Биологические методы оценки качества вод и состояния водных экосистем

Ознакомление с результатами гидробиологического мониторинга поверхностных вод в России. Определение особенностей экологических модификаций, как методологической основы биоиндикации качества вод. Рассмотрение и анализ основных критериев токсичности вод.

Рубрика Экология и охрана природы
Вид учебное пособие
Язык русский
Дата добавления 21.06.2016
Размер файла 491,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Приемы биотестирования широко применяются в различных областях природоохранной деятельности и используются по различным назначениям. Биотестирование является основным методом при разработке нормативов ПДК химических веществ (биотестирование токсичности индивидуальных химических веществ), и, в конечном итоге, при оценке из опасности для окружающей среды и здоровья населения. Таким образом, оценка уровня загрязнения по результатам химического анализа, т.е. интерпретация результатов с точки зрения опасности для окружающей среды, также в значительной степени опирается на данные биотестирования.

Методы биотестирования, будучи биологическими по сути, близки по смыслу получаемых данных к методам химического анализа вод: как и химические методы, они отражают характеристику воздействия на водные биоценозы.

Требования, применяемые к методикам биотестирования:

- чувствительность тест-организмов к достаточно малым концентрациям загрязняющих веществ.

- отсутствие инверсии ответных реакций тест-организмов на разные значения концентрации загрязняющих веществ в пределах тех значений, кот-е отмечены в природных водах;

- возможность получать надежные результаты, метрологическая обеспеченность методик;

- доступность тест-организмов для сбора, простота культивирования и содержания в условиях лаборатории;

- простота выполнения процедуры и технических приемов биотеста;

- низкая себестоимость работ по биотестированию.

Развиваются два основных направления работ по биотестированию:

- подбор методик с использованием гидробионтов, охватывающих основные иерархические структуры водной экосистемы и звенья трофической цепи;

- поиск наиболее чувствительных тест-организмов, которые позволили бы уловить низкий уровень токсичности при обеспеченной гарантии надежности информации.

Для токсикологической оценки загрязнения пресноводных экосистем на основе биотестирования водной среды рекомендовано использовать несколько видов тест-объектов: водоросли, дафнии, цериодафний, бактерии, простейшие, коловратки, рыбы.

Водоросли - основа пищевых цепей во всех природных экосистемах. Наиболее чувствительные организмы к широкой гамме химических веществ от детергентов до НФПР . Отмирание клеток, нарушение скорости роста, изменение процессов фотосинтеза и др. метаболич. процессов. Chlorella vulgaris, Scenedesmus quadricauda, Anabaena, Microcystis, Oscillatoria, Phormidium.

Бактерии - изменение скорости разложения (биодеградации) органических соединений/ Nitrosomonas, Nitrosobacter; изменение метаболических процессов в организме - Escherichia coli (оценка влияния токсиканта на сбраживание глюкозы)

Простейшие. Дафнии. ДДТ, (ГХЦГ)гексахлорциклогексан, ТЯЖЕЛЫЕ металлы (медь-цинк-кадмий-хром), биогенные элементы. Daphnia magna.

Коловратки

Рыбы. Гуппи (Poecillia reticulata) - металлы, пестициды; данио (Brachidanio rerio).

Рыбы природных вод. Высокочувствительные: - лососевые (форель), шиповка, пескарь, плотва, голец, судак, верховка; среднечувствительные: окунь, красноперка, лещь, гольян, карп, уклея.

Токсичность вод.

О наличии токсичности судят по проявлениям негативных эффектов у тест-объектов, которые считаются показателями токсичности.

Среди показателей токсичности выделяют: общебиологические, физиологические, биохимические, химические, биофизические, и т.д.

Показателем токсичности является тест-реакция, изменения которой регистрируют в ходе токсикологического эксперимента.

Следует заметить, что под токсикологическими (биотестовыми) показателями в экологической и водной токсикологии понимают показатели биотестирования на различных тест-объектах. В тоже время в санитарно-гигиеническом нормировании под токсикологическими показателями понимают концентрации токсичных химических веществ (например, в нормировании питьевой воды они характеризуют ее безвредность).

При биотестировании проб природной воды обычно ставят два вопроса: - токсична ли проба природной воды; - какова степень токсичности, если таковая имеется?

В результате биотестирования проб на основе регистрации показателей токсичности делают оценку токсичности по критериям, установленным для каждого биообъекта. Результаты биотестирования опытной пробы с исследуемого участка сравнивают с контрольной, заведомо нетоксичной пробой и по разнице в контроле и опыте судят о наличии токсичности.

При этом эффекты воздействия делят на острые и хронические. Их обозначают как острое и хроническое токсическое действие или как острую и хроническую токсичность (ОТД и ХТД). Эти термины и используют для выражения результатов биотестирования.

Острое токсическое действие - воздействие, вызывающее быструю ответную реакцию тест-объекта. Его чаще всего измеряют по тест-реакции «выживаемость» за относительно короткий период времени.

Хроническое токсическое действие - воздействие, вызывающее ответную реакцию тест-объекта, проявляющуюся в течение относительно долгого периода времени. Измеряют по тест-реакциям: выживаемость, плодовитость, изменение роста и т.п.

Реакция тест-объектов на токсическое воздействие зависит от интенсивности или продолжительности воздействия. По результатам биотестирования находят количественную зависимость между величиной воздействия и реакцией тест-объектов.

Реакция организмов на воздействие токсических химических веществ представляет собой комплекс взаимосвязанных эволюционно сформировавшихся реакций, направленных на сохранение постоянства внутренней среды организма и в конечном итоге на выживание.

Выявлены определенные закономерности реакций организмов на токсические воздействия. В общем виде воздействие токсического вещества на организм описывается двумя основными параметрами: концентрацией и временем воздействия (экспозицией). Именно эти параметры определяют степень влияния токсичного вещества на организм.

Экспозиция - период, в течение которого организм находится под воздействием исследуемого фактора, в частности химического вещества. В зависимости от экспозиции различают острое или хроническое токсическое воздействие.

Результат токсического воздействия обычно называют эффектом токсического воздействия. Для описания зависимости между эффектом воздействия токсического вещества на организм и его концентрацией предложены различные функции, например формула Хабера:

Е=СТ, где

Е - эффект (результат) воздействия; Т - время воздействия (экспозиция);

С - концентрация воздействующего вещества.

Е - представляет собой любой результат воздействия (гибель тест-объектов), а величины С и Т - могут быть выражены в соответствующих единицах измерения.

Как видно из формулы Хабера, между эффектом временем воздействия концентрацией имеется прямая функциональная связь: эффект будет тем большим, чем больше величина воздействия (концентрация вещества) и/или его продолжительность.

Формула Хабера позволяет сравнивать биологические эффекты различных химических веществ с помощью анализа их концентрии или экспозиции. Отличия по какому-либо из этих величин отражают отличия в чувствительности организмов к токсическому воздействию.

При малых концентрациях или экспозициях эффект воздействия проявляется в популяции у небольшого числа тест-объектов, которые оказываются наиболее чувствительными, т.е. наименее устойчивыми к воздействию. По мере увеличения концентрации или экспозиции число устойчивых организмов падает, и в конце концов у всех (или почти у всех) организмов удается зарегистрировать четко выраженные эффекты токсического воздействия. В ходе токсикологического эксперимента находят зависимость отклика тест-объектов от величины или времени воздействия.

Параметры токсичности химического воздействия:

- Летальная концентрация (ЛК50) - концентрация токсиканта, вызывающая гибель 50% тест-организмов за определенное время (чем ниже ЛК50, тем выше токсичность химического вещества или воды)

- Максимальная недействующая концентрация - наивысшая измеренная концентрация химического вещества (тестируемой воды), не вызывающая наблюдаемого химического воздействия (чем ниже МНК, тем выше токсичность химического вещества или сточной воды).

Не все организмы одинаково реагируют на одно и то же воздействие. Реакция зависит от чувствительности к воздействию.

Чувствительность организма к токсическому веществу - это совокупность реакций на его воздействие, характеризующих степень и скорость реагирования организма. Характеризуется такими показателями, как время начала проявления отклика (реакции) или концентрация токсического вещества, при которой проявляется реакция; она существенно отличается не только у разных видов, но и у разных особей одного вида.

Согласно ряду чувствительности, разработанному С.А. Патиным (1988), тест объекты можно расположить следующим образом:

Рыбы-зоопланктон-зообентос-фитопланктон-бактерии-простейшие-макрофиты.

Существуют и другие ряды чувствительности.

Например, при биотестировании вод Целлюлозно-бумажных предприятий: Водоросли-бактерии-рыбы (по уменьшению чувствительности).

Факторы, влияющие на биотестирование:

- факторы, влияющие на тест-организмы (экспозиция; условия культивирования, в природе - условия жизни растений и животных; возрастные особенности, сезон года, обеспечение тест-организмов пищей, температура (пессимум и оптимум), освещенность);

- факторы, определяющие физико-химические свойства тестируемой природной воды, от которых зависит ее токсичность для тест-организмов (свежесть пробы, наличие в ней взвешенных частиц).

3.2 Методы биотестирования на различных группах организмов для оценки качества природных и сточных вод

Рассмотрим основные методики определения острого токсического действия вод при кратковременном биотестировании на ракообразных, водорослях и инфузориях; метод определения хронического токсического действия вод на водорослях.

Способы обработки и оценки результатов биотестирования основаны на стандартных и широко используемых в отечественной и международной практике методах статистической обработки экспериментальных данных.

Прежде чем проводить эксперименты по биотестированию, нужно вырастить культуру тест-организмов.

Последовательно далее рассмотрим особенности выращивания культур тест-организмов и проверки их пригодности для использования в биотестировании.

Биотестирование на ракообразных

Методика предназначена для определения острой токсичности природной и сточной воды, сбрасываемой в водоемы.

1. Принципы культивирования рачков Daphnia magna Straus и Ceriodaphnia affinis Lilljeborg

Период созревания Daphnia magna до вымета молоди при оптимальной температуре и хорошем питании занимает 5-10 суток. Продолжительность жизни 110-150 суток, при температурах свыше 25°С она может сокращаться до 25 суток.

При оптимальных условиях содержания партеногенетические поколения следуют одно за другим каждые 3-4 суток. У молодых дафний число яиц в кладке 10-15, затем оно возрастает до 30-40 и более, снижаясь до 3-8 и до 0 за 2-3 суток до смерти.

Культуру дафний выращивают в термостатируемом при 18-22°С люминостате (освещенность 400-600 люкс, продолжительность светового дня 12-14 часов). Опыты по биотестированию вод желательно проводить в том же люминостате.

Для получения исходного материала для биотестирования 30-40 самок с выводковыми камерами, полными яиц или зародышей, за 1 сутки до биотестирования пересаживают в емкости объемом 0,5-2 л. После появления молоди их отделяют от взрослых особей с помощью капроновых сит с разным диаметром пор.

Принципы культивирования цериодафний аналогичны описанным для дафний. Следует помнить, что цериодафнии более требовательны к содержанию кислорода в воде (не менее 5 мг/л), оптимальная температура культивирования 23-27°С. Период созревания рачков от рождения до момента вымета молоди короче, чем у дафний - от 4 до 5 суток.

При биотестировании важно учитывать следующие моменты:

- Молодь рачков в 4-5 раз более чувствительна к действию токсикантов, чем взрослые особи.

- Кормление рачков во время острого опыта уменьшает токсичность примерно в 4 раза.

- В мягкой воде токсичность веществ повышается. Ионы магния обычно уменьшают токсичность солей, ионы кальция - снижают токсичность.

- Присутствие комплексообразующих веществ (гуминовые кислоты, аминокислоты и т.п.) увеличивает накопление токсикантов, но снижает их токсичность.

- Дефицит кислорода в воде ускоряет накопление токсических веществ в водной среде.

- Солнечный свет увеличивает токсичность в основном за счет возрастания количества свободных радикалов.

Определение устойчивости Daphnia Magna Straus к бихромату калия

Прежде всего необходимо оценить пригодность лабораторной культуры дафний для последующего биотестирования вод. Эталонным токсикантом служит бихромат калия.

Материалы

Стакан емкостью 100-250 мл (21 штука).

Пипетки мерные на 1, 10, 25 мл 2-го класса точности (по 1 штуке). Колба для разбавляющей (контрольной) воды (РВ) емкостью 3 л. Мерные колбы на 100 мл (1 шт.), на 250 мл (1 шт.), на 500 мл (2 шт.), на 1000 мл (1 шт.).

210 рачков в возрасте 4-24 часа. Разница в возрасте особей не должна превышать 4 часов.

Подготовка опыта

Приготовить 100 мл 0,1% раствора К2Сr2О7 (1000 мг/л).

Для этого 0,1 г просушенного К2Сr2О7 растворить в 100 мл дистиллированной воды.

Расставить 21 стакан с надписями по следующей схеме:

К1 0,25 мг/л 0,5 мг/л 0,75 мг/л 1 мг/л 2 мг/л 3 мг/л

К2 0,25 мг/л 0,5 мг/л 0,75 мг/л 1 мг/л 2 мг/л 3 мг/л

КЗ 0,25 мг/л 0,5 мг/л 0,75 мг/л 1 мг/л 2 мг/л 3 мг/л

Посадка рачков

Во все стаканы с растворами посадить по 10 рачков в возрасте строго 4-24 часа. Посадку производить с помощью микропипеток со съемными пластиковыми наконечниками. Концы наконечников предварительно необходимо обрезать под величину дафнии одно-двухдневки.

Эксперимент

Подсчет выживших рачков производят визуально через 24 часа. Во время опыта рачков не кормят. Смертность рачков в контроле не должна превышать 10%. Результаты заносят в протокол опыта.

Обработка результатов

Смертность рачков в процентах к контролю (А) рассчитывается по формуле:

Результаты опытов за 24 часа наносятся на график:

"График "Концентрация K2Cr2O7, мг/л""

Из графика находят ЛК50 - концентрацию вещества, вызывающую гибель 50% особей. Для бихромата калия величина ЛК50 должна лежать в диапазоне 0,9 - 2,0 мг/л. В этом случае тест-культура дафний пригодна для определения токсичности вод.

Определение токсичности сточной (природной) воды на Daphnia Magna

Материалы

Стаканы емкостью 150-250 мл (8-16 штук).

Колба для разбавляющей (контрольной) воды емкостью 3 л.

Мерные колбы на 100 мл (1 шт.), 1 л (1 шт.).

Мерный цилиндр или мерный стакан на 150-200 мл.

От 40 до 80 рачков в возрасте 4-24 часа. Разница в возрасте особей не должна превышать 4 часов.

Подготовка опыта

Расставить 16 стаканов с надписями по следующей схеме:

К1 Ст.вода б/р N 1 Ст.вода 1:10 N 5 Ст.вода 1:100 N 9

К2 Ст.вода б/р N 2 Ст.вода 1:10 N 6 Ст.вода 1:100 N 10

КЗ Ст.вода б/р N 3 Ст.вода 1:10 N 7 Ст.вода 1:100 N 11

К4 Ст.вода б/р N 4 Ст.вода 1:10 N 8 Ст.вода 1:100 N 12

Разлить по стаканам контрольную (разбавляющая вода) и испытуемую воду (ст.вода) по 150 мл на стакан:

К1-К4 - 600 мл разбавляющей воды (РВ),

Ст.вода б/р (без разбавления) - 600 мл (4 х 150 мл).

Ст.вода 1:10 - 100 мл Ст.воды б/р + 900 мл РВ = 1 л Ст.вода 1:10.

Ст.вода 1:100 - 100 мл Ст.воды 1:10 + 900 мл РВ = 1 л Ст.вода 1:100

Стаканы с растворами расставить в люминостате.

В обязательном порядке скорректировать рН проб до 6,5-8,5 с помощью растворов NaOH или НСl, если они не соответствуют указанным выше нормативам.

Насыщенность тестируемых проб кислородом также должна лежать в указанных рамках.

Посадка рачков

Во все стаканы посадить по 5 рачков в возрасте строго 4-24 часа.

Эксперимент

Подсчет погибших рачков производят визуально через 1, 6, 24, 48, 72, 96 часов (окончание определения острой токсичности). Смертность рачков в контроле не должна превышать 10%.

Результаты заносят в протокол опыта.

Обработка результатов

Биотестирование прекращают, если в любой период времени в опыте гибнет 50% и более особей.

Если А >= 50%, то тестируемая вода (опыт) остротоксична.

Если А < 50%, то тестируемая вода не оказывает острого токсического действия.

Для более точного определения острой токсичности строят график, где по оси абсцисс (ось X) откладывают время в часах, а по оси ординат (ось Y) смертность в процентах к контролю (А). Из графика находят ЛТ50 - время, в течении которого погибает 50% дафний.

Определение токсичности сточной (природной) воды на Ceriodaphnia Affinis. Материалы

Пробирки емкостью 20 мл (20-40 штук).

Колба для разбавляющей (контрольной) воды емкостью 1 л.

От 40 до 80 рачков в возрасте 0,1-8 часов. Разница в возрасте рачков не должна превышать 4 часов.

Подготовка опыта

Расставить пробирки по 10 штук в ряду по следующей схеме:

К1 Ст.вода б/р N 1 Ст.вода 1:10 N 1 Ст.вода 1:100 N 1

К2 Ст.вода б/р N 2 Ст.вода 1:10 N 2 Ст.вода 1:100 N 2

К3 Ст.вода б/р N 3 Ст.вода 1:10 N 3 Ст.вода 1:100 N 3

К4 Ст.вода б/р N 4 Ст.вода 1:10 N 4 Ст.вода 1:100 N 4

К5 Ст.вода б/р N 5 Ст.вода 1:10 N 5 Ст.вода 1:100 N 5

К6 Ст.вода б/р N 6 Ст.вода 1:10 N 6 Ст.вода 1:100 N 6

К7 Ст.вода б/р N 7 Ст.вода 1:10 N 7 Ст.вода 1:100 N 7

К8 Ст.вода б/р N 8 Ст.вода 1:10 N 8 Ст.вода 1:100 N 8

К9 Ст.вода б/р N 9 Ст.вода 1:10 N 9 Ст.вода 1:100 N 9

К10 Ст.вода б/р N 10 Ст.вода 1:10 N 10 Ст.вода 1:100 N 10

Разлить по пробиркам контрольную (разбавляющая вода) и сточную воду (Ст.вода) по 15 мл:

К1-К10 - 150 мл разбавляющей воды (РВ).

Ст.вода б/р (без разбавления) - 150 мл (10 * 15 мл).

Ст.вода 1:10 - 25 мл Ст.воды б/р + 225 мл РВ = 250 мл Ст.вода 1:10.

Ст.вода 1:100 - 25 мл Ст.воды 1:10 + 225 мл РВ = 250 мл Ст.вода 1:100.

Пробирки с растворами расставить в люминостате.

Произвести замеры температуры в люминостате (норма 23-27°С), рН растворов (норма 6,5-8,5), концентрация растворенного кислорода (норма перед началом опыта 6 мг/л, в конце опыта - не менее 4 мг/л).

В обязательном порядке скорректировать рН проб до 6,5-8,5 с помощью растворов NaOH или НСl, если они не соответствуют указанным выше нормативам. Насыщенность тестируемых проб кислородом также должна лежать в указанных рамках.

Режим освещения в люминостате - 12-часовой с интенсивностью 400-600 люкс.

Посадка рачков

Во все пробирки посадить по 1 рачку в возрасте 0,1-8 часов. Разница в возрасте рачков не должна превышать 4 часа.

Эксперимент

Подсчет погибших рачков производят визуально через 1, 6, 24, 48 часов (окончание определения острой токсичности). Во время опыта рачков не кормят. Результаты заносят в протокол опыта.

Обработка результатов выполняется аналогично предыдущим.

Для оценки степени острой токсичности вод можно также использовать систему Сладечека.

Система острой токсичности (Сладечек, 1981)

Уровень токсичности

Смертность с течение 48 ч.,%

Время гибели последней особи (час)

0. Катаробность (атоксичность)

0

0

Лимнотоксичность.

1.Ксенотоксичность

25

8-48

2.Олиготоксичность

50

8-48

3.Бета-мезотоксичность

75

8-48

4.Альфа-мезотоксичность

90

8-48

5. Политоксичность

100

8-48

Евтоксичность

6.Изотоксичность

100

1-8

7. Метатоксичность

100

0,05-1

8.Гипертоксичность

100

1 минута

9. Ультратоксичность

100

1 секунда

Биотестирование с использованием водоросли Scentdesmus Quadricauda

Методика предназначена для определения токсичности природных и сточных вод.

Общие принципы культивирования микроводорослей

Эффективное культивирование одноклеточных зеленых водорослей в лаборатории определяется в основном наличием минеральных элементов в питательной среде, достаточно интенсивным освещением (2000-3000 люкс) и определенной температурой (18-20°С).

Лучшей средой для выращивания зеленых водорослей для токсикологических является питательная среда Успенского N 1, которая содержит более низкую общую концентрацию солей.

Все манипуляции со средой Успенского N 1 при работе с водорослью Scenedesmus проводятся при строгом соблюдении условий стерильности.

Недопустимым является совместное культивирование данной водоросли с хлореллой в одном люминостате (хлорелла быстро засоряет и подавляет культуру сценедесмус).

Продолжительность опытов по выявлению токсичности вод может быть 4, 7, 14 и более дней в зависимости от поставленных задач. Максимальное накопление токсиканта в клетках водорослей отмечается, обычно, к исходу 3-4 суток, поэтому чаще всего определение острой токсичности ограничивают 4 сутками.

Если в результате биотестирования на острую токсичность выявлена достоверная стимуляция роста водорослей, то для окончательного суждения о токсичности пробы необходимо ставить хронический эксперимент (до 14 суток).

Достоверная стимуляция роста водорослей свидетельствует о наличии эвтрофирующего загрязнения, а достоверное угнетение роста водорослей - о наличии токсического загрязнения.

Подготовка культуры

В опыте использовать 5-10 суточную культуру, находящуюся в экспоненциальной фазе роста.

Перед посевом культуру сгущают одним из трех способов: - отстаиванием 2-3 дня, центрифугированием, фильтрованием через мембранный фильтр N 4 или фильтровальную бумагу с синей лентой. Полученная суспензия (концентрат) клеток используется для последующего посева.

Посев

Производится в большую опытную колбу емкостью 1,5 л, в случае биотестирования в колбах (по 100 мл) или в колбу емкостью 150 мл при биотестировании в пенициллиновых пузырьках (по 10 мл). Обычно требуется примерно 30 мкл суспензии на 30 мл воды.

В опытных колбах после посева должно быть около 200-300 тысяч клеток водорослей в 1 мл (не более 500 тысяч/мл) - едва заметное зеленоватое окрашивание на белом фоне.

Разлив

Из большой колбы произвести разлив культуры по колбам (3 повторности по 100 мл) или пенициллиновым пузырькам (3 повторности по 10 мл).

Оценка результатов опыта по определению устойчивости культуры

к бихромату калия

Подсчет производят с помощью микроскопа (например типа "Биолам") при 80-100 кратном увеличении.

Для подсчета численности клеток используют счетную камеру Горяева или Фукс-Розенталя. Камеру и относящееся к ней покровное стекло обезжиривают, покровным стеклом накрывают камеру и притирают его до образования радужных колец интерференции. Из каждой колбы пипеткой наносят по одной капле тщательно перемешанной суспензии на верхний и нижний края покровного стекла. Камеру заполняют так, чтобы не образовывались пузырьки воздуха, избыток суспензии вытесняется по канавкам. Просматривают 16 квадратов по диагонали или все поле камеры в случае малой численности водорослей (при одном заполнении камеры просчитывают не менее 50 клеток).

Из каждой колбы просматривают не менее трех проб.

Оценка токсического действия химического соединения или тестируемой воды делается на основании достоверности различий между показателями численности клеток водорослей в контроле и в опыте.

При этом вычисляют:

а) средние арифметические величины численности клеток - Xi и X (из двух и шести подсчетов, соответственно).

б) численность клеток в процентах от контроля. Сумма (X - Xi)

в) среднее квадратичное отклонение (б):

где n - количество повторностей; в данном случае n = 3;

в) ошибку среднего арифметического (X): S = б/корень из n;

г) Td - критерий достоверности различий двух сравниваемых величин:

где Xk и Хо - сравниваемые средние величины (в контроле и опыте),

Sk - So - квадраты ошибок средних в контроле и опыте.

Td рассчитывают на каждые сутки и сравнивают с табличной величиной Tst - стандартным значением критерия Стьюдента.

Принимают уровень значимости Р = 0,05 и степень свободы (n1 + n2 - 2), т.е. (3 + 3 - 2) = 4.

Tst при степени свободы 4 равно 2,78.

Если Td больше или равно Tst, то различие между контролем и опытом достоверно - тестируемая вода загрязнена (токсическое или эвтрофирующее загрязнение)

Если Td меньше Tst, то различие между контролем и опытом не достоверно - тестируемая вода не загрязнена.

Для расчетов Td можно использовать калькуляторы типа МК-51 и МК-71, а также компьютерные электронные таблицы (например, программу "Сигма" ЦСИАК), что значительно ускоряет работу.

Для графического представления результатов биотестирования по оси абсцисс откладывают время в сутках, а по оси ординат либо число клеток водорослей в 1 мл, либо число клеток водорослей в процентах от контроля.

Определение устойчивости Scenedesmus Quadricauda к действию бихромата калия

Добавить последовательно в 30 мл дистиллированной воды (контроль) 30 мкл KNO3, 30 мкл MgSO4, 30 мкл Ca(NO3)2, 30 мкл КН2РО4, 30 мкл К2СО3.

Хронический опыт (в пузырьках)

На 7-е сутки биотестирования проводят смену контрольной и тестируемой воды в стерильных условиях. При этом в новую партию пузырьков наливают по 7,5 мл контрольной и тестируемой воды. Затем в пузырьки добавляют по 0,01 мл (10 мкл) каждого из 5 маточных растворов солей и по 2,5 мл старой культуры из пузырьков, в которых проводилось биотестирование в остром опыте. Подсчет численности клеток проводят на 7-е, 10-е и 14-е сутки.

На практике бывает удобно использовать таблицу оценки результатов биотестирования по 5-бальной шкале.

Необходимо помнить, что увеличение биомассы водорослей может быть связано с наличием эвтрофирующих загрязнений в испытуемой воде, в этом случае о наличии токсического эффекта можно судить после испытания на нескольких тест-объектах.

Биотестирование на инфузориях

В основу метода положен один из вариантов определения острой токсичности воды по выживаемости инфузорий Paramecium caudatum.

Используется:

- для определения токсичности сточных вод, поступающих на биологические очистные сооружения, что позволяет проводить технологическую корректировку режима подготовки и очистки сточных вод;

- для определения токсичности локальных потоков сточных вод, что позволяет выяснять их взаимодействие, определять вклад каждого потока в токсичность сточных вод отдельного предприятия, суммарную токсичность сточных вод, поступающих на биологические очистные сооружения;

- для определения токсичности водных растворов отдельных веществ и их смеси.

Принцип методики

Методика определения острой летальной токсичности сточной воды по выживаемости инфузорий основана на установлении количества погибших или обездвиженных особей после экспозиции в тестируемой воде. Критерием острой летальной токсичности является гибель или обездвиживание 50% и более особей в течение 1 часа в тестируемой воде по сравнению с их исходным количеством.

Тестовый организм

В качестве тест-объекта используют лабораторную монокультуру Paramecium caudatum Ehrenberg.

Paramecium caudatum - одноклеточные организмы размером 180-300 мкм. Тело сигарообразной или веретенообразной формы, покрытое плотной оболочкой (пелликулой).

Paramecium caudatum - массовый вид в пресной воде с высоким содержанием органических веществ. В сточной воде является часто основным видом, поли-альфа-мезосапроб. Простейшие, в том числе ресничные инфузории, составляют основную часть микрофауны активного ила. Они участвуют в освобождении очищаемой воды от взвешенных бактериальных клеток и от рыхлых, плохо оседающих бактериальных агломератов, способствуя тем самым повышению эффективности очистки.

Выделение и культивирование

Выделение из активного ила. Наиболее подвижную и крупную особь отлавливают из пробы активного ила очистных сооружений и переносят в микроаквариум со стерильной водопроводной водой.

Путем последовательного переноса этой особи из лунки в лунку добиваются отделения ее от других простейших и цист. Затем помещают отмытую инфузорию в пробирку со средой культивирования.

Через 7-8 суток из полученной таким образом монокультуры одну наиболее крупную и подвижную особь вновь переносят в свежую среду.

Спустя 8-10 суток культуру можно использовать для определения токсичности.

Культивирование инфузорий на молоке. Культуру парамеций выращивают на дехлорированной водопроводной воде, которую добавляют разбавленное в 20 раз такой же водой пастеризованное молоко. Пересевают культуру инфузорий один раз в месяц (при необходимости один раз в три недели).

Материалы и оборудование

Подсчет Paramecium caudatum производят с помощью бинокулярного микроскопа МБС-9, МБС-10 или иного, обеспечивающего 8-24 кратное увеличение. Конструкция микроаквариумов из прозрачного органического стекла приведена на рис. Для разбавления и внесения одинакового количества исследуемой пробы используют стандартные стеклянные пипетки. Для внесения определенного количества особей используют капилляры (рис.).

Микроаквариум для размещения и подсчета инфузорий

Капилляр для отбора инфузорий"

Отбор и подготовка проб для биотестирования

Пробы сточных вод отбирают в объеме 100 мл.

Биотестирование проб воды проводят не позднее 6 часов после их отбора, при невозможности проведения анализа в указанный срок пробы воды охлаждают (+4°С).

Не допускается консервирование проб с помощью химических консервантов.

В качестве контрольной используют водопроводную воду, которую дехлорируют путем отстаивания и аэрирования с помощью микрокомпрессора в течение 7 суток.

Для определения токсичности отдельных веществ или их смеси из них готовят растворы путем добавления определенных количеств маточного раствора исследуемого(ых) вещества(в) в водопроводную дехлорированную воду. Маточные растворы готовят на дистиллированной воде.

При проведении биотестирования температура исследуемой пробы должна соответствовать температуре культуры.

При наличии в пробе крупнодисперсных взвесей необходима фильтрация.

При проведении биотестирования значения рН тестируемых растворов должно находиться в интервале от 6,5 до 7,6.

Биотестирование проводят в помещении, не содержащем вредных паров и газов, при рассеянном свете и температуре воздуха 18-28°С.

Проведение биотестирования

Для биотестирования неразбавленной сточной воды или ее разбавлений, а также растворов отдельных токсических веществ (смеси веществ) используют микроаквариум с лунками, который помещают на предметный столик стереомикроскопа.

Одну из лунок заполняют культурой инфузорий с помощью капиллярной пипетки.

В свободные лунки капиллярной пипеткой рассаживают по 10-12 особей в каждую лунку, так чтобы на одну пробу тестируемой воды приходилось не менее 30 инфузорий в трех лунках (трехкратная повторность).

При посадке тест-объекта количество культуральной жидкости в лунке не должно превышать 0,02 мл.

Три лунки используют в качестве контрольных.

После посадки инфузорий наливают в контрольные лунки по 0,3 мл дехлорированной водопроводной воды, в опытные - по 0,3 мл пробы тестируемой воды. Отмечают время начала биотестирования и подсчитывают под микроскопом количество особей в каждой лунке.

Микроаквариум с заполненными лунками помещают в чашку Петри, на дно которой кладут фильтровальную бумагу, смоченную водой, чтобы не испарялось содержимое лунок, и выдерживают в течение 1 часа при температуре 22-24°С. По истечении этого времени производят подсчет выживших особей под микроскопом. Выжившими считаются инфузории, которые свободно перемещаются в толще воды. Обездвиженных особей относят к погибшим. Результаты подсчета записывают в рабочий журнал.

Обработка и выражение результатов

Результаты биотестирования считаются правильными и учитываются, если гибель инфузорий в контрольных лунках не превышала 10%.

После подсчета особей в каждой из трех лунок находят среднее арифметическое количество инфузорий, выживших в тестируемой воде.

Тестируемую воду оценивают как оказывающую острое летальное действие, если в течение 1 ч в ней гибнет 50% и более инфузорий.

При определении острой летальной токсичности разбавлений пробы сточной воды или водного раствора отдельного вещества (смеси) устанавливают среднюю летальную кратность разбавлений (среднюю летальную концентрацию), вызывающую гибель 50% тест-объектов в течение 1 часа - ЛКр50 - 1 ч (ЛК50 - 1 ч).

Для построения графика с целью расчета ЛКр50 - 1 ч (ЛК50 - 1 ч) тест-параметр выражают в условных единицах - пробитах, а кратность разбавления (концентрацию) - в логарифмических величинах.

На оси абсцисс откладывают логарифмы концентраций кратности разбавлений сточной воды (концентраций вещества), на оси ординат величины тест-параметра в пробитах. Полученные точки соединяют прямой.

Из точки на оси ординат, соответствующей 50% гибели тест-объекта, проводят линию, параллельную оси абсцисс до пересечения с линией графика.

Из точки их пересечения опускают перпендикуляр на ось абсцисс и находят логарифмы ЛКР50 - 1 ч.

Величину найденного логарифма переводят в величину кратности разбавления (концентрацию, выраженную в мг/л вещества).

Результаты биотестирования представляют в виде протокола.

После проведения биотестирования микроаквариумы промывают водой (температура не выше 40°С), протирают ваткой, смоченной в спирте, промывают дистиллированной водой.

Оценка токсичности воды с использованием биотеста на водорослях.

По формуле рассчитаем коэффициент прироста численности водорослей за 96 ч (4 сут).

M= [m/(nV)]103,

где M - численность клеток водорослей, тыс.кл./мл;

m - число подсчитанных клеток;

n - число просчитанных маленьких квадратов камеры;

V - объем части камеры, соответствующей площади маленького квадрата, мл.

Оценка токсичности воды с использованием экспресс-биотеста на коловратках.

Для определения возможного острого токсического действия исследуемой воды проводим эксспресное биотестирование на массовой культуре коловраток.

Для оценки токсического действия исследуемой воды используем средние данные о СОС (показатель скорости осветления среды). Рассчитаем СОС для опыта по формуле.

СОС =[(C0 - Ct)/(C0Nt)]V,

где СОС - показатель скорости осветления среды, мкл/(экз.. мин);

C0 и Ct - число клеток водорослей в одном большом квадрате камеры Горяева в начале и конце биотестирования соответственно;

N - число коловраток в микроаквариуме;

t - время биотестирования, мин; V - объем воды в микроакварему, мкл.

4. Принципы классификации загрязненности водных экосистем

4.1 Классификация водоемов и их участков по физико-химическим и биологическим показателям

Гидрохимические методы измерения загрязнения. Современные технические средства позволяют определять практически все ингредиенты природного состава вод и антропогенных загрязнений - это методы атомно-абсорбционной и эмиссионной спектрофотометрии для неорганических веществ и хромато-масс-спектрометрии для идентификации нескольких тысяч органических соединений. Однако эти методы из-за сложности аппаратуры, трудоемкости выполнения анализа и значительных материальных затрат используются пока весьма ограниченно [33]. Общим требованием к качеству воды водных объектов любой категории является не превышение фактически наблюдаемого содержания загрязняющих веществ (ЗВ) над величиной ПДК. При загрязнении воды несколькими ЗВ используются комплексные оценки качества воды в природных водоемах.

Комбинаторный индекс загрязненности (КИЗ):

В гидрохимической практике используется метод интегральной оценки качества воды, по совокупности находящихся в ней загрязняющих веществ и частоты их обнаружения. В этом методе для каждого ингредиента на основе фактических концентраций рассчитывают баллы кратности превышения ПДКвр - Кi и повторяемости случаев превышения Нi, а также общий оценочный балл - Bi:

; ; ;

где: Сi - концентрация в воде i-го ингредиента;

ПДКi - предельно допустимая концентрация - i-го ингредиента для водоемов рыбохозяйственного назначения [10];

NПДКi - число случаев превышения ПДК по i-му ингредиенту;

Ni - общее число измерений i-го ингредиента.

Ингредиенты, для которых величина общего оценочного балла больше или равна 11, выделяются как лимитирующие показатели загрязненности (ЛПЗ). Комбинаторный индекс загрязненности рассчитывается как сумма общих оценочных баллов всех учитываемых ингредиентов.

По величине комбинаторного индекса загрязненности устанавливается класс загрязненности воды.

Показатель КИЗ учитывает одновременно показатели качества, содержание которых превышает установленные ПДКвр, повторяемость случаев превышения ПДКвр, кратность превышения ПДКвр. КИЗ используется, в основном, в случае комбинированного воздействия на экосистемы ряда токсичных веществ.

Более совершенным является индекс, получивший название удельного комбинаторного индекса загрязненности (УКИЗ), учитывающий те случаи, когда вода очень сильно загрязнена одним или несколькими загрязняющими веществами, но имеет удовлетворительные характеристики по всем остальным показателям. УКИЗ представляет собой долю индекса КИЗ, приходящуюся на один учитываемый ингредиент. Достоинствами данного метода является сочетание дифференцированного и комплексного подходов к оценке качества воды.

Биохимические методы измерения загрязненности

Состав органических веществ в природных водах формируется под влиянием многих факторов.

Степень загрязнения воды органическими соединениями определяют, какое количество кислорода, необходимо для их окисления микроорганизмами в аэробных условиях (БПК).

Биохимическое потребление кислорода (БПК). Важным суммарным показателем санитарного состояния водоема, отражающим загрязнение его биохимически окисляющимися веществами, а также процессы самоочищения, является БПК.

В лабораторных условиях наряду с БПКполн определяется БПК5 - биохимическая потребность в кислороде за 5 суток. В поверхностных водах величины БПК5 изменяются обычно в пределах 0,5-4 мг O2/дм3 и подвержены сезонным и суточным колебаниям.

Сезонные колебания зависят в основном от изменения температуры и от исходной концентрации растворенного кислорода. Влияние температуры сказывается через ее воздействие на скорость процесса потребления, которая увеличивается в 2-3 раза при повышении температуры на 10 oC. Влияние начальной концентрации кислорода на процесс биохимического потребления кислорода связано с тем, что значительная часть микроорганизмов имеет свой кислородный оптимум для развития в целом и для физиологической и биохимической активности.

Суточные колебания величин БПК5 также зависят от исходной концентрации растворенного кислорода, которая может в течение суток изменяться на 2,5 мг О2/дм3 в зависимости от соотношения интенсивности процессов его продуцирования и потребления.

Весьма значительны изменения величин БПК5 в зависимости от степени загрязненности водоемов, табл.

Величины БПК5 в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов)

БПК5 мг О2/дм3

Очень чистые

0,5-1,0

Чистые

1,1-1,9

Умеренно загрязненные

2,0-2,9

Загрязненные

3,0-3,9

Грязные

4,0-10,0

Очень грязные

10,0

Определение БПК5 в поверхностных водах используется с целью оценки содержания биохимически окисляемых органических веществ, условий обитания гидробионтов и в качестве интегрального показателя загрязненности воды.

Химическая потребность кислорода (ХПК). Наиболее информативным суммарным показателем антропогенного загрязнения является ХПК, величина которого зависит от содержания практически всех органических веществ.

Поэтому для полной оценки содержания органических веществ в воде определяют химическое потребление кислорода.

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем.

Показатель ХПК применяют для характеристики состояния водотоков и водоемов по классификации табл.

Величины ХПК в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов)

ХПК, мг О2/дм3

Чистые

2

Умеренно загрязненные

3

Загрязненные

4

Грязные

5-15

Очень грязные

больше 15

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод.

Глоссарий

Аддитивность - сочетанное воздействие двух и более веществ или факторов, при котором суммарный эффект равен сумме эффектов каждого вещества или фактора.

Анализ воды - Определение физических, химических, биологических, технических и других свойств и состава воды.

Анализ первого дня - Определение ряда показателей физических свойств (температура и прозрачность воды, визуальное определение высокого уровня загрязненности воды - наличие пятен, всплывших гидробионтов, изменение цвета воды, появление несвойственного запаха) и компонентов химического состава воды (значение рН, диоксид углерода, карбонатные и гидрокарбонатные ионы, растворенный кислород, окисляемость, фосфаты, нитраты, нитриты, аммоний, кремниевая кислота, железо, сероводород, сульфиды, фенолы) непосредственно в водном объекте и в свежеотобранных пробах воды (в течение первого дня).

Аналитический контроль качества воды - Определение показателей физических свойств и компонентов химического и биологического состава природных вод с целью оценки изменений качества воды во времени и пространстве.

Антагонизм - сочетанное воздействие двух и более веществ или факторов, при котором суммарный эффект меньше суммы эффектов каждого вещества или фактора.

Антропогенные факторы - Факторы, включающие различные формы воздействия человека на отдельные компоненты и природные комплексы. А.ф. могут быть прямыми (истребление, акклиматизация, охрана) и косвенными (вырубка леса, вспашка земель, осушение болот и др.).

Бентос - совокупность организмов, обитающих в донных отложениях водных объектов. Выделяют зообентос (животные), фитобентос (растения), бактериобентос (бактерии).

Биотестирование (биологическое тестирование) - оценка качества объектов окружающей среды (воды и др.) по ответным реакциям живых организмов, являющихся тест-объектами (ГОСТ 27065; РД 52.24.635).

Биотест - совокупность приемов получения информации о токсичности воды или донных отложений для гидробионтов на основе регистрации реакций тест-объекта (Р 52.24.566).

Биотесты - методики биотестирования.

Биотический индекс - численная величина, которая используется для описания биоты водоема, характеризующая ее биологическое качество.

Биотический индекс Вудивиса. Учитывает частую последовательность исчезновения групп индикаторных организмов по мере увеличения загрязнения. Данный метод оценки пригоден только для исследования рек умеренного пояса и не подходит для озер и прудов. Оценка состояния рек проводится по 15-балльной шкале. Биотический индекс Вудивисса определяется по специальной таблице.

Чтобы оценить состояние водоема по методу Вудивисса, нужно:

1) выяснить, какие индикаторные (показательные) группы имеются в исследуемом водоеме;

2) затем необходимо оценить общее разнообразие бентосных организмов. Определить количество «групп» бентосных организмов в пробе. При использовании метода Вудивисса за «группу» принимается любой вид плоских червей, моллюсков, пиявок, ракообразных, водяных клещей, веснянок, сетчатокрылых, жуков, любой вид личинок других насекомых. Определив количество групп в пробе, находят соответствующий столбец в таблице;

3) на пересечении строки и столбца по специальной таблице находят индекс Вудивисса. Его значение изменяется от 0 до 15 и измеряется в баллах. Состояние водоема определяется так: 0-2 балла - очень сильное загрязнение (5-7 класс качества), водное сообщество находится в сильно угнетенном состоянии; 3-5 баллов - значительное загрязнение (4-5 класс качества); 6-7 баллов - незначительное загрязнение водоема (3 класс качества); 8-10 баллов и выше - чистые реки (1-2 класс качества).

Согласно биотическому индексу Вудивисса, по мере повышения уровня загрязненности вод происходит изменение видовой структуры бентосных организмов. Вследствие, чего происходит отмирание индикаторных таксонов, достигших предела толерантности.

Бактериологический анализ воды - Определение содержания в воде бактерий, их видов и численности, необходимое для характеристики санитарно-гигиенического состояния водных объектов и биохимических процессов, обусловливающих разложение (распад) растворенных и взвешенных органических веществ в воде и донных отложениях.

Батометр - Прибор для отбора проб воды с заданной глубины с целью определения ее физических свойств и содержания в ней растворенных и взвешенных веществ. Б. бывают мгновенного наполнения, обычно используемые для отбора проб воды с целью определения ее физических свойств и химического состава, и длительного накопления, используемые для отбора проб взвешенных веществ и влекомых наносов. Имеется много различных моделей Б. В настоящее время для отбора проб воды с различных глубин в реках, озерах, водохранилищах и морях применяются Б. мгновенного накопления международного образца, морской Б. образца 1948 г. и Б. Молчанова. Эти Б. представляют собой полые цилиндры, закрывающиеся на заданной глубине крышками при помощи посыльного груза. Для измерения температуры воды Б. снабжены термометрами.

Биогенные вещества в природных водах - Минеральные вещества, наиболее активно участвующие в жизнедеятельности водных организмов. К ним относятся: соединения азота (NH4, NO2, NO3), фосфора (H2PO4, HPO4, PO4), кремния (HSiO3. SiO3), железа (Fe) и некоторых микроэлементов. В природные воды Б. в. поступают, главным образом, при распаде животных и растительных организмов, жизнедеятельность которых протекает в водной среде, с площади водосбора и со сточными водами. Концентрация Б. в. в природных водах обычно невелика и, как и режим Б.в. в водных объектах, сильно зависит от температуры воды, которая определяет интенсивность жизнедеятельности организмов и процессы образования и разложения органических веществ.

Биологические ресурсы - Объекты живой природы (промысловые объекты, культурные растения, домашние животные, живописные ландшафты и т.п.), служащие источниками получения необходимых человечеству духовных и материальных благ.

Биологические индикаторы - Организмы, которые реагируют на изменения окружающей среды своим присутствием или отсутствием, изменением внешнего вида, химического состава, поведения. При экологическом мониторинге использование биологических индикаторов часто дает более ценную информацию, чем прежняя оценка загрязнения приборами, т.к. Б.и. реагируют сразу на весь комплекс загрязнений. Кроме того, обладая «памятью» биологические индикаторы своими реакциями отражают загрязнения за длительный период.

Биологическое загрязнение - Привнесение в окружающую среду (воду, атмосферу, почву, а также продукты питания) и размножение в ней микроорганизмов, вызывающих болезни человека или сельскохозяйственных животных.

Биоиндикация - Оценка качества воды по изменению временной, структурной и функциональной организации биоценоза в условиях воздействия лимитирующих загрязняющих веществ. Является важным звеном в системе государственной службы наблюдений.

Биохимическое потребление кислорода (БПК) - Количество кислорода, потребляемого за определенное время при биохимическом окислении содержащихся в воде веществ в аэробных условиях; выражается в мг/дм3 молекулярного кислорода. Наиболее часто употребляется значение БПК5 - биохимическое потребление кислорода в течение 5 сут или БПКполн - полное биохимическое потребление кислорода, окончание которого определяется началом процесса нитрификации (обычно 15-20 сут).

Вещество вредное - вещество, которое при контакте с организмом человека может вызвать профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами, как в процессе воздействия вещества, так и в отдаленные сроки жизни настоящего и последующих поколений.

ГОСТ (на санитарно-гигиенические показатели, параметры окружающей среды, охрану природы) - государственный общесоюзный стандарт, устанавливающий обязательные нормативы качества природной среды или среды внутри населенных мест, помещений и т.д.

Взвешенные вещества в природных водах - Частицы минерального и органического происхождения, имеющие большие размеры, чем коллоидные частицы и находящиеся в воде во взвешенном состоянии. Происхождение В. в. различно: терригенное (продукты размыва почв, горных пород), биогенное (фрагменты тел и экскременты организмов), вулканогенное (обломочный материал вулканических извержений), хемогенное (продукты химических реакций), космогенное (космическая пыль), антропогенное (сточные воды).

В. в. являются исходным материалом при образовании донных отложений. Концентрация их в воде колеблется в широких пределах. От содержания и свойств В. в. зависят прозрачность и цвет природных вод.

Гидробиологические показатели качества воды - показатели, определяемые при гидробиологическом анализе (см. ниже).

Гидробионты (водные организмы) - организмы, которые живут в воде, донных отложениях водных объектов и играют важную роль в формировании химического состава природных вод и гидрохимического режима водных объектов

Гидробиологический анализ - Важнейший элемент системы контроля загрязненности поверхностных вод и донных отложений. Его задачами являются: оценка качества поверхностных вод и донных отложений как среды обитания гидробионтов; определение совокупного эффекта комбинированного воздействия загрязняющих веществ на организм; определение трофических свойств воды, наличия вторичного загрязнения водных объектов; определение изменений водных биоценозов в условиях загрязнения природной среды, а также определение экологического состояния водных объектов и последствий их загрязнения.

Для Г. а. воды водных объектов могут быть использованы практически все группы организмов, населяющих водоемы и водотоки: планктонные и бентосные беспозвоночные, простейшие водоросли, макрофиты, бактерии и рыбы.

Гипертрофные водные объекты - водные объекты, в которых при превышении биогенной нагрузки некоторого критического, индивидуального для конкретной экосистемы значения наступает стадия гипертрофии, выражающаяся в резком снижении продуктивности и в ухудшении качества воды

...

Подобные документы

  • Характеристика водных экосистем и методы оценки качества воды. Принципы и методы биохимической индикации состояния рыб в различных эколого-физиологических ситуациях. Определение роли лизосомальных ферментов в реакциях рыб на токсические воздействия.

    курсовая работа [65,6 K], добавлен 07.01.2017

  • Общая характеристика и структурная классификация видов и источников загрязнения водных объектов Российской Федерации. Изучение методов мониторинга поверхностных водоёмов, источников их загрязнения и способов нормирования качества водных ресурсов страны.

    курсовая работа [306,4 K], добавлен 17.06.2011

  • Теория, сущность и основная задача биоиндикации. Оценка значимости воздействий как метод биоиндикации. Биологические методы оценки. Характеристика биоиндикационных методов исследования. Живые биоиндикаторы: ностак сливовидный; трубочник; фитопланктон.

    реферат [21,0 K], добавлен 05.05.2009

  • Организация систем мониторинга в России. Методы и средства контроля среды обитания: контрактные, дистанционные и биологические методы оценки качества воздуха, воды и почвы. Методы контроля энергетических загрязнений и оценка экологической ситуации.

    реферат [29,5 K], добавлен 27.11.2010

  • Понятие качества воды и круговорот органических веществ в водных экосистемах. Определение сапробности по Пантле и Букку при изучении санитарного состояния реки. Самозагрязнение и самоочищение водоемов, дрейссены и их личинки-идикаторы загрязнения.

    реферат [32,5 K], добавлен 30.11.2010

  • Рассмотрение понятия и назначения водоохранных территорий. Определение зон санитарной охраны поверхностных водных объектов. Анализ биоинженерной защиты берегов водных объектов. Геоэкологические принципы проектирования прибережных защитных полос.

    дипломная работа [9,6 M], добавлен 21.08.2010

  • Состояние качества воды в водных объектах. Источники и пути загрязнения поверхностных и подземных вод. Требования к качеству воды. Самоочищение природных вод. Общие сведения об охране водных объектов. Водное законодательство, водоохранные программы.

    курсовая работа [2,6 M], добавлен 01.11.2014

  • Биомониторинг как составная часть экологического мониторинга. Классификация качества вод суши по биопоказателям. Понятие и формы биоиндикации, критерии выбора и разновидности биоиндикатров. Примеры и особенности биоиндикации на организменном уровне.

    реферат [2,8 M], добавлен 24.05.2010

  • Загрязнение сточными водами. Анализ динамики качества подземных вод. Водные ресурсы бассейнов крупнейших рек России. Аварийные ситуации, приведшие к высокому, экстремально высокому загрязнению водных объектов. Трансграничное загрязнение поверхностных вод.

    реферат [999,2 K], добавлен 16.07.2015

  • Понятие среды обитания и типы её загрязнения. Организация систем мониторинга в России. Методы и средства контроля среды обитания: контактные, дистанционные и биологические методы оценки качества воздуха, воды и почвы. Оценка экологической ситуации.

    контрольная работа [223,8 K], добавлен 05.04.2012

  • Физико-географическая характеристика района. Оценка состояния водных объектов. Общая характеристика состояния поверхностных вод и донных отложений. Оценка степени загрязнения поверхностных вод и их пригодности для различных видов водопользования.

    дипломная работа [1,3 M], добавлен 17.06.2011

  • Правила контроля качества воздуха населенных пунктов. Размещение и количество постов наблюдения. Характеристики загрязнения атмосферы. Мероприятия по очистке поверхностных вод от загрязнения: механическая и электрохимическая очистка, сорбция, дистилляция.

    доклад [22,3 K], добавлен 06.02.2010

  • Исследование классификации, видов и источников загрязнения водных объектов РФ. Факторы воздействия на водные объекты. Изучение общих положений организации и функционирования государственного мониторинга водных объектов. Пункты контроля качества воды.

    реферат [34,4 K], добавлен 23.05.2013

  • Задачи мониторинга атмосферного воздуха, его основные методы. Критерии санитарно-гигиенической оценки состояния воздуха. Система государственного мониторинга состояния и загрязнения атмосферного воздуха в России, ее проблемы и пути дальнейшего развития.

    реферат [487,3 K], добавлен 15.08.2015

  • Определение качественного состава микроорганизмов водных экосистем. Бактерии группы кишечной палочки. Грамположительные неспорообразующие кокки. Метод мембранных фильтров. Дрожжевые и плесневые грибы. Санитарно-вирусологический контроль водных объектов.

    контрольная работа [40,1 K], добавлен 15.02.2016

  • Особенности использования методов биотестирования и биоиндикации для мониторинга состояния окружающей среды. Контроль качества природных и сточных вод на биоиндикаторе Daphnia magna Strauss. Чувствительность индикатора к различным химическим препаратам.

    дипломная работа [591,6 K], добавлен 06.10.2009

  • Классификация, виды и источники загрязнения водных объектов РФ. Важнейшие показатели качества воды. Общие положения организации и функционирования государственного мониторинга. Пункты контроля качества воды. Требования к испытательным лабораториям.

    курсовая работа [69,2 K], добавлен 12.06.2011

  • Водные ресурсы и их использование, общая характеристика существующих экологических проблем. Меры по борьбе с загрязнением водных ресурсов: естественная очистка водоемов, принципы мониторинга их состояния. Федеральная программа "Чистая вода", ее значение.

    курсовая работа [35,4 K], добавлен 20.11.2013

  • Охрана поверхностных вод от загрязнения. Современное состояние качества воды в водных объектах. Источники и возможные пути загрязнения поверхностных и подземных вод. Требования к качеству воды. Самоочищение природных вод. Охрана воды от загрязнения.

    реферат [27,5 K], добавлен 18.12.2009

  • Применение методов биоиндикации и биотестирования с целью мониторинга окружающей среды. Использование простейших гетеротрофов, получаемых в культуре сенного настоя, для оценки токсичности загрязненной нефтепродуктами воды. Построение сукцессионного ряда.

    дипломная работа [6,7 M], добавлен 06.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.