Основы экологии и энергосбережения

Биохимический круговорот веществ в природе как основа динамической устойчивости, сбалансированности природных процессов. Сущность геологического и биологического круговорота веществ. Методы регулирования, контроля и учета потребления энергоресурсов.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 21.02.2016
Размер файла 35,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования республики Беларусь

Учреждение образования

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Институт информационных технологий

Специальность «МиКПРЭС»

КОНТРОЛЬНАЯ РАБОТА

По курсу «Основы экологии и энергосбережения»

Студент-заочник 4 курса

Группы № 280221

Гущо Владислав Вячеславович

Минск, 2016

Ответ на вопрос № 1

Биохимический круговорот веществ в природе как основа динамической устойчивости, сбалансированности природных процессов

Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения, переходя из живых тел в соединения неживой природы и обратно. Возможность многократного использования одних и тех же атомов делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии.

Типы круговоротов веществ. Биосфера Земли характеризуется определенным образом сложившимися круговоротом веществ и потоком энергии. Круговорот веществ - многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот веществ осуществляется при непрерывном поступлении (потоке) внешней энергии Солнца и внутренней энергии Земли.

В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты. До возникновения человека на Земле осуществлялись только первые два.

Геологический круговорот (большой круговорот веществ в природе) - круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.

Эндогенные процессы (процессы внутренней динамики) происходят под влиянием внутренней энергии Земли. Это энергия, выделяющаяся в результате радиоактивного распада, химических реакций образования минералов, кристаллизации горных пород и т. д. К эндогенным процессам относятся: тектонические движения, землетрясения, магматизм, метаморфизм. Экзогенные процессы (процессы внешней динамики) протекают под влиянием внешней энергии Солнца. Экзогенные процессы включают выветривание горных пород и минералов, удаление продуктов разрушения с одних участков земной коры и перенос их на новые участки, отложение и накопление продуктов разрушения с образованием осадочных пород. К экзогенным процессам относятся геологическая деятельность атмосферы, гидросферы (рек, временных водотоков, подземных вод, морей и океанов, озер и болот, льда), а также живых организмов и человека.

Крупнейшие формы рельефа (материки и океанические впадины) и крупные формы (горы и равнины) образовались за счет эндогенных процессов, а средние и мелкие формы рельефа (речные долины, холмы, овраги, барханы и др.), наложенные на более крупные формы, - за счет экзогенных процессов. Таким образом, эндогенные и экзогенные процессы противоположны по своему действию. Первые ведут к образованию крупных форм рельефа, вторые - к их сглаживанию.

Магматические горные породы в результате выветривания преобразуются в осадочные. В подвижных зонах земной коры они погружаются вглубь Земли. Там под влиянием высоких температур и давлений они переплавляются и образуют магму, которая, поднимаясь на поверхность и застывая, образует магматические породы.

Таким образом, геологический круговорот веществ протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли.

Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) -круговорот веществ, движущей силой которого является деятельность живых организмов. В отличие от большого геологического малый биогеохимический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ.

В биогеохимических круговоротах следует различать две части:

1) резервный фонд - это часть вещества, не связанная с живыми организмами;

2) обменный фонд - значительно меньшая часть вещества, которая связана прямым обменом между организмами и их непосредственным окружением. В зависимости от расположения резервного фонда биогеохимические круговороты можно разделить на два типа:

1) Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).

2) Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).

Круговороты газового типа более совершенны, так как обладают большим обменным фондом, а значит, способны к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, так как основная масса вещества содержится в резервном фонде земной коры в «недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

С появлением человека возник антропогенный круговорот, или обмен, веществ. Антропогенный круговорот (обмен) - круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей(техногенный круговорот).

Геологический и биологический круговороты в значительной степени замкнуты, чего нельзя сказать об антропогенном круговороте. Поэтому часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ. Незамкнутость антропогенного круговорота веществ приводит к истощению природных ресурсов и загрязнению природной среды - основным причинам всех экологических проблем человечества.

Круговороты основных биогенных веществ и элементов. Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов. Круговорот воды относится к большому геологическому, а круговороты биогенных элементов (углерода, кислорода, азота, фосфора, серы и других биогенных элементов) - к малому биогеохимическому.

Круговорот воды между сушей и океаном через атмосферу относится к большому геологическому круговороту. Вода испаряется с поверхности Мирового океана и либо переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает в виде осадков на поверхность океана. В круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Круговорот углерода. Продуценты улавливают углекислый газ из атмосферы и переводят его в органические вещества, консументы поглощают углерод в виде органических веществ с телами продуцентов и консументов низших порядков, редуценты минерализуют органические вещества и возвращают углерод в атмосферу в виде углекислого газа. В Мировом океане круговорот углерода усложнен тем, что часть углерода, содержащегося в мертвых организмах, опускается на дно и накапливается в осадочных породах. Эта часть углерода выключается из биологического круговорота и поступает в геологический круговорот веществ.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд. т этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания СО2 в атмосфере и развитию парникового эффекта.

Скорость круговорота СО2, то есть время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

Круговорот кислорода. Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (0^) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами и при минерализации органических остатков. Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д. Основная доля кислорода продуцируется растениями суши - почти 3/4, остальная часть - фотосинтезирующими организмами Мирового океана. Скорость круговорота - около 2 тыс. лет.

Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.

Круговорот азота. Запас азота (N2) в атмосфере огромен (78% от ее объема). Однако растения поглощать свободный азот не могут, а только в связанной форме, в основном в виде NН4+ или NО3-. Свободный азот из атмосферы связывают азотфиксирующие бактерии и переводят его в доступные растениям формы. В растениях азот закрепляется в органическом веществе (в белках, нуклеиновых кислотах и пр.) и передается по цепям питания. После отмирания живых организмов редуценты минерализуют органические вещества и превращают их в аммонийные соединения, нитраты, нитриты, а также в свободный азот, который возвращается в атмосферу.

Нитраты и нитриты хорошо растворимы в воде и могут мигрировать в подземные воды и растения и передаваться по пищевым цепям. Если их количество излишне велико, что часто наблюдается при неправильном применении азотных удобрений, то происходит загрязнение вод и продуктов питания, и вызывает заболевания человека.

Круговорот фосфора. Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот фосфор включается в результате процессов выветривания горных пород. В наземных экосистемах растения извлекают фосфор из почвы (в основном в форме РО43-) и включают его в состав органических соединений (белков, нуклеиновых кислот, фосфолипидов и др.) или оставляют в неорганической форме. Далее фосфор передается по цепям питания. После отмирания живых организмов и с их выделениями фосфор возвращается в почву.

При неправильном применении фосфорных удобрений, водной и ветровой эрозии почв большие количества фосфора удаляются из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). С другой стороны, поступление из почвы в водоемы больших количеств таких биогенных элементов, как фосфор, азот, сера и др., вызывает бурное развитие цианобактерий и других водных растений («цветение» воды) и эвтрофикациюводоемов. Но большая часть фосфора уносится в море.

В водных экосистемах фосфор усваивается фитопланктоном и передается по трофической цепи вплоть до морских птиц. Их экскременты либо сразу попадают назад в море, либо сначала накапливаются на берегу, а затем все равно смываются в море. Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин, и заключенный в них фосфор снова попадает в осадочные породы, то есть выключается из биогеохимического круговорота.

Круговорот серы. Основной резервный фонд серы находится в отложениях и почве, но в отличие от фосфора имеется резервный фонд и в атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежит микроорганизмам. Одни из них восстановители, другие - окислители.

В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах - в форме иона (SO42-), в газообразной фазе в виде сероводорода (Н2S) или сернистого газа (SО2). Внекоторых организмах сера накапливается в чистом виде и при их отмирании на дне морей образуются залежи самородной серы.

По содержанию в морской среде Сульфат-ион занимает второе место после хлора и является основной доступной формой серы, которая потребляется автотрофами и включается в состав белков.

В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. В живых организмах сера содержится в белках, в виде ионов и т.д. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до Н2S, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.

Сжигание человеком ископаемого топлива (особенно угля), а также выбросы химической промышленности, приводят к накоплению в атмосфере сернистого газа (SO2), который реагируя с парами воды, выпадает на землю в виде кислотных дождей.

Биогеохимические циклы не столь масштабны как геологические и в значительно степени подвержены влиянию человека. Хозяйственная деятельность нарушает их замкнутость, они становятся ацикличными.

энергоресурс природа геологический

Ответ на вопрос № 2

Методы и приборы регулирования, контроля и учета потребления энергоресурсов.

Энергосбережение (экономия энергии) -- реализация правовых, организационных, научных, производственных, технических и экономических мер, направленных на эффективное (рациональное) использование (и экономное расходование) топливно-энергетических ресурсов и на вовлечение в хозяйственный оборот возобновляемых источников энергии. Энергосбережение -- важная задача по сохранению природных ресурсов.

Наиболее распространенный способ экономии электроэнергии -- оптимизация потребления электроэнергии на освещение. Ключевыми мероприятиями оптимизации потребления электроэнергии на освещение являются:

максимальное использование дневного света (повышение прозрачности и увеличение площади окон, дополнительные окна);

повышение отражающей способности (белые стены и потолок);

оптимальное размещение световых источников (местное освещение, направленное освещение);

использование осветительных приборов только по необходимости;

повышение светоотдачи существующих источников (замена люстр, плафонов, удаление грязи с плафонов, применение более эффективных отражателей);

замена ламп накаливания на энергосберегающие (люминесцентные, компактные люминесцентные, светодиодные);применение устройств управления освещением (датчики движения и акустические датчики, датчики освещенности, таймеры, системы дистанционного управления);

внедрение автоматизированной системы диспетчерского управления наружным освещением (АСДУ НО);

установка интеллектуальных распределённых систем управления освещением (минимизирующих затраты на электроэнергию для данного объекта).

Электрообогрев и электроплиты

Основные мероприятия:

подбор оптимальной мощности электрообогревательных устройств;

оптимальное размещение устройств электрообогрева для снижения времени и требуемой мощности их использования;

повышение теплообмена, в том числе очистка от грязи поверхностей устройств электрообогрева и конфорок электроплит;

местный (локальный) обогрев, в том числе переносными масляными обогревателями, направленный обогрев рефлекторами;

использование масляных обогревателей с вентилятором для ускорения теплообмена в квартире;

использование устройств регулировки температуры, в том числе устройств автоматического включения и отключения, снижения мощности в зависимости от температуры, временных таймеров;

использование тепловых аккумуляторов;

замена электрообогрева на обогрев с использованием тепловых насосов;

замена электрообогрева на обогрев газом или подключение к централизованному отоплению, в случаях, когда такая замена выгодна с учётом требуемых инвестиций;

использование посуды с широким плоским дном.

Холодильные установки и кондиционеры

Для холодильных установок и бытовых холодильников основными способами снижения потребления электроэнергии являются:

оптимальный подбор мощности холодильной установки;

качественная изоляция корпуса (стенок), двери холодильной установки, холодильника, прозрачная крышка в холодильнике для продуктов, с качественной изоляцией;

приобретение современных энергосберегающих холодильников;

не допускать образования наледи, инея в холодильнике, вовремя размораживать;

не рекомендуется помещать в холодильную установку (холодильник) материалы и продукты, имеющие температуру выше температуры окружающей среды - их необходимо максимально охладить на воздухе;

проанализировать возможность отказа от холодильника;

качественный отвод тепла - не рекомендуется ставить бытовой холодильник к батарее или рядом с газовой плитой.

Потребление бытовых и прочих устройств

При выборе новой аудио, видео, компьютерной и др. техники отдавайте предпочтение, при прочих равных характеристиках, устройству с меньшим энергопотреблением, как в рабочем режиме, так и в дежурном режиме (большинство современных бытовых устройств потребляют электроэнергию даже в выключенном состоянии, т.к. не выключаются полностью, а переводятся в «спящий» режим "stand-by/off");

пользуйтесь энергосберегающим «спящим» режимом, если он есть в приборе или устройстве;

замените, по возможности, приборы, имеющие в своем составе трансформаторные блоки питания, на аналогичные с импульсными блоками питания;

не наливайте полный чайник, если вам нужен кипяток всего для одной чашки напитка;

не оставляйте без необходимости включенными в сеть зарядные устройства для мобильных приборов (очень актуально из-за возрастающего объема таких приборов);

старайтесь избегать использования удлинителей, а если это необходимо, то пользуйтесь качественными удлинителями с проводом большого сечения (при малом сечении провод начинает греться и электроэнергия уходит не на полезную работу электроприбора, а на нагрев провода удлинителя);

Снижение потерь в сети:

использование энергосберегающих устройств;

увеличение значений номиналов проводников - проводов и кабелей

использование только проводов и кабелей с медной жилой

отслеживание несанкционированных подключений.

Экономия тепла:

Снижение теплопотерь

использование теплосберегающих материалов при строительстве и модернизации зданий;

установка теплосберегающих оконных конструкций и дверей.

Повышение эффективности систем теплоснабжения

Мероприятия по повышению эффективности систем теплоснабжения предусматривают следующие направления оптимизации:

Со стороны источника:

Повышение эффективности источников теплоты за счет снижения затрат на собственные нужды;

Использование современного оборудования теплогенерирующего оборудования, такого как конденсационные котлы и тепловые насосы;

Использование узлов учёта тепловой энергии;

Использование ко- и три- генерации.

Со стороны тепловых сетей:

Cнижение тепловых потерь в окружающую среду;

Оптимизация гидравлических режимов тепловых сетей;

Использование современных теплоизоляционных материалов;

Использование антивандальных покрытий при наружной прокладке тепловых сетей;

Снижение утечек и несанкционированных сливов теплоносителя из трубопроводов.

Со стороны потребителей:

Снижение тепловых потерь через наружные ограждающие конструкции;

Использование вторичных энергоресурсов;

Использование систем местного регулирования отопительных приборов для исключения перетопа;

Перевод зданий в режим нулевого потребления теплоты на отопление. При этом поддержание параметров воздуха в здании должно происходить за счет внутренних выделений теплоты и высоких параметров тепловой изоляции;

Использование узлов учёта тепловой энергии.

В целом же меню «технических решений» по модернизации систем теплоснабжения очень обширно и далеко не ограничивается вышеизложенным списком. Ниже приведен пример перечня мер из «Программы модернизации систем теплоснабжения» комплексной программы развития и модернизации жилищно-коммунального комплекса целого региона, включающего 22 муниципальных образования; 126 городских и сельских поселений; более чем 200 отдельных систем теплоснабжения.

Основные мероприятия программы разбиты на шесть укрупненных групп:

Проведение предпроектных обследований объектов теплоснабжения;

Строительство новых котельных;

Модернизация и реконструкция котельных и ЦТП;

Модернизация и строительство тепловых сетей;

Внедрение ресурсосберегающих технологий;

Для максимизации эффекта программы ее реализуют в комплексе с модернизацией системы теплозащиты жилых и общественных зданий, совершенствованием их инженерных систем, мерами по утеплению квартир, оснащению их приборами учёта и эффективной водоразборной арматурой.

Экономия воды:

установка приборов учёта потребления воды;

использование воды только когда это действительно необходимо;

установка сливных унитазных бачков, имеющих выбор интенсивности слива воды;

установка автоматических регуляторов расхода воды, аэраторов с регуляторами 6 л\мин для крана и регуляторов 10л\мин для душа

Экономия газа

подбор оптимальной мощности газового котла и насоса;

утепление помещений, оптимальный подбор эффективных радиаторов отопления в помещениях, где используется обогрев газовым котлом;

использование на газовых плитах посуды с широким плоским дном, закрывающейся крышкой, желательно прозрачной, подогрев в чайнике только необходимого количества воды;

переход, по возможности, на максимально широкое использование иных источников тепла.

Экономия моторного топлива

использование электро или газовых автомобилей;

плавные старты и торможения при движении на автомобиле;

покупка автомобилей с низким расходом топлива;

своевременная регулировка работы двигателя внутреннего сгорания;

использование "экономайзеров" - устройств экономии топлива для двигателей внутреннего сгорания.

Эффективность и экономический расчет

При реализации мероприятий энергосбережения и повышения энергоэффективности различают:

начальные инвестиции (или увеличение, прирост инвестиций из-за выбора более эффективного оборудования). Например, замена окон в существующем доме на пластиковые стеклопакеты - инвестиции в энергосбережение, а отказ от установки обычных светильников в пользу светодиодных в строящемся доме - увеличение инвестиций в энергосбережение (в доле превышения стоимости светодиодных светильников над обычными);

единовременные затраты на проведение энергоаудита (энергообследования);

единовременные затраты на приобретение и монтаж приборов учёта и систем автоматического контроля, удаленного снятия показаний приборов учёта;

текущие расходы на премирование (поощрение) ответственных за энергосбережение.

Как правило, эффекты от мероприятий энергосбережения рассчитывают: как стоимость сэкономленных энергоресурсов или доля стоимости от потребляемых энергоресурсов, в т.ч. на единицу продукции;

как количество тонн условного топлива (т.у.т.) сэкономленных энергоресурсов или доля от величины потребляемых энергоресурсов в т.у.т.;

в натуральном выражении (кВт.ч., Гкал и т.д.); как снижение доли энергоресурсов в ВВП в стоимостном выражении, либо в натуральных единицах (т.у.т., кВт.ч.) на 1 руб. ВВП/ Эффекты от мероприятий энергосбережения можно разделить на несколько групп:

экономические эффекты у потребителей (снижение стоимости приобретаемых энергоресурсов);

эффекты повышения конкурентоспособности (снижение потребления/ производимой продукции при ее использовании);

эффекты для электрической, тепловой, газовой сети (снижение пиковых нагрузок приводитк снижению риска аварий, повышению качества энергии, снижению потерь энергии, минимизации инвестиций в расширение сети, и, как следствие, снижению сетевых тарифов);

рыночные эффекты (например, снижение потребления электроэнергии, особенно в пиковые часы, приводит к снижению цен на энергию и мощность на оптовом рынке электроэнергии - особенно важным является снижение потребления электроэнергии населением на освещение в вечернем пике); эффекты, связанные с особенностями регулирования (например, снижение потребления электроэнергии населением уменьшает нагрузку перекрестного субсидирования на промышленность - в настоящее время в России население платит за электроэнергию ниже ее себестоимости, дополнительная финансовая нагрузка включается в тарифы для промышленности); экологические эффекты (например, снижение потребления электрической и тепловой энергии в зимнее время приводит к разгрузке наиболее дорогих и "грязных" электростанций и котельных, работающих на мазуте и низкокачественном угле.); связанные эффекты (внимание к проблемам энергосбережения приводит к повышению озабоченности проблемами общей эффективности системы - технологии, организации, логистики на производстве, системы взаимоотношений, платежей и ответственности в ЖКХ, отношения к домашнему бюджету у граждан).

Задача №1

Типы контр. задач (вариант даннпоых для расчета) I (5); VI (1)

Задача (тип I). Рассчитать площадь зоны активного загрязнения (ЗАЗ) и оценить экономическую эффективность природоохранных мероприятий по защите атмосферы в пригородной зоне отдыха от загрязнения выбросами промышленного предприятия. Исходные данные приведены в табл. 2.1, 2.2.

Таблица 2.1 Влияние систем очистки на количество выбросов предприятия

Вариант данных для расчета

Наименование вещества

Масса выброса, т/год

m1, до установки систем очистки

m2, после установки систем очистки

5

Цианистый водород

4

1,5

Диоксид кремния

14

3

Сероводород

29

21

Таблица 2.2 Климатические определяющие

Параметр

Высота источника Н, м

120

Температура в устье источника t1,0С

70

Скорость оседания загрязнения, см/с

8

Температура окружающей среды t2,0С

30

Скорость ветра на уровне Флюгера U, м/с

7

Капиталовложения в очистное оборудование, млн р.

700

Эксплуатационные расходы, млн р./год

20

Зона активного загрязнения для организованных источников высотой Н >10 м представляет собой кольцо между окружностями с внутренним и внешним радиусами rвнутр и rвнеш, которые рассчитываются по формулам

rвнутр = 2ц ? Н, (1)

rвнеш = 20ц ? Н, (2)

где Н - высота источника;

ц - поправка на тепловой подъем факела, которая рассчитывается по формуле

ц = 1+?t/75, (3)

где ?t - значение разности температуры выбрасываемой газовоздушной смеси в устье источника и температурой окружающей среды (табл. 2.2).

Пример решения задачи (I типа).

Расчет площади ЗАЗ.

Подставим в формулы значения и проведем вычисления:

- среднегодовое значение разности температур:

?t = 70 - 30= 40 °С;

- поправка ц на тепловой подъем факела выбросов в атмосфере:

ц = 1+40/75 = 1,04;

- внутренний радиус ЗАЗ равен

rвнутр = 2 ? 1,04 ? 120 =249,6 м;

- внешний радиус ЗАЗ равен:

rвнеш =20 ? 1,04? 120 = 2496 м;

- площадь внутреннего круга Sвнутр равна

Sвнутр = ? r2внутр = 3,14 ? 249,6 2 = 195622,5024 м2;

- площадь внешнего круга S внеш . равна

S внеш = ? r2внеш = 3,14 ? 24962 = 19562250,24 м2;

площадь зоны активного загрязнения равна

S ЗАЗ = 19562250,24 - 195622,5024 = 19366627,7376 м2 = 19,3 км2.

Ответ: Площадь зоны активного загрязнения составляет 19,3 км2.

Расчет экономической эффективности мероприятий по защите

Атмосферы. Определяем экономическую эффективность природоохранных мероприятий по формуле:

Е = (Э - З - С) / К, (4)

где С - дополнительные эксплуатационные расходы, р./год;

К - единовременные капитальные вложения, р./год.

3 - приведенные затраты на строительство и внедрение оборудования;

Э - предотвращенный годовой экономический ущерб после проведения атмосферозащитных мероприятий, который определяется как разность между экономическим ущербом (У1) до проведения мероприятий и экономическим ущербом (У2) после их проведения:

Э = У1 - У2 . (5)

Приведенные затраты (З) на строительство рассчитываются по формуле:

З = С + Ен ? К, (6)

где Ен - нормативный коэффициент эффективности капитальных вложений; принимается равным 0,12.

Расчет годового экономического ущерба в результате загрязнения атмосферы (У1) до проведения защитных мероприятий и (У2) после проведения защитных мероприятий рассчитывается следующим образом:

У1 = г ? f ? у ? м1, (7)

У2 = г ? f ? у ? м2, (8)

где г - величина удельного ущерба от одной условной тонны выбросов, р./усл. Т (г = 2400 р./усл. т,);

f - коэффициент, учитывающий характер и условия рассеивания выброшен ных источником примесей;

у - коэффициент, учитывающий относительную опасность загрязнения атмосферного воздуха на территориях с различной плотностью и чувст-вительностью реципиентов;

м1, м2 - суммарная масса выбросов загрязняющих веществ, приведенная к единице токсичности, усл. т/год соответственно; (м1) до проведения защитных мероприятий и (м2) после проведения защитных мероприятий.

Значение коэффициента f, учитывающего характер и условия рассеивания примесей, определяется следующим образом:

f = , (9)

где H - высота источника, м;

ц - поправка на тепловой подъем факела выбросов в атмосфере(ц =1,04, рассчитывался ранее по формуле 3);

U - среднегодовое значение модуля скорости ветра на уровне флюгера, м/с (дано по условию).

В данном случае скорость оседания газообразных примесей и легких мелкодисперсных частиц находится в пределах от 1 до 20 см/с.

Коэффициент , учитывающий относительную опасность загрязнения атмосферного воздуха (далее коэффициент относительной опасности загрязнения воздуха) определяем по табл. методического пособия [1]:для центральной части города (по условию)равна 6.

Суммарная масса выбросов загрязняющих веществ, приведенная к единой токсичности, (м1) до проведения защитных мероприятий и (м2) после проведения защитных мероприятий, определяется по формуле:

м1 = (10)

м2 = (11)

где N - общее число примесей, содержащихся в выбросах источника (дано по условию);

Ai - показатель относительной агрессивности i-го вещества, усл. т/т (значение Ai для каждого вещества дано в табл. методического пособия) [];

m1, m2 - масса годового выброса примеси i-го вида в атмосферу, т/год (дано по условию для каждого вещества). m1 - до установки систем очистки, m2 - после установки систем очистки.

Рассчитываем:

м1 = = 40 000 ? 4,64 +30 000 ? 16,5+30 000 ? 16,5= 185 600 + 495 000+ 495 000= 1279 600 (усл. т/т);

м2 = = 10 000 ? 4,64 +10 000 ? 16,5+8 000 ? 16,5 = 46 400 + 165 000 + 132 000= 451 700 (усл. т/т);

f = = ;

У1= г ? f ? у ? м1= 2400 ? 4,91 ? 6 ? 1279 600 = 4 671 710.

У2= г ? f ? у ? м2 = 2400 ? 4,91 ? 6 ? 451 700 = 1 157 120 610.

Э = У1 - У2 = 3 961 301 710 - 1 157 120 610 = 2 804 181 100.

З = С + Ен ? К = 25 000 000 + 0,12 ? 180 000 000 = 450 000 000 р./г).

Вывод: при Е Ен (5,18 > 0,12) делаем заключение об эффективности внедрения воздухозащитных мероприятий.

Задача №2

Рассчитать степень разбавления сточных вод, необходимую для достижения ПДК для рыбохозяйственного пользования (1 вариант) и санитарно-бытовым пользовании (5 вариант), используя следующие данные:

Концентрация сульфата меди (СuSO4) в выпускаемых сточных водах составляет 5 мг/л. ПДК этого соединения для санитарно- бытовых целей - 1 мг/л, ПДК для рыбохозяйственных целей составляет 0,5 мг/л. Содержание сульфата меди в водоеме до выпуска составляет 0,03 мг/л.

При решении задачи используется методическое пособие «Оценка загрязненности водных ресурсов», авторы - М. М. Бражников [и др.]. - Минск: БГУИР, 2009.

Для определения степени разбавления (n) сточных вод в водоеме используется формула:

n = (СО - СВ) / (С - СВ) , (12)

где СО - концентрация загрязняющих веществ в выпускаемых сточных водах;

СВ - концентрация загрязняющих веществ в водоеме до выпуска;

С - концентрация загрязняющих веществ в водоеме (ПДК).

Для рыбохозяйственных целей:

n = (5 - 0,03) / (0,5 - 0,03) = 10,57;

Для санитарно-бытовых целей:

n = (5 - 0,03) / (1 - 0,03) = 5,12.

Ответ: степени разбавления (n) сточных вод: для рыбохозяйственных целей - 10,57; для санитарно-бытовых целей - 5,12.

Список используемой литературы

1. Асаенок, И. С. и др. Основы экологии и экономика природопользования: метод. пособие для практич. занятий / И. С. Асаенок, Т. Ф. Михнюк, - Минск: БГУИР, 2005.

2. Запыленность и загрязнение атмосферы в результате работы автотранспорта: метод. пособие для практич. занятий / И. И. Кирвель [и др. ] - Минск: БГУИР, 2009.

3. Кирвель, И. И. Земельные ресурсы : их оценка, состояние и загрязнение: метод. пособие для практич. занятий / И. И. Кирвель, В. И. Петровская, Н. В. Цявловская - Минск: БГУИР, 2007.

4. Кирвель, И. И. Лесные ресурсы. Оценка, состояние, экологические проблемы лесов и пути их решения: метод. пособие для практич. занятий / И. И. Кирвель, Н. В. Цявловская. - Минск: БГУИР, 2007.

5. Кирвель, И. И. Экологические проблемы использования энергоресурсов: метод. пособие для практич. занятий / И. И. Кирвель, В. И. Петровская, Н. В. Цявловская. - Минск: БГУИР, 2007.

6. Кирвель, И. И. Энергосбережение в процессах теплообмена: метод. пособие для практич. занятий / И. И. Кирвель, М. М. Бражников, Е. Н. Зацепин - Минск: БГУИР.

7. Методика расчета ущерба при несанкционированном размещении отходов: метод. пособие для практич. занятий / И. И. Кирвель [и др. ] - Минск: БГУИР, 2008.

8. Оценка загрязненности водных ресурсов: метод. пособие для практич. занятий / М. М. Бражников, И.И. Кирвель, А. С. Калинович - Минск: БГУИР

9. Оценка способов передачи электроэнергии: метод пособие для практич. занятий / А. И. Навоша [и др.] - Минск: БГУИР, 2007.

10. Прудник, А. М. и [др.]. Энергосбережение в системах освещения: метод пособие для практич. занятий / А. М. Прудник. - Минск: БГУИР, 2008

Размещено на Allbest.ru

...

Подобные документы

  • Кругооборот химических веществ из неорганической среды. Сущность большого (геологического) круговорота. Описание циркуляции веществ в биосфере на примере углерода, азота, кислорода, фосфора и воды. Антропогенные воздействия на окружающую природную среду.

    реферат [201,9 K], добавлен 17.12.2011

  • Понятие круговорота веществ как ключевого понятия биогеохимии. Общие сведения о кислороде как химическом элементе: нахождение в природе, химические и физические свойства, применение. Круговорот кислорода в различных видах и его роль в жизни природы.

    реферат [430,8 K], добавлен 10.11.2012

  • Факторы, определяющие длину пищевых цепей и механизм передачи энергии по ним. Особенности функционирования типичных наземных экосистем. Сущность предельно-допустимой концентрации загрязняющих веществ в атмосфере. Животные в круговороте веществ в природе.

    контрольная работа [249,5 K], добавлен 17.06.2009

  • Создание и существование биомассы. Биогеохимические круговороты в биосфере. Световое и тепловое излучение Солнца - первичный источник внешней энергии. Понятие большого (геологического) и малого (биогенного и биохимического) круговорота веществ в природе.

    реферат [20,6 K], добавлен 16.05.2013

  • Основные этапы полного цикла биологического круговорота химических элементов на суше. Изучение антропогенного воздействия на потоки энергии, круговороты воды, кислорода, углерода, азота, фосфора, серы. Отличительные черты техногенного массообмена.

    реферат [33,7 K], добавлен 26.11.2011

  • Из каких частей состоит биогеохимический круговорот веществ? Какие опасные ущербообразующие геохимические процессы Вы знаете? Что общего можно найти между функциональной структурой экологической системы и организацией хозяйства.

    контрольная работа [30,2 K], добавлен 05.01.2003

  • Роль человеческого фактора в решении проблем экологии. Интенсивная эксплуатация природных богатств. Схема круговорота и перемещения фосфорсодержащих соединений и фосфора в масштабе биосферы. Где может накапливаться фосфор. Природные фосфориты и апатиты.

    реферат [29,0 K], добавлен 26.02.2009

  • Пути миграции углекислого газа в биосфере Земли. Процессы, возмещающие потери азота. Особенности миграции углекислого газа. Организмы биосферы участвующие в круговороте веществ. Формы проявления серы в почве. Роль фотосинтеза в круговороте веществ.

    презентация [667,7 K], добавлен 17.02.2013

  • Понятие и общая характеристика природных вод, их распространение в природе. Оценка уровня потребления воды человеком, параметры, влияющие на показатель. Очистка сточных вод. Фильтрование суспендированных веществ. Флотация с выделением воздуха в растворе.

    контрольная работа [33,3 K], добавлен 02.12.2010

  • Состав и структура экологической системы. Биотический круговорот веществ и энергия в экологической системе. Перенос веществ и энергии в природных экосистемах. Пример наземной экосистемы дубравы. Экологическая система в виде диаграммы потока энергии.

    презентация [6,8 M], добавлен 11.06.2010

  • Характеристика большого и малого круговоротов (воды, углерода, кислорода, азота, фосфора, серы, неорганических катионов), их особенности, взаимосвязи, структура потоков и их значение. Антропогенный круговорот ксенобиотиков (ртути, свинца, хрома).

    реферат [42,3 K], добавлен 10.03.2012

  • Природная среда: атмосфера, литосфера, гидросфера, природные ресурсы и ресурсы, необходимые для жизнедеятельности организмов. Биогеохимический кругооборот веществ в природе и его нарушение человеком. Круговорот веществ, воды, углерода, кислорода, азота.

    реферат [160,7 K], добавлен 09.11.2008

  • Экосистема ­- основная функционирующая единица в экологии. Примеры природных экосистем, основные понятия и классификация, условия существования и видовое разнообразие. Описание круговорота, осуществляемого в экосистемах, специфика динамических изменений.

    лекция [630,2 K], добавлен 02.12.2010

  • Предмет и задачи экологии. Аутэкология, синэкология и популяция в экологии. Круговорот веществ и поток энергии в экосистемах. Охрана природы и концепция устойчивого развития, рациональное природопользование и современные экологические проблемы.

    курс лекций [99,6 K], добавлен 26.10.2012

  • Отличительные признаки естественных и антропогенных ландшафтных комплексов. Изменение и преображение географической среды, создание искусственной среды. Перестройка биологического круговорота, вводно-теплового режима, направления почвенных процессов.

    презентация [3,1 M], добавлен 09.04.2015

  • Эффекты воздействия токсичных веществ на экосистемы и их круговорот в биосфере. Источники поступления токсикантов в биосистемы. Токсические эффекты действия химических веществ на живые организмы. Устойчивость биосистем к токсическому загрязнению.

    контрольная работа [28,7 K], добавлен 13.09.2013

  • Основные направления государственной политики охраны окружающей среды, права и обязанности граждан Украины в природоохранной сфере. Типология загрязнений природы, воздействие циркуляции загрязняющих веществ в природе: углерода, серы, азота и фосфора.

    контрольная работа [21,5 K], добавлен 01.12.2009

  • Воздух внутри помещений: методы контроля и очистки. Контроль источника вредных веществ и окружающей среды. Газоанализаторы: применение и их современные виды для контроля состава газовой смеси - универсальные фотометрические жидкостные и ленточные.

    курсовая работа [1,8 M], добавлен 08.01.2010

  • Характеристика производственных процессов предприятия. Характеристика источников выделения загрязняющих веществ. Расчет валовых выбросов загрязняющих веществ по ТЭЦ-12 за 2005 год. Максимально-разовые и валовые выбросы загрязняющих веществ в атмосферу.

    курсовая работа [35,7 K], добавлен 29.04.2010

  • Содержание, структура и задачи экологии как научной дисциплины. Характеристика наземно-воздушной популяции. Биологический и геологический круговороты веществ. Понятие и классификация эвтрофикации водоемов. Экологические аспекты интенсификации земледелия.

    контрольная работа [183,3 K], добавлен 16.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.