Защита атмосферы от воздействий

Источники загрязнения и средства защиты атмосферы. Определение предельно допустимых выбросов примеси от расчетного источника. Применение батарейных циклонов для очистки больших масс газов. Эксплуатационные характеристики и классификация фильтров.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 04.10.2016
Размер файла 395,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

ЗАЩИТА АТМОСФЕРЫ ОТ ВОЗДЕЙСТВИЙ

Содержание

1. Источники загрязнения атмосферы

2. Требования к выбросам в атмосферу

3. Оборудование для очистки выбросов

3.1 Аппараты сухой очистки

3.2 Электрическая очистка

3.3 Фильтры тонкой очистки

3.4 Аппараты мокрой очистки газов

3.5 Туманоуловители

3.6 Метод абсорбции

3.7 Метод адсорбции

3.8 Метод термической нейтрализации

Заключение

Список литературы

1. Источники загрязнения атмосферы

Существует два вида загрязнений атмосферы: естественное и искусственное, каждый обусловлен соответствующими источниками (рис. 1). Источники загрязнения атмосферы различаются также по мощности выброса (мощные, крупные, мелкие), высоте выброса (низкие, средней высоты и высокие), температуре выходящих газов (нагретые и холодные).

Для подготовки исходных данных для расчета предельно допустимых выбросов (ПДВ) предприятия для каждого источника по каждому показателю требуется классификация не только источников загрязнений, но также классификация и характеристика выбросов, степень изученности и учет в расчетах. При этом учитывают организованные, неорганизованные и распределенные выбросы (рис. 1).

Рис. 1. Источники загрязнения атмосферы (по Г. В. Стадницкому и А. И. Родионову, 1988)

Организованные выбросы обычно производятся из стационарных источников. Их характеризует большая высота труб (50-100 м), а также значительные концентрации и объемы. Неорганизованные выбросы проявляются в виде поступлений токсикантов в атмосферу из производственных помещений предприятий. Концентрация и объем загрязняющих веществ меньше, высота выброса небольшая. Распределенные выбросы связаны в основном с транспортом, а также с обработкой сельскохозяйственных территорий ядохимикатами.

Наиболее распространенные выбросы промышленности - зола, пыль, оксид цинка, сернистый ангидрид, сероводород, меркаптан, альдегиды, углеводороды, смолы, оксид и диоксид азота, аммиак, озон, оксид и диоксид углерода, фтористый водород, хлористый водород, кремнефтористый натрий, радиоактивные газы и аэрозоли (по Г.В. Новиковой и А. Я. Дударевой, 1978).

Рис. 2. Классификация источников, выбросов и степени изученности загрязняющих веществ

Масса загрязняющих веществ в год, поступающих в атмосферу из естественных и искусственных источников, представлена в таблице 3.

Таблица 3. Масса загрязняющих веществ, выбрасываемых в атмосферу (тонн/год, по данным ЮНЕСКО, 1996)

Вещество

Естественные

поступления

Антропогенные выбросы

Оксид углерода (II) - СО

-

3,5·108

Оксид серы (IV) - SO2

1,4·108

1,45·108

Оксиды азота (II) -NO

1,4·109

(1,50-2,00)·107

Аэрозоль (твердые вещества)

(7,70-22,00)·1010

(9,60-26,00)·1010

Фреоны, полихлорвиниловые вещества

-

2,00·106

Озон - О3

2,00·109

-

Углеводороды

1,00·109

1,00·106

Свинец - Pb

-

2,00·105

Ртуть - Hg

-

5,00·103

Как свидетельствуют данные таблицы 7.3, антропогенное (искусствен-ное) загрязнение атмосферы преобладает над естественным, при этом 37% загрязнений дает автотранспорт, 32% - промышленность и 31% - прочие источники. защита атмосфера примесь фильтр

Сравнительно недавно появились данные по загрязнению атмосферы над территорией России в сравнении с глобальными выбросами и отдельными западноевропейскими странами (Данилов-Данильян В.И. и др., 1994). Так, в 1990 году в мире в атмосферу выбрасывалось более 400 млн. тонн четырех главных загрязнителей (табл. 4).

Таблица 4 Выбросы в атмосферу главных загрязнителей в мире (1990 г.) и в России (1991 г.)

Вещества, млн тонн

Диоксид серы

Оксиды азота

Оксиды углерода

Твердые частицы

Всего

Глобальный выброс

99

68

177

57

401

Россия (только стационарные

источники)

9,2

3

7,6

6,4

26,2

Россия (с учетом всех источников), %

12

5,8

5,6

12,2

13,2

Как видно из таблицы, Россия не является основным поставщиком этих веществ в атмосферу. По сравнению с другими странами ее вклад составляет: по диоксиду серы - 12% (США - 21%), оксидам азота - около 6% (США - 20%) и т. д.

В России составлен ранжированный перечень городов (на 1991 г.) по количеству выбросов загрязняющих веществ в атмосферу от стационарных источников. Список возглавляет Норильск, где ежегодно промышленные предприятия выбрасывают в атмосферу около 2,5 млн. тонн вредных веществ, что составляет 8% всех выбросов в России. Далее закономерно следуют наиболее крупные промышленные центры (Магнитогорск, Череповец, Нижний Тагил и т.д.). Одиннадцатое место по выбросам занимает Москва (около 800 тыс. тонн). Однако в последние годы во многих городах России несколько улучшились экологические показатели, в основном за счет спада производства и простоев предприятий. Контроль за загрязнением атмосферы ведется в 334 городах и охватывает все города с населением более 100 тыс. человек и с крупными промышленными предприятиями.

2. Требования к выбросам в атмосферу

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Во всех случаях должно соблюдаться условие

C+Cф? ПДК

по каждому вредному веществу (Сф - фоновая концентрация). Соблюдение этих требований достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе.

На практике реализуются следующие варианты защиты атмосферного воздуха:

- вывод токсичных веществ из помещений общеобменной вентиляцией;

- локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху (рис. 5 а);

- локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере (рис. 5 б);

- очистка технологических газовых выбросов в специальных аппаратах, выброс и рассеивание в атмосфере; в ряде случаев перед выбросом отходящие газы разбавляют атмосферным воздухом (рис. 5 в);

- очистка отработавших газов энергоустановок, например двигателей внутреннего сгорания в специальных агрегатах, и выброс в атмосферу или производственную зону (рудники, карьеры, складские помещения и т. п.) (рис. 5 г).

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

В соответствии с требованиями ГОСТ 17.2.3.02-78 для каждого проектируемого и действующего промышленного предприятия устанавливается ПДВ вредных веществ в атмосферу при условии, что выбросы вредных веществ от данного источника в совокупности с другими источниками (с учетом перспективы их развития) не создадут приземную концентрацию, превышающую ПДК.

Рис. 5 Схемы использования средств защиты атмосферы:

1-источник токсичных веществ; 2-устройство для локализации токсичных веществ (местный отсос); 3-аппарат очистки; 4-устройство для забора воздуха из атмосферы; 5-труба для рассеивания выбросов; 6 -- устройство (воздуходувка) для подачи воздуха на разбавление выбросов

Рассеивание выбросов в атмосфере

Технологические газы и вентиляционный воздух после выхода из труб или вентиляционных устройств, подчиняется законам турбулентной диффузии. На рис. 6 показано распределение концентрации вредных веществ в атмосфере под факелом организованного высокого источника выброса. По мере удаления от трубы в направлении распространения промышленных выбросов можно условно выделить три зоны загрязнения атмосферы: переброса факела выбросов Б, характеризующаяся относительно невысоким содержанием вредных веществ в приземном слое атмосферы; задымления В с максимальным содержанием вредных веществ и постепенного снижения уровня загрязнения Г. Зона задымления наиболее опасна для населения и должна быть исключена из селитебной застройки. Размеры этой зоны в зависимости от метеорологических условий находятся в пределах 10...49 высот трубы.

Максимальная концентрация примесей в приземной зоне прямо пропорциональна производительности источника и обратно пропорциональна квадрату его высоты над землей.

Подъем горячих струй почти полностью обусловлен подъемной силой газов, имеющих более высокую температуру, чем окружающий воздух. Повышение температуры и момента количества движения, выбрасываемых газов приводит к увеличению подъемной силы и снижению их приземной концентрации.

Распространение газообразных примесей и пылевых частиц диаметром менее 10 мкм, имеющих незначительную скорость осаждения, подчиняется общим закономерностям. Для более крупных частиц эта закономерность нарушается, так как скорость их осаждения под действием силы тяжести возрастает. Поскольку при очистке от пыли крупные частицы улавливаются, как правило, легче, чем мелкие, в выбросах остаются очень мелкие частицы; их рассеивание в атмосфере рассчитывают так же, как и газовые выбросы.

Рис. 6. Распределение концентрации вредных веществ в атмосфере у земной поверхности от организованного высокого источника выбросов: А-зона неорганизованного загрязнения; Б-зона переброса факела; В-зона задымления; Г- зона постепенного снижения уровня загрязнения

В зависимости от расположения и организации выбросов источники загрязнения воздушного пространства подразделяют на затененные и незатененные, линейные и точечные. Точечные источники используют тогда, когда удаляемые загрязнения сосредоточены в одном месте. К ним относят выбросные трубы, шахты, крышные вентиляторы и другие источники. Выделяющиеся из них вредные вещества при рассеивании не накладываются одно на другое на расстоянии двух высот здания (с заветренной стороны). Линейные источники имеют значительную протяженность в направлении, перпендикулярном к ветру. Это аэрационные фонари, открытые окна, близко расположенные вытяжные шахты и крышные вентиляторы.

Незатененные, или высокие источники свободно расположены в недеформированном потоке ветра. К ним относят высокие трубы, а также точечные источники, удаляющие загрязнения на высоту, превышающую 2,5 Нзд. Затененные, или низкие источники расположены в зоне подпора или аэродинамической тени, образующейся на здании или за ним (в результате обдувания его ветром) на высоте h?2,5Нзд.

Основным документом, регламентирующим расчет рассеивания и определения приземных концентраций выбросов промышленных предприятий, является «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. ОНД-86». Эта методика позволяет решать задачи по определению ПДВ при рассеивании через одиночную незатененную трубу, при выбросе через низкую затененную трубу и при выбросе через фонарь из условия обеспечения ПДК в приземном слое воздуха.

При определении ПДВ примеси от расчетного источника необходимо учитывать ее концентрацию Сф в атмосфере, обусловленную выбросами от других источников. Для случая рассеивания нагретых выбросов через одиночную незатененную трубу

где Н - высота трубы; Q - объем расходуемой газовоздушной смеси, выбрасываемой через трубу; - разность между температурой выбрасываемой газовоздушной смеси и температурой окружающего атмосферного воздуха, равной средней температуре самого жаркого месяца в 13 ч; А - коэффициент, зависящий от температурного градиента атмосферы и определяющий условия вертикального и горизонтального рассеивания вредностей; kF - коэффициент, учитывающий скорость оседания взвешенных частиц выброса в атмосфере; т и п - безразмерные коэффициенты, учитывающие условия выхода газовоздушной смеси из устья трубы.

3. Оборудование для очистки выбросов

3.1 Аппараты сухой очистки

Широкое применение для очистки газов от частиц получили сухие пылеуловители - циклоны (рис. 7) различных типов. Газовый поток вводится в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Под действием центробежной силы частицы пыли образуют на стенке циклона пылевой слой, который вместе с частью газа попадает в бункер. Отделение частиц пыли от газа, попавшего в бункер, происходит при повороте газового потока в бункере на 180°. Освободившись от пыли, газовый поток образует вихрь и выходит из бункера, давая начало вихрю газа, покидающему циклон через выходную трубу 5. Для нормальной работы циклона необходима герметичность бункера. Если бункер негерметичен, то из-за подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.

Многие задачи по очистке газов от пыли с успехом решаются цилиндрическими (ЦН-11, ЦН-15, ЦН-24, ЦП-2) и коническими (СК-ЦН-34, СК-ЦН-34М и СДК-ЦН-33) циклонами НИИОГАЗа. Цилиндрические циклоны НИИОГАЗа предназначены для улавливания сухой пыли аспирационных систем Их рекомендуется использовать для предварительной очистки газов и устанавливать перед фильтрами или электрофильтрами.

Конические циклоны НИИОГАЗа серии СК, предназначенные для очистки газа от сажи, обладают повышенной эффективностью по сравнению с циклонами типа ЦН, что достигается за счет большего гидравлического сопротивления циклонов серии СК.

Для очистки больших масс газов применяют батарейные циклоны, состоящие из большого числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус Конические и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки у таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами.

Рис. 7 Схема циклона

3.2 Электрическая очистка

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Для этого применяют электрофильтры.

Аэрозольные частицы, поступающие в зону между коронирующим 1 и осадительным 2 электродами (рис. 8), адсорбируют на своей поверхности ионы, приобретая электрический заряд, и получают тем самым ускорение, направленное в сторону электрода с зарядом противоположного знака. Процесс зарядки частиц зависит от подвижности ионов, траектории движения и времени пребывания частиц в зоне коронирующего заряда. Учитывая, что в воздухе и дымовых газах подвижность отрицательных ионов выше, чем положительных, электрофильтры обычно делают с короной отрицательной полярности. Время зарядки аэрозольных частиц невелико и измеряется долями секунды. Движение заряженных частиц к осадительному электроду происходит под действием аэродинамических сил и силы взаимодействия электрического поля и заряда частицы.

Большое значение для процесса осаждения пыли на электродах имеет электрическое сопротивление слоев пыли. По величине электрического сопротивления различают:

Рис. 9. Схема электрофильтра

1) пыли с малым удельным электрическим сопротивлением (< 104 Ом?см), которые при соприкосновении с электродом мгновенно теряют свой заряд и приобретают заряд, соответствующий знаку электрода, после чего между электродом и частицей возникает сила отталкивания, стремящаяся вернуть частицу в газовый поток; противодействует этой силе только сила адгезии, если она оказывается недостаточной, то резко снижается эффективность процесса очистки;

2) пыли с удельным электрическим сопротивлением от 104 до 1010 Ом-см; они хорошо осаждаются на электродах и легко удаляются с них при встряхивании;

3) пыли с удельным электрическим сопротивлением более 1010Ом-см; они труднее всего улавливаются в электрофильтрах, так как на электродах частицы разряжаются медленно, что в значительной степени препятствует осаждению новых частиц.

В реальных условиях снижение удельного электрического сопротивления пыли можно осуществить увлажнением запыленного газа.

Эффективность очистки запыленного газа в электрофильтрах высока и достигает 0.99.

Конструкцию электрофильтров определяют состав и свойства очищаемых газов, концентрация и свойства взвешенных частиц, параметры газового потока, требуемая эффективность очистки и т. д. В промышленности используют несколько типовых конструкций сухих и мокрых электрофильтров (С и М), применяемых для очистки технологических выбросов (рис. 10).

Эксплуатационные характеристики электрофильтров весьма чувствительны к изменению равномерности поля скоростей на входе в фильтр. Для получения высокой эффективности очистки необходимо обеспечить равномерный подвод газа к электрофильтру путем правильной организации подводящего газового тракта и применения распределительных решеток во входной части электрофильтра.

Рис. 10. Электрофильтр типа С (сухой) для улавливания смол:

1 - распределительные решетки; 2 - осадительные и коронирующие электроды; 3- корпус; 4 - смолоулавливающий зонт.

3.3 Фильтры тонкой очистки

Для тонкой очистки газов от частиц и капельной жидкости применяют различные фильтры. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них дисперсных сред. Принципиальная схема процесса фильтрования в пористой перегородке показана на рис. 11.

Рис. 11. Схема фильтра

Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтроэлементом) 2 на две полости. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки и задерживаются в порах, образуя на поверхности перегородки слой 3. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки фильтра и перепад давления на фильтроэлементе. Осаждение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузионного, инерционного и гравитационного.

Классификация фильтров основана на типе фильтровой перегородки, конструкции фильтра и его назначении, тонкости очистки и др.

По типу перегородки фильтры бывают: с зернистыми слоями (неподвижные, свободно насыпанные зернистые материалы, псевдо-ожиженные слои); с гибкими пористыми перегородками (ткани, войлоки, волокнистые маты, губчатая резина, пенополиуретан и др.); с полужесткими пористыми перегородками (вязаные и тканые сетки, прессованные спирали и стружка и др.); с жесткими пористыми перегородками (пористая керамика, пористые металлы и др.

3.4 Аппараты мокрой очистки газов

Аппараты мокрой очистки газов- мокрые пылеуловители - имеют широкое распространение, так как характеризуются высокой эффективностью очистки от мелкодисперсных пылей с du ? 0,3 мкм, а также возможностью очистки от пыли нагретых и взрывоопасных газов. Однако мокрые пылеуловители обладают рядом недостатков, ограничивающих область их применения: образование в процессе очистки шлама, что требует специальных систем для его переработки; вынос влаги в атмосферу и образование отложений в отводящих газоходах при охлаждении газов до температуры точки росы; необходимость создания оборотных систем подачи воды в пылеуловитель.

Аппараты мокрой очистки работают по принципу осаждения частиц пыли на поверхность либо капель, либо пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения.

Среди аппаратов мокрой очистки с осаждением частиц пыли на поверхность капель на практике более применимы скрубберы Вентури (рис. 12).

Рис. 12. Скруббер Вентури

Основная часть скруббера - сопло Вентури 2. В его конфузорную часть подводится запыленный поток газа и через центробежные форсунки 1 жидкость на орошение. В конфузорной части сопла происходит разгон газа от входной скорости (Wф = 15...20 м/с) до скорости в узком сечении сопла 30...200 м/с и более. Процесс осаждения пыли на капли жидкости обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц жидкости и пыли в конфузорной части сопла. Эффективность очистки в значительной степени зависит от равномерности распределения жидкости по сечению конфузорной части сопла. В диффузорной части сопла поток тормозится до скорости 15...20 м/с и подается в каплеуловитель 3. Каплеуловитель обычно выполняют в виде прямоточного циклона.

Скрубберы Вентури обеспечивают высокую эффективность очистки (до 0.99) аэрозолей при начальной концентрации примесей до 100 г/м3. Скрубберы Вентури широко используют в системах очистки газов от туманов. Эффективность очистки воздуха от тумана со средним размером частиц более 0,3мкм достигает 0,999, что вполне сравнимо с высокоэффективными фильтрами.

К мокрым пылеуловителям относят барботажно-пенные пылеуловители с провальной (рис. 13, а) и переливной решетками (рис. 13, б). В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от пыли путем осаждения частиц на внутренней поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе 1 аппарата до 2...2,5 м/с сопровождается возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Современные барботажно-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли ~ 0,95...0,96 при удельных расходах воды 0,4...0,5 л/м. Практика эксплуатации этих аппаратов показывает, что они весьма чувствительны к неравномерности подачи газа под провальные решетки. Неравномерная поодача газа приводит к местному сдуву пленки жидкости с решетки. Кроме того, решетки аппаратов склонны к засорению.

Рис. 13. Схема барботажно-пенного пылеуловителя с провальной (а) и переливной (б) решетками.

3.5 Туманоуловители

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры -туманоуловители.

Принцип их действия основан на осаждении капель на поверхности пор с последующим отеканием жидкости по волокнам в нижнюю часть туманоуловителя. Осаждение капель жидкости происходит под действием броуновской диффузии или инерционного механизма отделения частиц загрязнителя от газовой фазы на фильтроэлементах в зависимости от скорости фильтрации Wф. Туманоуловители делят на низкоскоростные (Wф?0,15м/с), в которых преобладает механизм диффузного осаждения капель, и высокоскоростные (Wф = 2...2,5 м/с), где осаждение происходит главным образом под воздействием инерционных сил.

Фильтрующий элемент низкоскоростного туманоуловителя показан на рис. 14. В пространство между двумя цилиндрами 3, изготовленными из сеток помещают волокнистый фильтроэлемент 4, который крепится с помощью фланца 2 к корпусу туманоуловителя 1. Жидкость осевшая на фильтроэлементе; стекает на нижний фланец 5 и через трубку гидрозатвора 6 и стакан 7 сливается из фильтра. Волокнистые низкоскоростные туманоуловители обеспечивают высокую эффективность очистки газа (до 0,999) от частиц размером менее 3 мкм и полностью улавливают частицы большего размера. Волокнистые слои формируются из стекловолокна диаметром 7...40 мкм. Толщина слоя составляет 5...15 см, гидравлическое сопротивление сухих фильтроэлементов -200...1000Па.

Высокоскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки, равную 0,9...0,98 при Др = 1500...2000 Па, от тумана с частицами менее 3 мкм. В качестве фильтрующей набивки в таких туманоуловителях используют войлоки из полипропиленовых волокон, которые успешно работают в среде разбавленных и концентрированных кислот и щелочей.

Рис.14. Схема фильтрующего элемента низкоскоростного туманоуловителя

В тех случаях, когда диаметры капель тумана составляют 0,6...0,7 мкм и менее, для достижения приемлемой эффективности очистки приходится увеличивать скорость фильтрации до 4,5...5 м/с, что приводит к заметному брызгоуносу с выходной стороны фильтроэлемента (брыз-гоунос обычно возникает при скоростях 1,7...2,5 м/с). Значительно уменьшить брызгоунос можно применением брызгоуловителей в конструкции туманоуловителя. Для улавливания жидких частиц размером более 5 мкм применяют брызгоуловители из пакетов сеток, где захват частиц жидкости происходит за счет эффектов касания и инерционных сил. Скорость фильтрации в брызгоуловителях не должна превышать 6 м/с.

На рис. 15 показана схема высокоскоростного волокнистого туманоуловителя с цилиндрическим фильтрующим элементом 3, который представляет собой перфорированный барабан с глухой крышкой. В барабане установлен грубоволокнистый войлок 2 толщиной 3...5 мм. Вокруг барабана по его внешней стороне расположен брызгоуловитель, 1 представляющий собой набор перфорированных плоских и гофрированных слоев винипластовых лент. Брызгоуловитель и фильтроэлемент нижней частью установлены в слой жидкости.

Рис. 15. Схема высокоскоростного туманоуловителя

Для очистки аспирационного воздуха ванн хромирования, содержащего туман и брызги хромовой и серной кислот, применяют волокнистые фильтры типа ФВГ-Т. В корпусе размещена кассета с фильтрующим материалом-иглопробивным войлоком, состоящим из волокон диаметром 70 мкм, толщиной слоя 4. .5 мм.

3.6 Метод абсорбции

Метод абсорбции - очистка газовых выбросов от газов и паров - основан на поглощении последних жидкостью. Для этого используют абсорберы. Решающим условием для применения метода абсорбции является растворимость паров или газов в абсорбенте. Так, для удаления из технологических выбросов аммиака, хлоро- или фтороводорода целесообразно применять в качестве абсорбента воду. Для высокоэффективного протекания процесса абсорбции необходимы специальные конструктивные решения. Они реализуются в виде насадочных башен (рис. 16), форсуночных барботажно-пенных и других скрубберов.

Рис. 16. Схема насадочной башни: 1 - насадка; 2 - разбрызгиватель

Работа хемосорберов основана на поглощении газов и паров жидкими или твердыми поглотителями с образованием малорастворимых или малолетучих химических соединений. Основными аппаратами для реализации процесса являются насадочные башни, барботажно-пенные аппараты, скрубберы Вентури и т. п. Хемосорбция - один из распространенных методов очистки отходящих газов от оксидов азота и паров кислот. Эффективность очистки от оксидов азота составляет 0,17...0,86 и от паров кислот - 0,95.

3.7 Метод адсорбции

Метод адсорбции основан на способности некоторых тонкодисперсных твердых тел селективно извлекать и концентрировать на своей поверхности отдельные компоненты газовой смеси. Для этого метода используют адсорбенты. В качестве адсорбентов, или поглотителей, применяют вещества, имеющие большую площадь поверхности на единицу массы. Так, удельная поверхность активированных углей достигает 105...106 м2/кг. Их применяют для очистки газов от органических паров, удаления неприятных запахов и газообразных примесей, содержащихся в незначительных количествах в промышленных выбросах, а также летучих растворителей и целого ряда других газов. В качестве адсорбентов применяют также простые и комплексные оксиды (активированный глинозем, силикагель, активированный оксид алюминия, синтетические цеолиты или молекулярные сита), которые обладают большей селективной способностью, чем активированные угли.

Конструктивно адсорберы выполняют в виде емкостей, заполненных пористым адсорбентом, через который фильтруется поток очищаемого газа. Адсорберы применяют для очистки воздуха от паров растворителей, эфира, ацетона, различных углеводородов и т. п.

Для очистки газов от паров растворителей с концентрацией более 0,3 г/м3 НИИОГАЗом разработан типовой ряд адсорберов АВКФ с производительностью по очищаемому газу 10, 20, 40 и 80 тыс. м3.

3.8 Метод термической нейтрализации

Термическая нейтрализация основана на способности горючих газов и паров, входящих в состав вентиляционных или технологических выбросов, сгорать с образованием менее токсичных веществ. Для этого метода используют нейтрализаторы. Различают три схемы термической нейтрализации: прямое сжигание; термическое окисление; каталитическое дожигание.

Прямое сжигание используют в тех случаях, когда очищаемые газы обладают значительной энергией, достаточной для поддержания горения. Примером такого процесса является факельное сжигание горючих отходов. Так нейтрализуют циановодород в вертикально направленных факелах на нефтехимических заводах. Разработаны схемы камерного сжигания отходов. Такие дожигатели можно использовать для нейтрализации паров токсичных горючих или окислителей при их сдувах из емкостей.

Термическое окисление находит применение в тех случаях, когда очищаемые газы имеют высокую температуру, но не содержат достаточно кислорода или когда концентрация горючих веществ незначительна и недостаточна для поддержания пламени.

В первом случае процесс термического окисления проводят в камере с подачей свежего воздуха (дожигание оксида углерода и углеводородов), а во втором - при подаче дополнительно природного газа. Схема устройства для термического окисления выбросов показана на рис. 17.

Рис. 17. Схема установки для термического окисления: 1- входной патрубок; 2-теплообменник; 3 - горелка; 4 - камера; 5 - выходной патрубок

Каталитическое дожигание используют для превращения токсичных компонентов, содержащихся в отходящих газах, в нетоксичные или менее токсичные путем их контакта с катализаторами. Для реализации процесса необходимо кроме катализаторов поддержание таких параметров газового потока, как температура и скорость газов.

В качестве катализаторов используют платину, палладий, медь и др. Температуры начала каталитических реакций газов и паров изменяются в широких пределах-200...400°С.

Заключение

Охрана природы - задача нашего века, проблема, ставшая социальной.

Однако воздействие человека на окружающую среду приняло угрожающие масштабы. Чтобы в корне улучшить положение, понадобятся целенаправленные и продуманные действия.

Загрязнение окружающей среды и нарушения экологических связей в экосистемах стали глобальными проблемами. И если человечество будет продолжать идти по нынешнему пути развития, то его гибель, как считают ведущие экологи мира, через два - три поколения неизбежна.

Все жители планеты сегодня должны сознавать, что в мире, где окружающая среда ухудшается с каждым днем, невозможны здоровое общество и долголетие. Конечно, промышленное развитие не может остановиться, но оно должно пойти по иному пути. Для достижения устойчивого развития защита окружающей среды должна составлять неотъемлемую часть процесса развития.

Человечество должно изменить многое в своей деловой активности и образе жизни, в противном случае ему предстоят тяжелые испытания, связанные с резким ухудшением окружающей среды.

Список литературы

1. Донская, С.А. Основы экологии и экономика природопользования/С.А. Донская, Н.П. Донской. - Мн.: Технопринт, 2000 г. с 71 - 77

2. Болбас М.М. Основы промышленной экологии. Москва: Высшая школа , 1993.

3. Владимиров А.М. и др. Охрана окружающей среды. Санкт-Петербург: Гидрометеоиздат 1991.

4. Данилов-Данильян В.И. «Экология, охрана природы и экологическая безопасность» М.: МНЭПУ, 1997 г.

5. Оборудование для очистки выбросов. Режим доступа: http://cozyhomestead.ru

6. Требования к выбросам в атмосферу. Режим доступа: http://cozyhomestead.ru

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика предприятия как источника загрязнения атмосферы. Проведение расчетов и определение нормативов предельно допустимых выбросов. Мероприятия по регулированию выбросов при неблагоприятных метеорологических условиях. Контроль за их соблюдением.

    курсовая работа [99,5 K], добавлен 12.11.2010

  • Строение и состав атмосферы. Загрязнение атмосферы. Качество атмосферы и особенности ее загрязнения. Основные химические примеси, загрязняющие атмосферу. Методы и средства защиты атмосферы. Классификация систем очистки воздуха и их параметры.

    реферат [362,1 K], добавлен 09.11.2006

  • Основные загрязнители атмосферного воздуха и глобальные последствия загрязнения атмосферы. Естественные и антропогенные источники загрязнения. Факторы самоочищения атмосферы и методы очистки воздуха. Классификация типов выбросов и их источников.

    презентация [468,7 K], добавлен 27.11.2011

  • Расчёт предельно допустимых выбросов в атмосферу от горячих источников. Определение платы за выброс. Расчёт приземных концентраций загрязняющих веществ при выбросе газовоздушной смеси от одиночного источника. Границы санитарно-защитной зоны предприятия.

    курсовая работа [86,6 K], добавлен 12.01.2015

  • Характеристика асфальтобетонного завода в г. Серпухов как источника загрязнения атмосферы. Проведение расчетов и подготовка предложений по установлению нормативов предельно допустимых выбросов. Основные источники водоснабжения и приемники сточных вод.

    курсовая работа [677,9 K], добавлен 28.03.2015

  • Характеристика технологического оборудования котельной как источника загрязнения атмосферы. Расчет параметров выбросов загрязняющих веществ в атмосферу. Использование критериев качества атмосферного воздуха при нормировании выбросов вредных веществ.

    курсовая работа [290,1 K], добавлен 18.02.2013

  • Природные и искусственные источники загрязнения атмосферы Земли. Последствия попадания в атмосферу газов, пыли, серы, свинца и других веществ для человеческого организма. Контроль качества окружающей среды и средства защиты организма от загрязнений.

    презентация [1,3 M], добавлен 22.11.2014

  • Инвентаризация источников выбросов, определение доминирующих вредностей. Расчёт рассеивания вредных веществ и установление предельно допустимых выбросов. Определение размера санитарно-защитной зоны и экологического ущерба от загрязнения атмосферы.

    курсовая работа [2,7 M], добавлен 27.08.2012

  • Воздействие железнодорожного транспорта на экосистемы. Характеристика предприятия как источника загрязнения атмосферы. Проведение расчетов фактических и предельно допустимых выбросов в атмосферу. Выбросы при работе котельной. Расчет санитарной зоны.

    курсовая работа [52,4 K], добавлен 06.12.2014

  • Ситуация в России по загрязняющему воздействию промышленных предприятий. Характеристика некоторых аэрополютантов. Сфера экологического нормирования и стандартизации. Характеристика Астраханского Облрыболовопотребсоюза как источника загрязнения атмосферы.

    реферат [36,2 K], добавлен 11.03.2011

  • Анализ общей экологической ситуации Москвы. Классификация источников и уровня загрязнения атмосферы. Воздействие антропогенной трансформации атмосферы на здоровье жителей. Разработка методов и средств инженерно-экологической защиты атмосферы г. Москвы.

    дипломная работа [1,7 M], добавлен 23.11.2009

  • Загрязнение атмосферы в результате антропогенной деятельности, изменение химического состава атмосферного воздуха. Природное загрязнение атмосферы. Классификация загрязнения атмосферы. Вторичные и первичные промышленные выбросы, источники загрязнения.

    реферат [24,1 K], добавлен 05.12.2010

  • Расчет выбросов загрязняющих веществ от механического участка, сушильно-помольных, смесительных агрегатов асфальтобетонных заводов. Оценка уровней загрязнения атмосферы в сравнении с предельно допустимой концентрацией веществ. Устройство циклона "СИОТ-М".

    курсовая работа [370,2 K], добавлен 27.02.2015

  • Доля железнодорожного транспорта в загрязнении окружающей природной среды. Количественная и качественная оценка предельно допустимых выбросов загрязняющих веществ в атмосферный воздух. Расчет загрязнения атмосферы источниками выбросов предприятия.

    курсовая работа [1,6 M], добавлен 25.05.2014

  • Проектирования аппаратурно-технологической схемы защиты атмосферы от промышленных выбросов. Экологическое обоснование принимаемых технологических решений. Защита природной среды от антропогенного воздействия. Количественная характеристика выбросов.

    дипломная работа [1,5 M], добавлен 17.04.2016

  • Атмосферно-вакуумные трубчатые установки. Технологические печи и принципы их работы. Характеристика источника выделения загрязняющих веществ. Установка АВТ НПЗ как источник загрязнения атмосферы. Пути снижения выбросов в атмосферу от данных печей.

    курсовая работа [825,5 K], добавлен 10.05.2012

  • Атмосфера, как часть природной среды. Естественные и искусственны источники загрязнения атмосферы. Последствия загрязнения атмосферы. Меры по охране атмосферы от загрязнения.

    реферат [27,5 K], добавлен 22.04.2003

  • Основные источники загрязнения: промышленные предприятия; автомобильный транспорт; энергетика. Природные и техногенные источники загрязнения воды, почвы. Главные источники загрязнения атмосферы. Предельно допустимые концентрации вредных веществ в воздухе.

    презентация [1,8 M], добавлен 24.02.2016

  • Воздействие на атмосферу загрязняющих веществ, возникающих при сжигании каменного угля. Методы очистки отходящих газов. Применение электрофильтров при очистке дымовых выбросов. Расчет предельно допустимых выбросов для предприятия теплоэнергетики.

    курсовая работа [1,7 M], добавлен 13.01.2015

  • Оценка загрязнения воздуха и его влияния на человека. Нормативы ПДК. Нормативы допустимых выбросов. Основные загрязнители атмосферы. Меры борьбы с загрязнением. Принципы очистки пылегазовых выбросов. Уточнение санитарно–защитной зоны согласно розы ветров.

    курсовая работа [32,3 K], добавлен 09.11.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.