаивания сточные воды содержат тонкодиспергированные нефтепродукты, которые можно выделить фильтрованием. В качестве фильтрующего материала применяют кварцевый песок, керамзит, графит, кокс, полимерные материалы. При фильтровании сточных вод, содержащих нефть, через песчаный фильтр адгезия гидрофильных зерен песка и гидрофобных нефтяных частиц происходит в результате неодинаковых гидрофильных свойств отдельных участков поверхности зерен песка. Сила адгезии частиц нефтепродуктов зависит от энергии поверхностного натяжения и размера частиц нефтепродуктов. Для нормальной работы фильтра исходное содержание нефтепродуктов в сточной воде не должно превышать 60--80 мг/л, а механических примесей -- 50 мг/л.

Для очистки нефтесодержащих сточных вод внедрена промышленная установка "Кристалл". На этой установке были испытаны клеевые объемные фильтровальные материалы сипрон и вазопрон, которые показали высокую адсорбционную активность к нефтепродуктам. Практичен кое применение находит эффективный фильтрующий материал пенополиуретан (ППУ), 1 дм2 которого поглощает 950--980 г нефтепродуктов. Пенополиуретан регенерируют так же, как нетканые материалы; при этом с него удаляется до 95% нефтепродуктов. Применение этого материала позволяет проводить фильтрование со скоростью 15--30 м3/ч. На основе пенополиуретана разработаны фильтры "Полимер" для очистки сточных вод от масел и нефтепродуктов. Фильтры представляют собой прямоугольные в плане емкости, заполненные измельченным пенополиуретаном. Сточные воды поступают в верхнюю часть фильтра и равномерно распределяются по всей площади загрузки. Пройдя слой ППУ, стоки освобождаются от масел, нефтепродуктов, взвешенных веществ и по обводному трубопроводу выводятся из фильтра, регенерация которого осуществляется

Общая схема очистных сооружений включает песколовки, нефтеловушки и фильтры "Полимер". Работа по та кой схеме позволяет получить высокую степень очистки, обеспечивающую возможность использования воды в обороте, а также дает большую экономию средств. Внедрение фильтров "Полимер" более чем в 20 раз повышает грязсемкость кварцевого песка и полистирола, а количество регенерата, образующегося в процессе механического отжатия ППУ, в 30--50 раз меньше количества промывных вод, образующихся при регенерации песчаных и полистироловых фильтров. Производительность такой установки составляет до 600 м3/ч.

2.2 Физико-химические методы

Для удаления из сточных вод тонкодисперсных взвешенных и коллоидных частиц, растворимых газов, минеральных и органических веществ используются физико-химические методы, к которым относят коагуляцию, флотацию, адсорбцию, ионный обмен, ультрафильтрацию и др.

Выбор метода зависит от технологических и санитарных требований, состава сточных вод, концентрации загрязнений, а также наличия необходимых материальных, энергетических ресурсов и экономичности процесса.

На коллоидные частицы действуют в противоположных направлениях две силы: силы тяжести и диффузии. Под действием силы тяжести они стремятся опуститься на дно, а силы диффузии распределяют частицы равномерно по всему объему системы. В результате действия этих сил в системе устанавливается равномерное распределение частиц по высоте.

Дисперсные системы могут существовать, не разрушаясь, длительное время. Различают кинетическую и агрегативную устойчивость таких систем. Способность дисперсных систем сохранять определенное распределение по объему называется кинетической устойчивостью. Грубодисперсные системы кинетически неустойчивы, их частицы оседают под действием силы тяжести. Молекулярные системы (смесь газов и растворы) обладают очень высокой кинетической устойчивостью. Кинетическая устойчивость коллоидных систем зависит от размеров частиц: чем меньше размер их частиц, тем более кинетически устойчив коллоидный раствор. Агрегативная устойчивость выражается в том, что частицы не укрупняются (не слипаются) при столкновении друг с другом. Коллоидные частицы, лишенные агрсгативной устойчивости, слипаются в более крупные агрегаты (коагулируют) и выпадают из коллоидного раствора в осадок.

В электрическом поле коллоидные растворы подвергаются изменению при приложении разности потенциалов: в них происходит движение частиц и жидкости. Эти процессы получили общее название электрокинетических явлений. Явление переноса частиц дисперсной фазы (взвешенных частиц) в электрическом поле называется электрофорезом, а движение жидкости дисперсионной среды (растворитель) также в электрическом поле -- электроосмосом. Электрокинетические явления можно объяснить существованием на поверхности дисперсионной фазы двойного электрического слоя и возникновением разности потенциалов между дисперсной фазой и дисперсной средой. Если дисперсная фаза несет заряды одного знака, а жидкая среда противоположного, то под действием внешнего электрического поля эти фазы приходят в движение относительно друг друга.

Коллоидная система состоит из дисперсионной фазы -- мицелл и дисперсной среды -- воды. Основной частью мицеллы является агрегат состоящий из атомов, ионов или молекул, как правило малорастворимого в воде химического соединения. На поверхности такого агрегата, получившего название ядро, фиксируются ионы стабилизатора, которые определяют знак и величину термодинамического потенциала (потенциалопределяющие ионы). Вокруг ядра располагается часть противоионов стабилизатора - адсорбционный слой. Ядро вместе с адсорбционным слоем противоионов составляет коллоидную частицу, заряд которой соответствует знаку заряда потенциалопределяющих ионов.

Коллоидные частицы могут иметь различную форму в зависимости от их химического состава: ленточную, пластинчатую, а иногда -- палочек. По своим размерам мицеллы значительно больше обычных молекул. Так, например, молекула воды имеет диаметр 0,27 нм, а средний диаметр коллоидной частицы Ре(ОН)3 составляет 20--40 нм при толщине пластинки 4 им. Каждая такая частица состоит из 400--500 молекул Fе(ОН)3. Коллоидная частица золота имеет около миллиона атомов этого элемента.

Мицелла имеет сложное строение. Проиллюстрируем это на примере строения мицеллы гидроксида железа.

Катионы FеО+ избирательно адсорбируются на поверхности коллоидного ядра, заряжая его положительно. Поэтому указанные ионы называются потенциалопределяющими. Последние имеют знак заряда, противоположный потенциалопределяющим ионам и называются противоионами. Таким образом, на поверхности раздела фаз "коллоидная частица -- интермицеллярная жидкость" образуется двойной электрический слой.

Гидратированные анионы в жидкой фазе находятся под воздействием двух взаимно противоположных сил: электростатических, стягивающих мицеллу, и диффузионных, стремящихся рассеять анионы. В результате совместного действия этих сил состояние отдельных анионов оказывается неодинаковым. Часть из них, обозначенная через х, образует диффузный слой -- ионную атмосферу мицеллы.

Другая часть противоионов, более или менее прочно связана с потенциалопределяющими ионами, с которым она на поверхности ядра создает плотный адсорбционный слой. Они называются связанными противоионами. Ионы диффузного слоя непрерывно обмениваются с одноименными ионами адсорбционного слоя, поэтому они называются также обменными. Здесь устанавливается подвижное равновесие, зависящее от состава интермицеллярной жидкости, температуры и других условий.

На границе подвижного и неподвижного слоев возникает разность потенциалов, которую называют электрокинетическим потенциалом или дзетапотенциалом. Следовательно, электрокинетический потенциал является разностью потенциалов на границе неподвижного (адсорбционного) слоя жидкого и подвижного (диффузионного). Между твердой фазой и жидкостью возникает разность потенциалов -- термодинамический потенциал, определяемый плотностью зарядов потенциал определяющих ионов на единице поверхности. По мере удаления от поверхности твердой фазы термодинамический потенциал уменьшается. В адсорбционном слое от уменьшается по прямой как в плоском конденсаторе. В диффузионном слое снижение потенциала происходит по кривой, так как противоионы в нем распределены неравномерно.

Наиболее эффективным методом для удаления из сточных вод нерастворимых диспергированных примесей, а также нефтепродуктов, которые самопроизвольно плохо отстаиваются, является флотация. Достоинством флотации является непрерывность процесса, широкий диапазон применения, небольшие капитальные и эксплуатационные затраты, простота аппаратуры, селективность выделения примесей по сравнению с отстаиванием, большая скорость процесса, высокая степень очистки (95--98%), возможность рекуперации удаляемых веществ. Флотация сопровождается аэрацией сточных вод, снижением концентрации поверхностно-активных веществ (ПАВ), лскгоокисляемых веществ, бактерий и микроорганизмов. Все это способствует успешному проведению последующих стадий очистки сточных вод.

Процесс, на котором основана флотация, состоит в том, что при сближении поднимающегося в воде пузырька воздуха с твердой гидрофобной частицей разделяющая их прослойка воды при некоторой критической толщине прорывается и происходит слипание пузырька с частицей. Затем комплекс "пузырскчастцица" поднимается на поверхность воды, где пузырьки собираются, и возникает пенный слой с более высокой концентрацией частиц, чем в исходной сточной воде. Эффект разделения флотацией зависит от размера и количества пузырьков. На величину смачиваемости поверхности взвешенных частиц влияют адсорбционные явления и присутствие в воде примесей ПАВ, электролитов и др.

Присоединение частиц к пузырьку воздуха сопровождается уменьшением поверхностной энергии натяжения пограничных слоев и возникновением сил, стремящихся уменьшить площадь контакта воды с частицей.

2.3 Биохимические методы

После механической и физико-химической очистки сточные воды, содержащие нефтепродукты и другие растворенные загрязнения (например, фенолы), направляются на биологическую очистку, сущность которой заключается в окислении органических загрязнений микроорганизмами.

Биологическое окисление проводят как в естественных условиях на полях фильтрации, орошения и в биологических прудах, так и в искусственно созданных условиях на биофильтрах и в аэротанках. Поля фильтрации, орошения и биофильтры функционируют за счет почвенных биоценозов, биологические пруды и аэротанки -- за счет биоценозов этих водоемов. Биоценоз состоит из множества различных бактерий, простейших и более высокоорганизованных организмов -- водорослей и т.д., связанных между собой в единый комплекс. На объектах, где происходит утечка нефтепродуктов, используют капельные и высоконагруженные биофильтры.

В капельных биофильтрах в качестве фильтрующего материала используют шлак, гранитный щебень, кокс, известняк, антрацит и другие водоустойчивые материалы. Обмен воздуха в биофильтре происходит путем естественной вентиляции (при высоте загрузки 1,5--2 м) и принудительной вентиляции (при высоте загрузки более 2 м). Для обеспечения жизнедеятельности микроорганизмов сточная вода, поступающая на фильтр, должна содержать не более 25 мг/л нефтепродуктов и не более 10 г/л растворенных солей. На каждые 100 мг/л сточных вод должно содержаться не менее 5 мг азота и не менее 1 мг фосфора.

Процесс очистки протекает следующим образом. Нерастворимые загрязнения образуют на поверхности биофильтра биологическую пленку, густо заселенную микроорганизмами. В процессе работы биофильтра пленка отмирает. Очищенную в биофильтре воду хлорируют, и она поступает во вторичных отстойник, где отмершая пленка задерживается. Очищенную воду спускают в водоем. Для обеспечения нормальной работы в биофильтр первоначально подают хозяйственно-бытовые стоки слабой концентрации. В фильтр вводят биогенные элементы в виде солей азота и фосфора и по мере образования биопленки постепенно добавляют нефтесодержащие сточные воды. Период адаптации микроорганизмов длится 2--4 недели. В течение этого времени объемное содержание нефтесодержащих и хозяйственно-бытовых стоков доводят до соотношения 1:1. Для обеспечения нормальной жизнедеятельности микроорганизмов биологические фильтры вводят в эксплуатацию при температуре около 20°С.

Наряду с капельными биофильтрами используются высоконагруженные фильтры. Они отличаются от капельных биофильтров более высокой окислительной мощностью, которая достигается за счет увеличения крупности зерен загрузки и изменения конструкции биофильтра. Особая конструкция днища и дренажа обеспечивает искусственную продувку сооружения воздухом. Сравнительно большая скорость движения сточной жидкости в биофильтре обеспечивает постоянный вынос из него задержанных трудноокисляемых нерастворимых веществ и отмершей биологической пленки.

Аэротенки применяются для очистки сточных вод шпалопропиточных заводов, дезинфекционно-промывочных станций и при совместной доочистке бытовых и производственных вод других предприятий. Допустимые концентрации загрязнений в воде, поступающей в аэротенк, составляют 100мг/л по фенолам, 25 мг/л по веществам, экстрагируемым эфиром, и ВПК -- 500 мг О2/л, ХПК -- 1000 мг О2/л. В основу работы аэротенков положена деятельность микроорганизмов, обитающих в природных водоемах. Они носят название активного ила. Аэротенки подразделяются на аэротенки с регенерацией и без регенерации активного ила, аэротенки-смесители, аэротенки-вытеснители и аэротенки-отстойники. В зависимости от применяемых аэрационных устройств имеются аэротенки с механической, пневматической и пневмомеханической аэрацией.

Аппаратурное оформление процесса адсорбционной очистки -- общепринятое в химической технологии. Это -- напорные фильтры с плотным слоем гранулированных углей, перед которыми расположены механические фильтры. Использование высококачественных дорогостоящих сорбентов, прежде всего, активированных углей, целесообразно лишь при их эффективной регенерации с полным восстановлением их сорбционной емкости. Для такой регенерации одной тонны углей расходуется 1000 м3 природного газа, 10 000 м3 воздуха и 0,5 т пара. После каждой регенерации сорбент может быть использован до 10 раз с потерями 10%..

2.4 Методы удаления ионоя тяжелых металлов

При работе гальванических цехов в сточные воды поступают соли тяжелых металлов в количествах, иногда превышающих ПДК. В результате этого окружающей среде наносится значительный ущерб, так как соли тяжелых металлов, кроме общей ядовитости, являются также канцерогенами и могут влиять на наследственность.

Соли тяжелых металлов в сточных водах содержаться в виде раствора, а также взвесей. Они способны; восстанавливаться, окисляться, осаждаться, адсорбироваться в виде индивидуальных комплексов. По степени токсичности тяжелые металлы можно условно расположить в ряд. Для удаления солей тяжелых металлов из сточных вод применяют реагентные и физико-химические методы. Реа-гентные методы очистки наиболее эффективно применяются для удаления соединений цинка, меди, никеля, свинца, кадмия, кобальта, железа и др. Сущность реагентных методов заключается в переводе растворимых в воде соединений веществ в нерастворимые при добавлении различных реагентов с последующим отделением их от воды в виде осадков. Недостатком является безвозвратная потеря ценных веществ с осадками. В качестве реагентов для удаления сточных вод ионов тяжелых металлов используют гидроксилы кальция и натрия, карбонат натрия, сульфиды кальция и натрия, карбонат натрия, сульфида натрия, различные шлаки. Наиболее широко используется гидроксил кальция.

Процессы ионообменной очистки сточных вод проводят на установках периодического и непрерывного действия. Наиболее распространенным является непрерывный ионо-обмен, который позволяет уменьшить расход смолы, реагентов для регенерации, промывной воды, а также применять более компактное оборудование. Колонны непрерывного действия могут работать как с движущимся слоем смолы, так и с кипящим.

Для регенерации смолы используют колонны с движущимся слоем или пневмопульсационные. Сорбент подается через коническую трубу. При подаче воздуха смола в рабочем объеме аппарата движется навстречу раствору и удаляется сверху. При этом столб смолы в трубе действует как обратный клапан.

Наиболее эффективными методами очистки воды от ионов тяжелых металлов являются электро- и гальванокоагуляция. При обработке малых объемов стоков на небольших предприятиях применяют электрокоагуляционный способ обезвреживания хромсодержащих стоков. Его применение целесообразно при расходе сточных вод до 50 м3/ч, содержании хрома до 100 мг/л, взвешенных веществ до 50 мг/л и рН стоков 4--7. Обработку стоков проводят в электролизерах проточного типа с пластинчатыми электродами из низкоуглеродистой стали. Для предотвращения пассивации электродов перед электрокоагуляцией в сточную воду добавляют раствор поваренной соли.

На ряде предприятий страны применяют гальванокоагуляторы барабанного типа КБ-1 и КБ-3. Они предназначены для очистки промышленных сточных, продувочных и оборотных вод от ионов цветных металлов, включая хром. Сущность процесса очистки состоит в том, что при загрузке коагулятора железным скрапом и коксом или железным и медным скрапом в определенных соотношениях за счет разности электрохимических потенциалов загружаемых материалов возникает гальванопара. В результате этого без введения химических реагентов и без использования (или при незначительном использовании) внешних источников электроэнергии в рабочей зоне протекают электрохимические процессы с образованием магнитных форм соединений железа. Одновременное протекание нескольких электрохимических, химических и физических процессов в рабочей зоне коагулятора, а именно, катодного осаждения металлов, восстановления поливалентных элементов (хрома, молибдена, вольфрама, ванадия и др.), образования ферритов, коагуляции, сорбции на свежсобразованных кристаллах магнетита и гетита обеспечивает высокую степень очистки воды и растворов от различных примесей. При этом происходит полное восстановление хрома до трехвалентного состояния.

Для удаления железа из водных растворов используются два основных метода: реагснтный и безреагентный (физический). Для обезжелезивания поверхностных сточных вод применяют рсагентные методы, а для удаления железа из подземных вод безреагентныс, в частности, метод глубокой аэрации.

Из рсагентных методов наиболее распространенным является метод коагулирования сульфатом алюминия с предварительным хлорированием, и последующем отстаиванием или обработкой воды в слое взвешенного осадка и фильтрованием.

Для выбора метода обезжелезивания необходимо предварительно произвести полный химический анализ воды в источнике водоснабжения, а затем по полученным результатам, в зависимости от характера соединений, находящихся в воде, определить наиболее рациональный метод.

2.5 Методы удаления поверхностно-активных веществ и фенолов

Предприятиями железнодорожного транспорта ежегодно выбрасывается в водоемы более 100 тыс. т ПАВ. В поверхности воды, содержащей ПАВ, образуется устойчивая пена, которая препятствует поступлению кислорода из воздуха в загрязненные бассейны и, тем самым, ухудшает процессы самоочищения и наносит большой вред как растительному, так и животному миру. Кроме того, некоторые из них придают воде неприятный запах и привкус.

Поверхностно-активные вещества являются, как правило, органическими высокомолекулярными соединениями. Молекулы их полярные и состоят из гидрофобной и гидрофильной частей. Гидрофильной частью являются карбоксильная, сульфатная или сульфонатная группы, а также группы, содержащие азот и фосфор. В зависимости от природы и структуры гидрофильной части молекулы, ПАВ делятся на классы: анионактивные, катионактивные, амфотерные и неионогенные. Принадлежность ПАВ к одному из перечисленных классов определяется зарядом ионизированной гидрофобной части молекулы. Если органический ион заряжен отрицательно, то это будет анионактивное вещество, если положительно -- катионактивное. Амфотерные ПАВ в кислом растворе проявляют катионные свойства, а в щелочном -- анионные. Неионогенные ПАВ в воде не образуют типичных ионов.

Из всех ПАВ неионогенные имеют самую низкую стоимость, выпускаются в больших количествах и используются в разнообразных областях техники. Они входят в состав технических моющих средств, используемых на железнодорожном транспорте при подготовке к ремонту деталей подвижного состава.

Для очистка сточных вод от ПАВ применяют биохимическое окисление, ультрафильтрацию, озонирование и др. Выбор метода очистки зависит от концентрации ПАВ в сточных водах, химической природы ПАВ, от наличия в стоках органических и неорганических примесей, стоимости и необходимой степени очистки.

Для очистки сточных вод до норм ПДК обычно используется комплекс методов, конечной стадией которого является биологическая очистка. По своим физико-химическим свойствам ПАВ подразделяются на легко окисляющиеся "биологически мягкие" и трудно окисляющиеся "биологически жесткие". Поэтому биохимический метод применяется только для первой группы ПАВ, к которой относятся алкилсульфаты, легко окисляющиеся микроорганизмами, а также арилсульфонаты -- бензол, додецилбензол и этилбензолсульфоиат натрия и др., поддающиеся окислению при адаптации микроорганизмов. Ко второй группе относятся соединения, которые практически не окисляются микроорганизмами, например, амилбензолсульфонат натрия, некаль, ОП-7, ОП-10, соли нефтяных сульфокислот и др.

В очистных сооружениях стремятся поддерживать высокую рабочую дозу активного ила. Для этого рекомендуется использовать механическую аэрацию и аэротенки с децентрализованным впуском сточной воды. При таком технологическом режиме обеспечивается выравнивание скоростей потребления кислорода. Очистку сточных вод от анион-активных и неионогснных ПАВ целесообразно проводить совместно с хозяйственно-бытовыми стоками.

Для удаления небольших количеств ПАВ из сточных вод (не более 100--200 мг/л) применяется адсорбционная очистка на активированных углях. Наиболее широко применяются угли АГ-5 и БАУ (адсорбционная емкость по ОП-10 для них 15 вес. %). Кроме того, для адсорбции ПАВ можно использовать природные сорбенты (торф, бурые угли), а также шлак, золу и осадки гидроксидов алюминия и железа, сульфида меди и фосфата кальция. Процесс очистки проводят в фильтрационных колоннах с неподвижным слоем активированного угля, пропуская воду снизу вверх со скоростью 2--6 м3/ч. Эффективному удалению ПАВ из сточных вод способствует совместное использование коагуляции и адсорбции пылевидным углем. Наибольшая эффективность достигается, когда в качестве коагулянтов используют соли цинка.

Для очистки воды от ПАВ используют также метод пенного сепарирования. Сущность его заключается в адсорбции ПАВ на границе раздела фаз сточная вода -- воздух при непрерывном снятии поверхностного слоя. Для этой цели через сточную воду барботируют воздух, что создает стабильную пену, состоящую из пузырьков газа различного размера. Схема процесса показана. Воздух в сточную воду подастся через перфорированные трубы или мелкопористые материалы при помощи импеллера, а также из перенасыщенных растворов при снижении давления над жидкостью (при напорной флотации и электрофлотации).

Наибольшая степень удаления ПАВ из сточной воды достигается при диспергировании воздуха через пористые пластины. Процесс разрушения пенного слоя происходит медленно. Для ускорения разрушения пены используют пено-гасители, в качестве которых применяются кремний- и гер-манийорганические соединения. Однако использование их приводит к дополнительному загрязнению псноконденсата. Поэтому чаще применяют термические, электрические и механические способы гашения пены.

Сточные воды шпалопропиточных заводов содержат фенолы. Для их очистки применяется метод озонирования, которым можно очищать стоки, содержащие фенолы в концентрации до 1 г/л. Механизм окисления фенола озоном как в кислых, так и в щелочных растворах одинаков, хотя скорости реакций в этих условиях различны. С возрастанием рН значение константы скорости распада фенола увеличивается более чем вдвое. Конечными продуктами окисления фенола являются углекислый газ и вода. С увеличением температуры скорость и полнота окисления фенольных соединений значительно возрастают. Фснолсодержащие сточные воды дополнительно очищаются на биологических очистных сооружениях. Доочистка производится в аэротенках и на биофильтрах по одно- и двухступенчатым схемам. Степень биологической очистки воды от фенолов достигает 99,9%.

3. Замкнутые системы водоиспользования на предприятиях

Внедрение замкнутых оборотных технологических систем водоиспользования на предприятиях железнодорожного транспорта является основным направлением как при решении вопросов рационального использования водных ресурсов, так и защиты окружающей среды и водоемов от загрязнения.

Образование сточных вод на отдельных предприятиях составляет 200--4000 м3/сут. Эти воды характеризуются высоким содержанием нефтепродуктов, щелочей, кислот, ПАВ, фенолов, солей тяжелых металлов и других вредных веществ, включая ядохимикаты. Внедрение технологических процессов повторного и оборотного использования воды позволяет сократить расход ее не менее, чем на 20%. Кроме того, качество воды в оборотных системах может быть значительно ниже, чем при ее сбросе в водоемы. Воду после флотационной очистки с содержанием нефтепродуктов до 20 мг/л можно использовать почти во всех технологических процессах, но нельзя сбрасывать в водоемы без очистки до сотых долей мг/л по нефтепродуктам, что резко увеличивает стоимость строительства очистных сооружений и расходы на их эксплуатацию в 3--5 раз, поскольку такая доочистка связана со значительным усложнением их состава. После флотатора в технологический процесс очистки должны быть включены фильтры с активированным углем или озонаторные установки. Целесообразность устройства бессточных систем в каждом конкретном случае должна подтверждаться технико-экономическим обоснованием.

Установлено, что бессточные системы водоиспользова-ния или системы с минимальным сбросом целесообразно предусматривать для предприятий с расходом воды на производственные нужды свыше 500--1000 м3/сут. (депо, ремонтные заводы, пропарочные станции и др.), в случаях невозможности выпуска сточных вод на городские очистные сооружения. В зависимости от местных условий бессточные системы могут быть построены для отдельных цехов или наиболее водоемких технологических процессов, а также для нескольких, расположенных вблизи, предприятий.

Всероссийским институтом железнодорожного транспорта разработаны требования к качеству оборотной воды с учетом особенностей технологических процессов транспортных предприятий. Во-первых, сточная вода после промежуточной очистки должна использоваться в том же технологическом процессе, где она возникла. Во-вторых, качество очищенной воды не должно ухудшать параметры технологического процесса. В-третьих, качество очищенной воды должно обеспечивать создание бессточных систем, по возможности без дополнительного применения чистой водопроводной воды, за исключением пополнения естественной убыли и периодической смены воды в системе, Наконец, качество воды в пределах установленного уровня должно обеспечиваться известными методами очистки воды применительно к каждому технологическому процессу.

В целях защиты водных бассейнов от загрязнения и рационального использования водных ресурсов ВНИИЖТ выполнил комплекс исследований по созданию систем замкнутого (бессточного) водоиспользования в производстве (вагоноремонтные заводы, депо, промывочно-пропарочныс станции др.), обеспечивающих снижение водопотребления и исключающих сброс стоков. Такие системы строятся на Новороссийском вагоноремонтном заводе, Калининградском железнодорожном узле, разработаны также проекты для других предприятий. На станции Николаевка Московской железной дороги в течение нескольких лет по замкнутой схеме водоиспользования работает пункт обмывки пассажирских вагонов.

Очистные устройства оборотных контуров обычно объединяют в один цех с единым обслуживающим штатом и лабораторией. Управление очистными процессами автоматизируют. Удаление осадков и всплывающих нефтепродуктов механизируют.

Для обеспечения оборота охлаждающей воды используют малогабаритные градирни, скоростные водоохладители типа ЦНИИ, выбор которых зависит от местных климатических условий. Их продувка определяется накоплением в охлаждающей воде солей в результате испарения воды в охладителе.

Очистка щелочных растворов моечных машин при оборотном использовании производится в реакторе-отстойнике, а нещелочных моющих растворов -- на флотаторе. Значительно сложнее оборот воды окрасочных камер, содержащей краски и органические растворители. В реакторе-отстойнике удаляются только оседающие и всплывающие загрязнения, а многие органические растворители хорошо растворяются в воде, поэтому здесь используют адсорбционные фильтры. При обороте промывной воды гальванических отделений применяют электрокоагуляторы или ионообменники для очистки стоков от ионов тяжелых металлов.

Промывку проводят на различных линиях (эстакадах) в зависимости от состава перевозившихся грузов с разными по своему характеру загрязнениями, требующими в каждом конкретном случае своей технологии очистки сточных вод. Например, при промывке вагонов из-под минеральных удобрений в сточных водах отмечается высокое содержание азота в виде аммиака, нитратов, нитритов, а также фосфора. Для сточных вод после промывки рефрижераторных вагонов, перевозящих в большинстве случаев мясо и рыбу, характерно присутствие белковых веществ, вызывающих быструю загнивае-мость стоков и появление сероводородного запаха. В этих сточных водах присутствуют жиры в растворенном и эмульгированном состоянии и различные виды аммонийного азота. Очистка таких сточных вод имеет свои технологические особенности и производится отдельно от других стоков. Также отдельно рекомендуется очищать сточные воды после промывки вагонов, в которых перевозились разные строительные материалы и поваренная соль.

Деление грузовых вагонов на группы по типу стоков, образующихся при промывке, установлено для того, чтобы собрать сточные воды с родственными загрязнениями и провести их очистку на локальных очистных сооружениях с меньшими затратами и наиболее эффективно. Затем сточная вода от всех групп вагонов поступает в биологический пруд. Очищенная вода может использоваться в обороте, а ее избыток передастся в канализацию. Это обеспечивает экономию воды не менее, чем на 70%. Все остатки грузов после промывки водой собираются и перерабатываются.

Перевод на бессточную систему водоиспользования позволит предприятиям железнодорожного транспорта упраздни производственную канализацию, исключить загрязнение водоемов и значительно снизить водопотребление. Как показал опыт работы, внедрение замкнутой системы в локомотивном депо сокращает затраты водоиспользования не менее чем в 10 раз. Использование замкнутых систем водоиспользования на промывочно-пропарочных станциях сети железных дорог позволяет экономить до 2 млн. м3 воды в год. Стоимость обработки цистерн по замкнутой технологии по сравнению со стоимостью сброса воды на очистные сооружения нефтеперерабатывающего завода снижается на 25%, а по сравнению со стоимостью сброса в открытые водоемы при учете предотвращенного ущерба -- на 30% и более. На шпалопропиточном заводе внедрение бессточной системы водоиспользования обеспечивает экономию воды около 50 тыс. м3/год, а внедрение аналогичной системы при обмывке пассажирских вагонов -- до 100 тыс. м3/год на один пункт.

Заключение

Защита водных ресурсов от истощения и загрязнения и их рационального использования для нужд народного хозяйства - одна из наиболее важных проблем, требующих безотлагательного решения. В России широко осуществляются мероприятия по охране окружающей Среды, в частности по очистке производственных сточных вод.

Одним из основных направлений работы по охране водных ресурсов является внедрение новых технологических процессов производства, переход на замкнутые (бессточные) циклы водоснабжения, где очищенные сточные воды не сбрасываются, а многократно используются в технологических процессах. Замкнутые циклы промышленного водоснабжения дадут возможность полностью ликвидировать сбрасываемые сточных вод в поверхностные водоемы, а свежую воду использовать для пополнения безвозвратных потерь.

В химической промышленности намечено более широкое внедрение малоотходных и безотходных технологических процессов, дающих наибольший экологический эффект. Большое внимание уделяется повышению эффективности очистки производственных сточных вод.

Значительно уменьшить загрязненность воды, сбрасываемой предприятием, можно путем выделения из сточных вод ценных примесей, сложность решения этих задач на предприятиях химической промышленности состоит в многообразии технологических процессов и получаемых продуктов. Следует отметить также, что основное количество воды в отрасли расходуется на охлаждение. Переход от водяного охлаждения к воздушному позволит сократить на 70-90 % расходы воды в разных отраслях промышленности. В этой связи крайне важными являются разработка и внедрение новейшего оборудования, использующего минимальное количество воды для охлаждения.

Существенное влияние на повышение водооборота может оказать внедрение высокоэффективных методов очистки сточных вод, в частности физико-химических, из которых одним из наиболее эффективных является применение реагентов. Использование реагентного метода очистки производственных сточных вод не зависит от токсичности присутствующих примесей, что по сравнению со способом биохимической очистки имеет существенное значение. Более широкое внедрение этого метода как в сочетании с биохимической очисткой, так и отдельно, может в определенной степени решить ряд задач, связанных с очисткой производственных сточных вод.

В ближайшей перспективе намечается внедрение мембранных методов для очистки сточных вод.

На реализацию комплекса мер по охране водных ресурсов от загрязнения и истощения во всех развитых странах выделяются ассигнования, достигающие 2-4 % национального дохода ориентировочно, на примере США, относительные затраты составляют (в %) : охрана атмосферы 35,2 % , охрана водоемов - 48,0, ликвидация твердых отходов - 15,0, снижение шума -0,7, прочие 1,1. Как видно из примера, большая часть затрат - затраты на охрану водоемов, Расходы, связанные с получением коагулянтов и флокулянтов, частично могут быть снижены за счет более широкого использования для этих целей отходов производства различных отраслей промышленности, а также осадков, образующихся при очистке сточных вод, в особенности избыточного активного ила, который можно использовать в качестве флокулянта, точнее биофлокулянта.

Таким образом, охрана и рациональное использование водных ресурсов - это одно из звеньев комплексной мировой проблемы охраны природы.

Список литературы

1. Туровский И.С. Обработка осадков сточных вод М.Стройиздат 1984

2. " Охрана труда на железнодорожном транспорте ", Ю.Г. Сибарова; Москва, " Транспорт ", 1981.

3. " Железные дороги " общий курс, М.М. Уздина, Москва, " Транспорт " 1991.

4. Методы охраны внутренних вод от загрязнения и истощения Под редакцией И.К. Гавич М.: Агропромиздат 1985.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика современной очистки сточных вод для удаления загрязнений, примесей и вредных веществ. Методы очистки сточных вод: механические, химические, физико-химические и биологические. Анализ процессов флотации, сорбции. Знакомство с цеолитами.

    реферат [308,8 K], добавлен 21.11.2011

  • Методы очистки производственных сточных вод. Электрохимическая очистка от ионов тяжелых металлов. Описание принципиальной технологической схемы. Расчет решетки, песколовки, нефтеловушки, усреднителя, барботера, вертикального отстойника, адсорбера.

    курсовая работа [688,5 K], добавлен 26.05.2009

  • Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа [3,0 M], добавлен 04.10.2009

  • Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Выбор технологической схемы очистки сточных вод. Физико-химические методы очистки сточных вод с применением коагулянтов. Отделение взвешенных частиц от воды.

    реферат [29,9 K], добавлен 05.12.2003

  • Физико-химическая характеристика сточных вод. Механические и физико-химические методы очистки сточных вод. Сущность биохимической очистки сточных вод коксохимических производств. Обзор технологических схем биохимических установок для очистки сточных вод.

    курсовая работа [1,0 M], добавлен 30.05.2014

  • Источники и виды загрязнителей окружающей среды, характерные для данного производства. Методы очистки сточных вод: механические, термические, физико-химические, химические и электрохимические. Описание технологического процесса и техника безопасности.

    дипломная работа [813,1 K], добавлен 10.02.2009

  • Проблема влияния целлюлозно-бумажного производства на состояние водных экосистем. Физико-химические методы очистки сточных вод с применением коагулянтов. Дезинфекция сточных вод. Производственный контроль качества воды. Расчет вертикального отстойника.

    курсовая работа [477,2 K], добавлен 14.05.2015

  • Основные способы переработки текстильных отходов. Технология локальной очистки сточных вод от аммиака, красителей и тяжелых металлов. Эффективность использования 8-оксихинолина при удалении ионов тяжелых металлов из сточных вод текстильных предприятий.

    курсовая работа [399,7 K], добавлен 11.10.2010

  • Ценность пресной воды как природного ресурса, роль сооружений, реализующих отведение, очистку, обезвреживание воды в системе водоснабжения городов и промышленных предприятий. Применяемые методы физико-химической и биологической очистки сточных вод.

    реферат [38,3 K], добавлен 10.06.2015

  • Характеристика сточной воды предприятия и условия сброса очищенной воды. Предельно допустимые концентрации веществ, входящих в состав сточных вод. Выбор технологической схемы очистки. Анализ эффективности очистки сточных вод по технологической схеме.

    курсовая работа [1,1 M], добавлен 12.11.2011

  • Основные потребители воды: ирригация, промышленность и энергетика, коммунальное хозяйство городов. Методы очистки сточных вод: механические, механо-химические, физико-химические,биохимические. Направления защиты почв. Расчет платы за загрязнения.

    презентация [29,1 K], добавлен 09.02.2014

  • Разработка проекта рационального водопользования для цеха покрытий промышленного предприятия г. Челябинска. Реагентные методы очистки сточных вод от тяжелых металлов. Расчёт уплотнителя осадка и центрифуги для его обезвоживания в вертикальном отстойнике.

    курсовая работа [1006,9 K], добавлен 19.05.2016

  • Предназначение и основные методы биологической очитки воды. Важность качественной очистки сточных вод для охраны природных водоемов. Деградация органических веществ микроорганизмами в аэробных и анаэробных условиях, оценка преимуществ данного метода.

    реферат [53,5 K], добавлен 14.11.2010

  • Состояние сточных вод Байкальского региона. Влияние тяжелых металлов на окружающую среду и человека. Специфика очистки сточных вод на основе отходов. Глобальная проблема утилизации многотонажных хлорорганических и золошлаковых отходов, способы ее решения.

    реферат [437,5 K], добавлен 20.03.2014

  • Очистка сточных вод как комплекс мероприятий по удалению загрязнений, содержащихся в бытовых и промышленных водах. Особенности механического, биологического и физико-химического способа. Сущность термической утилизации. Бактерии, водоросли, коловратки.

    презентация [580,0 K], добавлен 24.04.2014

  • Очистка промышленных сточных вод с использованием электрохимических процессов и мембранных методов (ультрафильтрация, нанофильтрация, обратный осмос). Новые изобретения для очистки и обеззараживания коммунально-бытовых и сельскохозяйственных сточных вод.

    курсовая работа [1,3 M], добавлен 09.12.2013

  • Влияние воды и растворенных в ней веществ на организм человека. Санитарно-токсикологические и органолептические показатели вредности питьевой воды. Современные технологии и методы очистки природных и сточных вод, оценка их практической эффективности.

    курсовая работа [60,0 K], добавлен 03.01.2013

  • Санитарно-гигиеническое значение воды. Характеристика технологических процессов очистки сточных вод. Загрязнение поверхностных вод. Сточные воды и санитарные условия их спуска. Виды их очистки. Органолептические и гидрохимические показатели речной воды.

    дипломная работа [88,8 K], добавлен 10.06.2010

  • Правила приема производственных сточных вод в системы канализации населенных мест, санитарные требования к ним. Механические, физико-химические и биологические методы для очистки технической воды и промышленных стоков, необходимое оборудование для работ

    реферат [3,5 M], добавлен 07.08.2009

  • Теоретические основы и методы очистки сточных вод. Виды и устройство отстойников. Описание технологической схемы узла механической очистки сточных вод. Материальный баланс, оценка эффективности и контроль решетки, песколовки, отстойника и осветлителя.

    курсовая работа [409,0 K], добавлен 29.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.