Многообразие экологических факторов среды

Главные факторы климата. Биота и климат как экологический фактор. Химическая и физическая теплорегуляция. Прямое и косвенное антропогенное воздействие на атмосферу, гидросферу, литосферу. Экологические последствия воздействия человека на растительный мир.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 27.12.2016
Размер файла 76,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Динамика количества и набора различных факторов четко выраженная в течении года, что обусловлено сезонностью многих производственных процессов. Выявление динамики антропогенного фактора проводится для определенной территории за выбранное время (например, за год, сезон, день). Это имеет очень большое значение для сравнения их с динамикой природных факторов, что позволяет определить степень влияния на природу. Ветровая эрозия почв наиболее опасна летом, а водная эрозия - весной при таянии снега, когда еще нет растительности; сточные воды одного и того же объема, и состава больше изменяют режим реки, чем весной, вследствие малого объема зимнего стока.

По таким важным показателем, как способность накапливаться в природе, антропогенные факторы делятся на:

- те, которые существуют только в момент производства, поэтому по своей природе не способны к накоплению (свет, вибрация и т.д.);

- те, которые способны сохраняться в природе длительное время после их производства, что приводит к их накоплению - аккумуляции - и усиление влияния на природу

Ко второй группе можно отнести искусственный рельеф, водохранилища, химические и радиоактивные вещества и т.п. Эти факторы являются очень опасными, так как со временем растут их концентрации и ареалы, соответственно и интенсивность воздействия на элементы природы. Некоторые радиоактивные вещества, полученные человеком из недр Земли и введены в активный круговорот веществ, могут проявлять радиоактивность в течение сотен и тысяч лет, осуществляя при этом негативное влияние на природу. Способность к аккумуляции резко усиливает роль антропогенных факторов в развитии природы, а в отдельных случаях даже является решающей в определении возможности существования отдельных видов и организмов. В процессе миграции некоторые факторы могут переходить из одной природной среды в другую и действовать во всех средах, которые имеются в определенном регионе. Так, радиоактивные вещества в случае аварии на атомной электростанции распространяются в атмосфере, а также загрязняют почвы, проникают в грунтовые воды и оседают в водоемах. А твердые выбросы промышленных предприятий из атмосферы попадают на почву и в водоемы. Эта особенность присуща многим антропогенным факторам из подгруппы факторов-веществ. Некоторые стойкие химические факторы в процессе круговорота веществ выносятся из водоемов с помощью организмов на сушу, а затем из нее вновь смываются в водоемы - так происходит длительная циркуляция и действие фактора в ряде природной среды. Действие антропогенного фактора на живые организмы зависит не только от его качества, но и от количества в расчете на единицу пространства, называют данное действие дозой фактора. Доза фактора - это количественная характеристика фактора в определенном пространстве. Доза фактора выпаса будет: количество животных определенного вида на га пастбища за сутки или сезон выпаса. С дозой фактора тесно связано определение его оптимума антропогенной зависимости, дозы могут по-разному влиять на организмы или быть к ним индифферентными. Некоторые дозы фактора вызывают максимум позитивных изменений в природе и практически не вызывают отрицательных (прямых и косвенных) изменений их называют оптимальными.

Очень важно различать антропогенные факторы за теми изменениями, к которым приводит или может приводить их воздействие на природу и живые организмы. Поэтому их разделяют также по устойчивости изменений в природе:

- антропогенные факторы, вызывающие временные обратимые изменения, - любое временное воздействие на природу, не приводит к полному уничтожению видов; загрязнение воды или воздуха неустойчивыми химическими веществами и т.д.;

- антропогенные факторы, вызывающие относительно необратимые изменения, - отдельные случаи интродукции новых видов, создание небольших водохранилищ, уничтожение некоторых водоемов и др.;

- антропогенные факторы, вызывающие абсолютно необратимые изменения в природе, - сплошное уничтожение каких-то видов растений и животных, полное изъятие из месторождений полезных ископаемых и т.д.

Действие некоторых антропогенных факторов может вызвать так называемый антропогенный стресс экосистем, который бывает двух разновидностей:

- острый стресс, для которого характерно внезапное начало, быстрый подъем интенсивности и небольшая продолжительность нарушений компонентов экосистем;

- хронический стресс, который характеризуется нарушениями незначительной интенсивности, но они продолжаются достаточно долго или часто повторяющиеся

Природные экосистемы обладают способностью противостоять острым стрессам или восстанавливаться после него. Потенциальные стрессоры содержат, например, промышленные отходы. Особенно опасными среди них есть те, в состав которых входят производимые человеком новые химические вещества, к которым компоненты экосистемы еще не имеют приспособлений. Хронические же действия этих факторов может привести к существенным изменениям в структуре и функциях организмов в процессе акклиматизации и генетической адаптации.

Все разнообразие форм загрязнения человеком природной среды можно свести к следующим основным его видам:

Механическое загрязнение - опыление атмосферы, наличие твердых частиц в воде и почве, а также в космическом пространстве

Физическое загрязнение - радиоволны, вибрация, тепло-и радиоактивность и т.д.

Химическое загрязнение- газообразными и жидкими химическими соединениями, и элементами, а также их твердыми фракциями

Биологическое загрязнение-охватывает возбудителей инфекционных заболеваний, вредителей, опасных конкурентов, некоторых хищников

Радиационное загрязнение - превышение естественного уровня содержания в среде радиоактивных веществ

Действие антропогенных факторов на компоненты экосистем не всегда отрицательная. Положительным будет такое антропогенное воздействие, которое вызывает изменения в природе, являясь благоприятными для человека при имеющемся характерном взаимодействии общества с природой, но при этом для отдельных элементов природы он может быть и отрицательным. Например, уничтожение вредных организмов является позитивным для человека, но одновременно вредным для этих организмов, создание водохранилищ является полезным для человека, но вредным для прилегающих почв

Антропогенные факторы различаются по тем результатам в среде, к которым приводит или может привести их действие. Поэтому по характеру последействия влияния выделяют следующие возможные группы последствий в природе:

- разрушение или полное уничтожение отдельных элементов природы;

- изменение свойств этих элементов (например, резкое уменьшение поступления солнечных лучей на Землю вследствие запыленности атмосферы, что приводит к изменениям климата и ухудшает условия осуществления Фотосинтезу растениями)

- увеличение тех, что уже есть, и создание новых элементов природы (например, увеличение и создание новых лесополос, создание водохранилищ и т.п.);

- перемещение в пространстве (с транспортными средствами перемещается многие виды растений и животных, в том числе болезнетворных организмов)

При изучении последствий действия антропогенного фактора следует учитывать тот факт, что эти последствия могут проявляться не только в наше время, но и в будущем. Так, последствия интродукции человеком новых видов в экосистемы проявляются лишь через десятки лет обычные химические загрязнения часто вызывают серьезные нарушения жизненных функций только при их накоплении в живых организмах, то есть через некоторое время после непосредственного действия фактора. Современная природа, когда многие ее элементы являются прямыми или опосредованными результатами деятельности человека, очень мала похожа на бывшую, в результате внесенных человеком изменений. Все эти изменения одновременно - антропогенные факторы, которые можно считать элементами современной природы. Однако существует ряд антропогенных факторов, которые нельзя назвать элементами природы, потому что они принадлежат исключительно к деятельности общества, например, влияние транспортных средств, вырубка деревьев и др. Вместе водохранилища, искусственные леса, рельеф и другие творения человека следует считать антропогенными элементами природы, которые одновременно являются вторичными антропогенными факторами.

Следует подчеркнуть, что на любое воздействие природных абиотических и биотических факторов у живых организмов выработанных в процессе эволюции, определенные приспособительные (адаптивные) свойства, тогда как большинство антропогенных факторов, которые действуют преимущественно внезапно (непредсказуемый влияние), подобных приспособлений у живых организмов нет. Именно об этой особенности действия антропогенных факторов на природу люди должны постоянно помнить и учитывать ее в любой деятельности, связанной с естественной средой.

Глава 3. Неоднозначность действия экологического фактора на разные функции организма

Экологические факторы среды оказывают на живые организмы различные воздействия, т. е. могут влиять как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций; как ограничители, обусловливающие невозможность существования в данных условиях; как модификаторы, вызывающие анатомические и морфологические изменения организмов; как сигналы, свидетельствующие об изменениях других факторов среды. Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей. Неоднозначность действия фактора на разные функции. Каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от 40 до 45 °С у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале. Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций. Атмосферный воздух имеет важнейшее значение для живых организмов, в первую очередь, как источник кислорода для дыхания и углекислого газа для фотосинтеза. Озоновый слой атмосферы защищает живые организмы от вредного космического излучения. Для существования наземных организмов особую важность имеют физические (плотность) и химические (газовый состав) особенности воздушной среды. Газовый состав воздуха в приземном слое довольно однороден (азот - 78,1%, кислород - 21,0%, аргон - 0,9%, углекислый газ - 0,03% по объему). Потребность в кислороде считается фундаментальным свойством всего живого. Он поглощается через дыхательные поверхности (жабры, легкие, трахеи, поверхность тела) и в организме используется для окисления органических субстратов с выделением энергии, необходимой для обеспечения процессов метаболизма и терморегуляции. Однако жизнь зародилась в бескислородной среде и некоторые организмы и сейчас функционируют по анаэробному типу. Эволюция автотрофов способствовала повышению содержания кислорода в атмосфере, и стимулировало развитие более эффективной (с точки зрения скорости метаболизма) аэробной жизни. Образовавшийся озоновый экран обеспечил выход организмов на сушу. В ряде случаев возникает недостаток свободного кислорода или даже его отсутствие (апоксия). Дефицит кислорода (гипоксия - низкая доступность кислорода) характерен для сильно загрязненных водоемов, скоплений разлагающихся растительных остатков и др. Некоторые животные реагируют на это перестройкой вентиляции и кровообращения. Обитатели водной среды используют для дыхания кислород, поступающий в воду путем диффузии из атмосферного воздуха и за счет фотосинтетической деятельности водорослей. В насыщенной кислородом воде содержание кислорода примерно в 21 раз ниже, чем в воздухе. Растворимость кислорода в воде - 34,1 мл на 1 мл воды (при 15oС и давлении 1 атм.). Растворимость кислорода в воде повышается при понижении температуры и солености, и повышении давления. Высокое содержание углекислого газа является условием нормального протекания фотосинтеза. В природе основным источником углекислого газа является почвенное дыхание, связанное с интенсивным дыханием почвенных микроорганизмов и животных. В современных условиях дополнительным источником углекислого газа является хозяйственная деятельность человека. Азот для большинства наземных организмов представляет инертный газ, но некоторые прокариоты - азотфиксирующие бактерии и сине-зеленые водоросли используют азот для синтеза аммиака и затем аминокислот, а денитрифицирующие бактерии возвращают азот из нитратов почвы в атмосферу. Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность, поэтому обитатели наземно-воздушной среды обладают собственной опорной системой, поддерживающей тело: растения - механическими тканями, животные - твердым или гидростатическим скелетом. В качестве опоры служит и поверхность земли. Малая плотность воздуха определяет низкую сопротивляемость перемещению, что способствовало развитию полета в некоторых группах животных. К активному полету способны 75% видов всех наземных животных.

Свойства грунта и рельеф местности влияют на условия жизни наземных организмов, в первую очередь растений. Свойства земной поверхности, оказывающие воздействие на ее обитателей, объединяют названием эдафические факторы среды (от греч. эдафос - основание, почва). Среди свойств почвы, влияющих на существование наземных организмов, важнейшее значение имеют: кислотность, структура, соленость, количество зольных элементов.

Рельеф местности, или топография, влияет на горизонтальное и вертикальное распределение живых организмов. Важнейшим топографическим фактором является высота, с изменением которой меняются физические условия обитания организмов (температура, давление, концентрация газов и др.). Живые организмы находятся в значительной зависимости от погоды. Погода - состояние атмосферы в определенном месте в определенный момент или в ограниченный промежуток времени (сутки, месяц). Характеризуется метеорологическими элементами и их изменением. К метеорологическим элементам относятся: температура, давление, влажность воздуха, ветер, облачность и осадки, продолжительность солнечного сияния и т.д. Погодные условия оказывают влияние на суточную активность животных, фотосинтетическую активность растений, размножение, рост и др. Температура - одно из важнейшее средовых условий, влияющих на жизнедеятельность организмов. Температура влияет на энергетику всех жизненных процессов. Так как в основе всех реакций живого организма, зависящих от температуры, в конечном счете, лежат биохимические процессы, для них применимо правило зависимости скорости реакции от температуры - закон Вант-Гоффа, согласно которому при повышении температуры на 10'С реакция ускоряется в 2-3 раза. Температура определяет границы существования жизни, при этом нормальное функционирование белков, как основных составляющих жизни, возможно в среднем от 0 до 50oC. При этом ряд организмов за счет биохимических и физиологических адаптаций сохраняют активное существование при температуре, выходящей за указанные пределы. Среди них - сине-зеленые водоросли, которые существуют даже при +85,2oC в Северной Америке и при +77oС в горячих ключах на Камчатке. Клетки дрожжевых грибков не теряют жизнеспособности при +90oC. В латентном состоянии температурные границы существования еще более расширяются. Так, споры некоторых бактерий выдерживают в течение нескольких минут нагревание до +180oC. В лабораторных условиях семена, пыльца и споры растений, нематоды, коловратки, цисты простейших, личинки насекомых и некоторые другие организмы после обезвоживания переносили температуры, близкие к абсолютному нулю - до -271,16oC, возвращаясь затем к активной жизни. Также в обезвоженном состоянии личинки насекомых в течение нескольких минут выдерживали температуру +102-104oC, сухие мхи могли существовать при температуре +100oC, а обезвоженные тихоходки и коловратки в течение 15 минут жили при температуре +151oC. Таких экстремальные температурные условия перечисленные организмы выдерживают в состоянии анабиоза, при котором приостанавливаются все жизненные процессы.

В ходе эволюции у живых организмов выработались разнообразные приспособления, позволяющие регулировать метаболизм при изменениях температуры окружающей среды. Это достигается несколькими путями:

1. различными биохимическими и физиологическими перестройками (понижение точки замерзания растворов тела за счет биоантифризов; изменение набора, концентрации и активности ферментов и др.)

2. поддержанием температуры тела на более стабильном уровне, независимо от температуры среды, за счет высокого уровня метаболизма; тепло, вырабатываемое живыми организмами как побочный продукт биохимических реакций, может служить существенным источником повышения температуры их тела.

По отношению к температуре живые организмы делятся на несколько экологических групп. Виды, предпочитающие холод, относятся к экологической группе криофилов. Они могут сохранять активность при температуре клеток в их организме до -8-10oС. Криофилия характерна для различных наземных организмов: бактерий, грибов, лишайников, мхов, членистоногих и других организмов, обитающих в условиях низких температур: в Арктике и Антарктике, в тундре, высокогорьях. Виды, которые имеют оптимум жизнедеятельности в области высоких температур, относятся к группе термофилов. Термофилия характерна для многих групп микроорганизмов, нематод, личинок насекомых, клещей и других организмов, обитающих в аридных областях, в разлагающихся органических остатках и т.д. Хорошо известна классификация организмов на гомойотермных и пойкилотермных. Гомойотермные - организмы, поддерживающие внутреннюю температуру тела на относительно постоянном уровне, при изменении температуры окружающей среды. Пойкилотермные - организмы, у которых температура тела широко варьирует в зависимости от температуры среды. Существует также деление организмов на эндотермов и эктотермов. Эктотермные - организмы, получающие свое тепло из окружающей среды. Эндотермные - организмы, производящие большую часть собственного тепла в результате протекающего в его теле окислительного метаболизма. Все растения и подавляющее большинство животных относятся к эктотермным организмам, а настоящие эндотермные организмы - только птицы и млекопитающие. Существуют примеры, несколько нарушающие подобные классификации. Многие организмы, относимые к пойкилотермным, наделены определенной способностью к регулированию температуры тела. Например, насекомые (пчелы, шмели) перед полетом разогревают тело до 35-40oС благодаря незаметным мышечным сокращениям; у ночных бабочек перед полетом начинают дрожать крылья, что приводит к повышению температуры тела до 37-39oC. У акул и тунцов во время быстрого крейсерского плавания температура тела на 5-10oС выше, чем температура воды. В то же время некоторые птицы и млекопитающие, т.е. гомойотермные животные, при необычно низких температурах ослабляют или приостанавливают эндотермическую регуляцию температуры тела. Во время зимней спячки или оцепенения (в неблагоприятный период) у гомойотермных животных температура тела понижается. Этот особый случай гомойотермии получил название - гетеротермия, при которой животные могут значительно изменять интенсивность метаболизма и активность в зависимости от климатических условий. К гетеротермным животным относятся некоторые птицы - колибри, стрижи, и млекопитающие - сурки, суслики, ежи, летучие мыши и др. В любом случае, эктотермные организмы, в отличие от эндотермных, более зависимы от температуры внешней среды. У эктотермов, для каждого отдельного вида, после холодного угнетения нормальный обмен веществ восстанавливается при определенной температуре, которая называется температурным порогом развития. Чем больше температура среды превышает пороговую, тем интенсивнее протекает развитие и, следовательно, тем скорее завершается прохождение отдельных стадий и всего жизненного цикла организма. Устойчивость к температурным изменениям среды у наземных организмов очень различна и во многом зависит от того, в каком конкретном местообитании они существуют. Однако в целом наземные организмы значительно более эвритермны по сравнению с водными.

Температурный режим водоемов более стабилен, чем на суше, что связано с высокой теплоемкостью воды. Амплитуда годовых колебаний температуры в верхних слоях океана не более 10-15oС, в континентальных водоемах - 30-35oС. Для глубоких слоев воды характерно постоянство температуры. Нижний предел температуры воды даже в сильно соленых частях океанов (полярные воды, глубоководные слои) не опускается ниже -2oC. В связи с более устойчивым температурным режимом воды среди гидробионтов (обитателей водной среды), по сравнению с обитателями суши, чаще встречается стенотермность. Эвритермные виды встречаются в основном в мелких континентальных водоемах и на литорали морей. Понижение температуры воды вызывает у ряда пресноводных рыб спячку (карась, осетровые). Живые организмы имеют различные адаптации к температурному режиму, отражающие уровень организации, характер местообитаний и образ жизни. Растения, будучи неподвижными организмами, вынуждены существовать при тепловом режиме тех местообитаний, в которых они произрастают. Растения умеренно холодного и умеренно теплого поясов эвритермны. Они переносят в активном состоянии колебания температур до 60oC. В латентном состоянии эта амплитуда может достигать 90oС и более. Растения дождевых тропических лесов стенотермны. Они не переносят ухудшения теплового режима, и даже положительные температуры +5-+8oС для них губительны. Еще более стенотермны некоторые криофильные зеленые и диатомовые водоросли, а также цианобактерии, живущие на поверхности снегов высокогорий и арктических широт. Активная жизнь, в том числе размножение этих организмов, происходит при температуре, близкой к 0oC, когда поверхность снега оттаивает, чему способствует окраска водорослей (красная, зеленая, синяя, желтая, бурая), поглощающих солнечные лучи.

Растения отличаются очень слабыми возможностями регуляции собственной температуры. К ним относятся: биохимические, физиологические и некоторые морфологические перестройки. Тепло, образующееся в процессе метаболизма, быстро отдается растениями окружающей среде благодаря большой излучающей поверхности и трате на транспирацию. Основное значение в жизни растений имеет тепло, получаемое извне. Температура растения вследствие нагревания солнечными лучами может быть выше температуры окружающего воздуха и почвы. У многих растений пустынь в полдень перегрев листьев достигает до 10-12oС по сравнению с окружающим воздухом. У подушковидного кактуса эта разница достигает 24oС. Для высокогорных, тундровых и арктических растений характерна приземистость, подушковидные формы, прижатость листьев розеточных и полурозеточных побегов к субстрату, что является адаптациями к лучшему использованию тепла в условиях его недостатка. К основным адаптациям растений против перегрева относятся - транспирация, охлаждающее тело; отражение и рассеивание лучей густым опушением или глянцевитой поверхностью листьев; положение листьев по отношению к полуденным лучам; мелкие размеры листьев, их слабая окраска; повышение термоустойчивости протоплазмы в результате закаливания. В отличие от растений животные, обладающие мускулатурой, производят гораздо больше тепла. При сокращении мышц освобождается значительно больше тепловой энергии, чем при функционировании любых других органов и тканей. По сравнению с растениями животные обладают более разнообразными возможностями регулировать температуру тела. К основным способам температурных адаптаций у животных относятся: химическая и физическая терморегуляция, а также поведение животных. Способность к терморегуляции различна у гомойотермных и пойкилотермных животных. Последние отличаются более низким уровнем метаболизма и, следовательно, незначительной возможностью химической терморегуляции. Правда некоторые пойкилотермные животные способны поддерживать оптимальную температуру тела за счет работы мышц. У некоторых видов змей температура тела выше температуры среды на 5-7oC, за счет спазматических сокращений мускулатуры, что приводит к усилению энергетического обмена и в конечном счете к разогреванию тела этих животных. Однако у пойкилотермных животных с прекращением двигательной активности тепло перестает вырабатываться и быстро рассеивается по причине несовершенства механизмов физической терморегуляции. Основные способы регуляции температуры у пойкилотермных животных - поведенческие. К ним относятся: перемена позы, активный поиск благоприятных микроклиматических условий, смена мест обитания, различные формы поведения, направленные создание нужного микроклимата (рытье нор, сооружение гнезд и т.д.). Так, например, сложное поведение общественных насекомых, строящих гнезда, обеспечивает им надежную терморегуляцию в их жилищах в течение нескольких поколений. Рыжие лесные муравьи за счет мышечной активности и скопления в ранневесенний период при внешней температуре от 0 до 13oC поддерживают температуру в гнезде на уровне 26-30oC, что требуется для развития расплода. Когда температура в месте скопления муравьев превосходит оптимальный уровень они рассредоточиваются. Выживать при низких температурах пойкилотермным животным помогают биологические антифризы, которые понижают точку замерзания плазмы крови. У насекомых, например, при низких температурах роль антифриза играет глицерин. Содержание глицерина в тканях насекомых меняется в зависимости от сезона: зимой его концентрация возрастает, а летом падает. Так у гусениц одной из галлообразующих бабочек в середине зимы концентрация глицерина в жидкостях организма достигает 40%, что составляет 19% всего веса тела; это позволяет им переохлаждаться до -38oC.

У гомойотермных животных очень высокая способность к химической терморегуляции. Они отличаются высокой интенсивностью метаболизма и выработкой большого количества тепла. Постоянная температура тела у теплокровных поддерживается в результате усиления продукции тепла при понижении температуры окружающей среды и увеличения теплоотдачи организма при увеличении внешней температуры. Физическая терморегуляция экологически более выгодна, поскольку осуществляется не за счет дополнительной выработки тепла, а за счет сохранения его в теле животного. Этот способ терморегуляции осуществляется при помощи рефлекторного сужения и расширения кровеносных сосудов кожи, противоточного теплообмена при кровоснабжении отдельных органов, теплоизолирующих покровов (волос, перьев), испарительной теплоотдачи. У животных холодного климата теплоизолирующие свойства также выполняет слой подкожного жира (жировая клетчатка). В жизни некоторых теплокровных животных имеет большое значение спячка - состояние пониженной биологической активности в неблагоприятных условиях, в частности температурных. При этом температура тела животного снижается до уровня температуры окружающей среды. В этот период температура влияет на метаболизм гомойотермных животных таким же образом, как и на пойкилотермных. Большое значение в теплорегуляции животных имеют размеры тела. Несмотря на то, что температура тела животных в принципе не зависит от их размеров, относительная теплопродукция у мелких животных выше. Это связано с тем, что с уменьшением размеров возрастает отношение поверхности тела к его объему, или массе (правило поверхности). Потери тепла происходят через поверхность, и для того чтобы не снизилась температура тела, животное должно производить тепло со скоростью, равной скорости его потери. Для гомойотермных животных, также, как и для пойкилотермных, важное значение имеют поведенческие способы регуляции теплообмена, которые очень разнообразны - изменение позы, поиск укрытий, сооружение нор и гнезд, миграции и др. Свет является одним из важнейших экологических факторов, особенно в наземно-воздушной среде. Во-первых, свет - это первичный источник энергии для всего живого; во-вторых, это фактор ограничивающий, т.к. слишком мало или слишком много света одинаково может привести к гибели организма; в-третьих, свет является исключительно важным регулятором дневной или сезонной активности огромного количества организмов, как растительных, так и животных. На солнечную радиацию, как основной источник энергии для живых организмов, приходится около 99,9% в общем балансе энергии Земли. Если принять солнечную энергию, достигающую Земли, за 100%, то примерно 19% ее поглощается при прохождении через атмосферу, 34% отражается обратно в космическое пространство и 47% достигает земной поверхности в виде прямой и рассеянной радиации. На ультрафиолетовую часть спектра приходится от 1 до 5%, на видимую - от 16 до 45% и на инфракрасную - от 49 до 84% потока радиации, падающего на Землю. Среди ультрафиолетовых лучей до поверхности Земли доходят только длинноволновые, а коротковолновые, губительные для всего живого, практически полностью поглощаются на высоте около 25 км озоновым экраном (в настоящее время, правда, необходимо учитывать процесс разрушения озонового слоя). Длинноволновые ультрафиолетовые лучи, вредны для организмов в больших дозах, а небольшие дозы необходимы многим (оказывают мощное бактерицидное действие и вызывают образование витамина D у животных). Инфракрасные лучи оказывают тепловой действие. Видимая радиация несет приблизительно 50% суммарной энергии. Видимый свет для фототрофных и гетеротрофных организмов имеет разное экологическое значение. Для фотоавтотрофов солнечное излучение является единственным источником энергии. В результате фотосинтеза зеленые растения, а также водоросли и некоторые бактерии преобразуют энергию Солнца в химическую энергию органических соединений. Пурпурные и зеленые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части. Это позволяет им существовать даже при наличии только невидимых инфракрасных лучей. На суше для высших автотрофных растений условия освещения практически везде благоприятны, и они растут повсюду, где позволяют климатические и почвенные условия. Водоросли обитают главным образом в водоемах, но встречаются и на суше - на скалах, на стволах деревьев, на поверхности почвы и др. В водной среде света гораздо меньше, чем в наземно-воздушной. С глубиной быстрое убывание количества света связано с поглощением его водой. При этом лучи света с разной длиной волны поглощаются неодинаково. Соответственно сменяют друг друга с глубиной разные группы водорослей - зеленые, бурые и красные - специализированные на улавливании света с разной длиной волны. Поглощение света зависит от степени прозрачности воды. Поэтому граница зоны фотосинтеза еще определяется чистотой водоема. В самых чистых водах зона фотосинтеза простирается до глубины 200 м, сумеречная зона - до 1500 м, глубже солнечный свет не проникает. Помимо источника энергии, свет используется растениями и для других жизненных процессов - газообмене, размножении, обмене веществ, формообразовании. Свет вызывает в органах растений, например, движения типа искривлений, направленные на оптимальное использование света листьями (фототропизм). Световой режим любого местообитания характеризуется интенсивностью прямого и рассеянного света, количеством света (годовой суммарной радиацией), его спектральным составом, а также альбедо - отражательной способностью поверхности, на которую падает свет.

Перечисленные элементы светового режима зависят от географического положения, высоты над уровнем моря, от рельефа, состояния атмосферы, характера земной поверхности, растительности, от времени суток, сезона года, солнечной активности и глобальных изменений в атмосфере.

Для растений каждой экологической группы, особенно для гелиофитов и сциофитов, характерны общие приспособительные особенности (строение, форма и интенсивность окраски листьев, содержание в них хлорофилла, длинна междоузлий и др.). Наиболее общая адаптация растений к максимальному использованию фотосинтетически активной солнечной радиации - пространственная ориентация листьев. Различают три способа расположения листьев: вертикальное, горизонтальное и диффузное. При вертикальном расположении листьев, как, например, у многих злаков и осок, солнечный свет полнее поглощается в утренние и вечерние часы - при более низком стоянии солнца; при горизонтальной ориентации листьев полнее используются лучи полуденного солнца; при диффузном расположении листьев в разных плоскостях солнечная радиация в течение дня утилизируется наиболее полно. На севере, где высота стояния солнца меньше, больше встречается растений с вертикальным расположением листьев, на юге - с горизонтальным. Свет в жизни гетеротрофов не является столь необходимым фактором, как для фотоавтотрофов. Однако в жизни животных световая часть спектра солнечного излучения играет важную роль. Среди животных различают светолюбивые виды, или фотофилы, и тенелюбивые виды, или фотофобы; а также эврифотные, выносящие широкий диапазон освещенности, и стенофотные, переносящие узкоограниченные условия освещенности. Свет для животных, в первую очередь, необходимое условие зрительной ориентации в пространстве. Рассеянные, отраженные от предметов лучи, воспринимаемые органами зрения животных, дают им значительную часть информации о внешнем мире. Человек получает более 90% информации о внешнем мире через зрительный анализатор. В процессе эволюции происходило постепенное усложнение зрительных анализаторов. Наиболее совершенные органы зрения - глаза позвоночных, головоногих моллюсков и насекомых. Они позволяют воспринимать форму и размеры предметов, их цвет, определять расстояние. Отдельные виды животных могут сильно различаться по способности воспринимать разные лучи солнечного спектра. Для человека область видимых лучей - от фиолетовых до темно-красных. Некоторые животные, например, гремучие змеи, видят инфракрасную часть спектра и ловят добычу в темноте. Цветовое зрение широко распространено у позвоночных, ракообразных, насекомых и паукообразных

Глава 4. Химическая и физическая теплорегуляция

Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры окружающей среды. Это постоянство температуры тела носит название изотермии. Изотермия свойственна только так называемым гомойотермным, или теплокровным, животным. Изотермия отсутствует у пойкилотермных, или холоднокровных, животных, температура тела которых переменна и мало отличается от температуры окружающей среды. Изотермия в процессе онтогенеза развивается постепенно. Температура органов и тканей, как и всего организма в целом, зависит от интенсивности образования тепла и от величины теплопотерь. Теплообразование происходит вследствие непрерывно совершающихся экзотермических реакций. Эти реакции протекают во всех органах и тканях, но неодинаково интенсивно. В тканях и органах, производящих активную работу в мышечной ткани, печени, почках, выделяется большее количество тепла, чем в менее активных соединительной ткани, костях, хрящах. Потеря тепла органами и тканями зависит в большой степени от их месторасположения: поверхностно расположенные органы, например, кожа, скелетные мышцы, отдают больше тепла и охлаждаются сильнее, чем внутренние органы, более защищенные от охлаждения. Отсюда ясно, что температура разных органов различна. Так, печень, расположенная глубоко внутри тела и дающая большую теплопродукцию, имеет у человека более высокую и постоянную температуру (37,8--38 °С) по сравнению с кожей, температура которой значительно ниже (на покрытых одеждой участках 29,5--33,9 °С) и в большей мере зависит от окружающей среды. Поэтому справедливо говорить о том, что изотермия присуща главным образом внутренним органам и головному мозгу. Поверхность же тела и конечности, температура которых может несколько изменяться в зависимости от температуры окружающей среды, являются в некоторой мере пойкилотермными. При этом различные участки кожной поверхности имеют неодинаковую температуру. Обычно относительно выше температура кожи туловища и головы (33--34 °С). Температура конечностей ниже, причем она наиболее низкая в дистальных отделах. Из сказанного следует, что понятие "постоянная температура тела" является условным. Лучше всего среднюю температуру организма как целого характеризует температура крови в наиболее крупных сосудах, так как циркулирующая в них кровь нагревается в активных тканях (тем самым охлаждая их) и охлаждается в коже (одновременно согревая ее). Терморегуляция проявляется в форме взаимосочетания процессов теплообразования и теплоотдачи, регулируемых нервно-эндокринным путем. Терморегуляцию принято разделять на химическую и физическую. Химическая терморегуляция осуществляется путем изменения уровня теплообразования, т. е. усиления или ослабления интенсивности обмена веществ в клетках организма. Физическая терморегуляция осуществляется путем изменения интенсивности отдачи тепла. Химическая терморегуляция имеет важное значение для поддержания постоянства температуры тела, как в нормальных условиях, так и при изменении температуры окружающей среды. У человека усиление теплообразования вследствие увеличения интенсивности обмена веществ отмечается, в частности, тогда, когда температура окружающей среды становится ниже оптимальной температуры, или зоны комфорта. При обычной легкой одежде эта зона находится в пределах 18--20 °С, а для обнаженного человека 28 °С. Оптимальная температура во время пребывания в воде выше, чем на воздухе. Это обусловлено тем, что вода, обладающая высокой теплоемкостью и теплопроводностью, охлаждает тело в 14 раз сильнее, чем воздух. Поэтому в прохладной ванне обмен веществ повышается значительно больше, чем во время пребывания на воздухе при той же температуре. Наиболее интенсивное теплообразование в организме происходит в мышцах. Даже если человек лежит неподвижно, но с напряженной мускулатурой, окислительные процессы, а вместе с тем и теплообразование повышаются на 10%. Небольшая двигательная активность ведет к увеличению теплообразования на 50--80%, а тяжелая мышечная работа на 400--500%. В условиях холода теплообразование в мышцах увеличивается, даже если человек находится в неподвижном состоянии. Это обусловлено тем, что охлаждение поверхности тела, действуя на рецепторы, воспринимающие раздражение, рефлекторно возбуждает беспорядочные непроизвольные сокращения мышц, проявляющиеся в виде дрожи (озноб). При этом обменные процессы организма значительно усиливаются, увеличивается потребление кислорода и углеводов мышечной тканью, что и влечет за собой повышение теплообразования. Даже произвольная имитация дрожи увеличивает теплообразование на 200%. Если в организм введены миорелаксанты - вещества, нарушающие передачу нервных импульсов с нерва на мышцу и тем самым устраняющие рефлекторную мышечную дрожь, при понижении температуры окружающей среды гораздо быстрее наступает понижение температуры тела. В химической терморегуляции, кроме мышц, значительную роль играют печень и почки. Температура крови печеночной вены выше температуры крови печеночной артерии, что указывает на интенсивное теплообразование в этом органе. При охлаждении тела теплопродукция в печени возрастает. Освобождение энергии в организме совершается за счет окислительного распада белков, жиров и углеводов. Поэтому все механизмы, которые регулируют окислительные процессы, регулируют и теплообразование.

Физическая терморегуляция осуществляется путем изменений отдачи тепла организмом. Особо важное значение она приобретает в поддержании постоянства температуры тела во время пребывания организма в условиях повышенной температуры окружающей среды. Теплоотдача осуществляется путем теплоизлучения (радиационная теплоотдача), конвекции, т. е. движения и перемешивания нагреваемого телом воздуха, теплопроведения, т. е. отдачи тепла веществам, непосредственно соприкасающимся с поверхностью тела, и испарения воды с поверхности кожи и легких. У человека в обычных условиях потеря тепла путем теплопроведения имеет небольшое значение, так как воздух и одежда являются плохими проводниками тепла. Радиация, испарение и конвекция протекают с различной интенсивностью в зависимости от температуры окружающей среды. У человека в состоянии покоя при температуре воздуха около 20 °С и суммарной теплоотдаче, равной 419 кДж (100 ккал) в час, радиация составляет 66%, испарение воды --19%, конвекция -15% общей потери тепла организмом. При повышении температуры окружающей среды до 35 °С теплоотдача посредством радиации и конвекции становится невозможной, и температура тела поддерживается на постоянном уровне исключительно посредством испарения воды с поверхности кожи и альвеол легких. Для того чтобы было ясно значение испарения в теплоотдаче, напомним, что для испарения 1 мл воды необходимо 2,4 кДж (0,58 ккал). Следовательно, если в условиях основного обмена телом человека отдается посредством испарения около 1675--2093 кДж (400--500 ккал), то с поверхности тела должно испаряться примерно 700--850 мл воды. Из этого количества 300--350 мл испаряются в легких и 400--500 мл - с поверхности кожи. Характер отдачи тепла телом изменяется в зависимости от интенсивности обмена веществ. При увеличении теплообразования в результате мышечной работы возрастает значение теплоотдачи, осуществляемой посредством испарения воды. Так, после тяжелого спортивного соревнования, когда суммарная теплоотдача достигала почти 2512 кДж (600 ккал) в час, было найдено, что 75% тепла было отдано путем испарения, 12% - путем радиации и 13 % --посредством конвекции. Одежда уменьшает теплоотдачу. Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух - плохой проводник тепла. Теплоизолирующие свойства одежды тем выше, чем более мелкоячеиста ее структура, содержащая воздух. Этим объясняются хорошие теплоизолирующие свойства шерстяной и меховой одежды. Температура воздуха под одеждой достигает 30 °С. Наоборот, обнаженное тело теряет тепло, потому что воздух на его поверхности все время сменяется. Поэтому температура кожи обнаженных частей тела намного ниже, чем одетых. В значительной степени препятствует теплоотдаче слой подкожной жировой клетчатки в связи с малой теплопроводностью жира. Температура кожи, а, следовательно, интенсивность теплоизлучения и теплопроведения могут изменяться в результате перераспределения крови в сосудах и при изменении объема циркулирующей крови. На холоде кровеносные сосуды кожи, главным образом артериолы, сужаются; большее количество крови поступает в сосуды брюшной полости и тем самым ограничивается теплоотдача. Поверхностные слои кожи, получая меньше теплой крови, излучают меньше тепла --теплоотдача уменьшается. При сильном охлаждении кожи, кроме того, происходит открытие артериовенозных анастомозов, что уменьшает количество крови, поступающей в капилляры, и тем самым препятствует теплоотдаче. Перераспределение крови, происходящее на холоде--уменьшение количества крови, циркулирующей через поверхностные сосуды, и увеличение количества крови, проходящей через сосуды внутренних органов, способствует сохранению тепла во внутренних органах. Эти факты служат основанием для утверждения, что регулируемым параметром является именно температура внутренних органов, которая поддерживается на постоянном уровне. При повышении температуры окружающей среды сосуды кожи расширяются, количество циркулирующей в них крови увеличивается. Возрастает также объем циркулирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополнительные количества крови. Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче посредством радиации и конвекции. Для сохранения постоянства температуры тела человека при высокой температуре окружающей среды основное значение имеет испарение пота с поверхности кожи. Значение потоотделения для поддержания постоянства температуры тела видно из следующего подсчета: в летние месяцы температура окружающего воздуха в средних широтах нередко равна температуре тела человека. Это означает, что организм человека, живущего в этих условиях, не может отдавать образующееся в нем самом тепло путем радиации и конвекции. Единственным путем для отдачи тепла остается испарение воды. Приняв, что среднее теплообразование в сутки равно 10 048-- 11 723 кДж (2400--2800 ккал), и зная, что на испарение 1 г воды с поверхности тела расходуется 2,43 кДж (0,58 ккал), получаем, что для поддержания температуры тела человека на постоянном уровне в таких условиях необходимо испарение 4,5 л воды. Особенно интенсивно потоотделение происходит при высокой окружающей температуре во время мышечной работы, когда возрастает теплообразование в самом организме. Испарение воды зависит от относительной влажности воздуха. В насыщенном водяными парами воздухе вода испаряться не может. Поэтому при высокой влажности атмосферы высокая температура переносится тяжелее, чем при низкой влажности. В насыщенном водяными парами воздухе (например, в бане) пот выделяется в большом количестве, но не испаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла; только эта часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота составляет эффективное потоотделение). Плохо переносится также непроницаемая для воздуха одежда (резиновая и т. п.), препятствующая испарению пота: слой воздуха между одеждой и телом быстро насыщается парами и дальнейшее испарение пота прекращается. Человек плохо переносит сравнительно невысокую температуру окружающей среды (32 °С) при влажном воздухе. В совершенно сухом воздухе человек может находиться без заметного перегревания в течение 2--3 ч при температуре 55--50°С. Так как некоторая часть воды испаряется легкими в виде паров, насыщающих выдыхаемый воздух, дыхание также участвует в поддержании температуры тела на постоянном уровне. При высокой окружающей температуре дыхательный центр рефлекторно возбуждается, при низкой-- угнетается, дыхание становится менее глубоким. К проявлениям физической терморегуляции следует отнести также изменение положения тела. Когда собаке или кошке холодно, они сворачиваются в клубок, уменьшая тем самым поверхность теплоотдачи; когда жарко, животные, наоборот, принимают положение, при котором поверхность теплоотдачи максимально возрастает. Этого способа физической теплорегуляции не лишен и человек, "сворачиваясь в клубок" во время сна в холодном помещении. Рудиментарное значение для человека имеет проявление физической терморегуляции в форме реакции кожных мышц ("гусиная кожа"). У животных при этой реакции изменяется ячеистость шерстного покрова и улучшается теплоизолирующая роль шерсти. Таким образом, постоянство температуры тела поддерживается путем совместного действия, с одной стороны, механизмов, регулирующих интенсивность обмена веществ и зависящее от него теплообразование (химическая регуляция тепла), а с другой -- механизмов, регулирующих теплоотдачу (физическая регуляция тепла).

Глава 5. Прямое и косвенное антропогенное воздействие на атмосферу, гидросферу, литосферу. Экологические последствия косвенного воздействия человека на растительный мир

В настоящее время в среде, окружающей человека, происходят изменения, связанные с влиянием научно-технической революции, хозяйственной деятельности человека. Это, прежде всего, засорение воздуха, водоемов, бесхозяйственное отношение к земле и др.

Засорение атмосферы - газовой оболочки Земли - одна из важных и особых экологических проблем сегодня. Известно, какое важное значение для любого живого организма имеет воздух: без пищи человек может прожить месяц, без воды - неделю, без воздуха - считанные секунды. Вместе с тем то, чем мы дышим, подвергается сильному влиянию целого ряда факторов - результатов интенсивного развития таких производств, как: топливно-энергетического, металлургического, нефтехимического и др.

Антропогенное загрязнение атмосферы приводит к глобальному изменению. Загрязнения атмосферы поступают в виде аэрозолей и газообразных веществ.

Наибольшую опасность представляют газообразные вещества, на долю которых приходится около 80% всех выбросов. Прежде всего - это соединения серы, углерода, азота. Углекислый газ сам по себе не ядовит, но с его накоплением связана опасность такого глобального процесса как "парниковый эффект". Последствие мы видим по потеплению климата на Земле. С попаданием в атмосферу соединений серы и азота связано выпадение кислотных дождей. Двуокись серы и окислы азота в воздухе соединяются с парами воды, затем вместе с дождями выпадают на землю фактически в виде разбавленных серной и азотной кислот. Такие осадки резко нарушают кислотность почвы, способствуют гибели растений и высыханию лесов, особенно хвойных. Попадая в реки и озера угнетающе действуют на флору и фауну, нередко приводя к полному уничтожению биологической жизни - от рыб до микроорганизмов. Расстояние между местом образования кислотных осадков и местом их выпадения может составлять тысячи километров. По данным ученых ежегодно в мире в результате деятельности человека в атмосферу поступает 25,5 млрд. т оксидов углерода, 190 млн. т оксидов серы, 65 млн. т оксидов азота, 1,4 млн. т фреонов, органические соединения свинца, углеводороды, в том числе канцерогенные, большое количество твердых частиц (пыль, копоть, сажа). Глобальное загрязнение атмосферного воздуха сказывается на состоянии природных экосистем, особенно зеленого покрова нашей планеты. Кислотные дожди, вызываемые главным образом диоксидом серы и оксидами азота, наносят огромный вред лесным биоценозам. От них страдают леса, особенно хвойные. Основная причина косвенного загрязнения атмосферы - сжигание природного топлива и металлургическое производство. Если в XIX и начале ХХ века, поступающие в окружающую среду продукты сгорания угля и жидкого топлива, почти полностью ассимилировались растительностью Земли, то в настоящее время содержание продуктов сгорания неуклонно возрастает. Из печей, топок, выхлопных труб автомобилей в воздух попадает целый ряд загрязняющих веществ. Среди них выделяется сернистый ангидрид - ядовитый газ, легко растворимый в воде. Концентрация сернистого газа в атмосфере особенно высока в окрестностях медеплавильных заводов. Он вызывает разрушение хлорофилла, недоразвитие пыльцевых зерен, засыхание и опадание листьев, хвои. К прямым загрязнениям относятся практически все виды современного транспорта: автомобильный, железнодорожный, воздушный, морской и речной. Человек существенно влияет на водный баланс планеты и гидросферу. Антропогенные преобразования вод континентов принимают глобальные масштабы, при этом нарушая естественный режим самых крупных рек и озер планеты. Это было спровоцировано: прямым воздействием на гидросферу, а именно: строительством гидротехнических сооружений (оросительных каналов, водохранилищ и систем переброски вод); увеличением площади орошаемых земель; обводнением засушливых территорий; урбанизацией; загрязнением пресных вод коммунальными и промышленными стоками. Также прямое воздействия можно считать тепловое загрязнение, образующееся в результате сброса подогретых вод, используемых для охлаждения на ТЭС и АЭС, сброс таких вод приводит к нарушению природного водного режима. Например, реки в местах сброса таких вод не замерзают. В замкнутых водоемах это приводит к уменьшению содержания кислорода, что приводит к гибели рыб и бурному развитию одноклеточных водорослей загрязнение гидросферы возникает в результате попадания в нее различных химических веществ и соединений. Примером служит сброс в водоемы тяжелых металлов (свинец, ртуть), удобрений (нитраты, фосфаты) и углеводородов (нефть, органические загрязнения). В настоящее время в мире насчитывается около 30 тыс. водохранилищ, объем которых превышает 6000 км 3.Строительство таких крупных водохранилищ косвенно воздействует на окружающую среду: акватории занимают большие участки плодородных земель; приводят к вторичному засолению почв; водохранилища изменяют режим грунтовых вод. Гидротехнические сооружения способствуют деградации речных экосистем. Косвенные воздействия проявляются в изменении режима грунтовых вод, в загрязнении воздушного бассейна, поверхностных водотоков и подземных вод, а также способствуют подтоплению и заболачиванию, что в конечном итоге приводит к повышению уровня заболеваемости местного населения. Горное производство негативно воздействует на поверхностные водотоки и подземные воды, которые сильно загрязняются механическими примесями и минеральными солями. Антропогенные изменения литосферы могут быть вызваны строительством крупных гидротехнических сооружений. Максимальные величины и скорости просадки земной поверхности, вызываемые заполнением водохранилищ, значительно меньше, чем при добыче газа и нефти, больших откачках подземных вод. Таким образом, лишь детальные исследования взаимосвязей антропогенных и природных рельефообразующих процессов помогут устранению нежелательных последствий воздействия хозяйственной деятельности человека на земную поверхность. При прямом вмешательстве человека в жизнь земной коры на поверхности Земли стали возникать техногенные формы рельефа: валы, бугры, выемки, котлованы, карьеры, насыпи и пр. Стали отмечаться случаи проседания земной коры под водохранилищами и крупными городами, в горных районах стало наблюдаться увеличение естественной сейсмичности. Самое большое воздействие на недра земли и на ее поверхность оказывает горное производство, особенно добыча полезных ископаемых открытым способом. При косвенном антропогенном воздействии человека на литосферу происходят процессы: вторичное засоление и заболачивание почв, опустынивание; отчуждение плодородных земель для промышленного и коммунального строительства, эрозия почв, уничтожения плодородного слоя в результате строительства, добычи полезных ископаемых. Косвенные воздействия человека на экосистемы проявляются, например, через загрязнения их промышленными выбросами, содержащими различные токсины, и в первую очередь оксиды серы, азота и углерода, озон, тяжелые металлы, весьма негативно влияющие на хвойные и широколиственные деревья, кустарники, полевые культуры и травы, мхи и лишайники, фруктовые и овощные культуры и цветы. В газообразном виде или в виде кислотных осадков они отрицательно действуют на важные ассимиляционные функции растений, органы дыхания животных, резко нарушают метаболизм и приводят к различным заболеваниям. Так, например, под действием озона в растениях снижается не только активность транспортной системы, но и содержание хлорофилла. Прослеживается высокая корреляция между повреждением листьев и количеством адсорбированного диоксида серы. Существует индивидуальная реакция отдельных видов растений на увеличение уровня атмосферного загрязнения. Все виды растений по степени их сопротивляемости воздействию загрязнения воздуха подразделяют на устойчивые, промежуточные и чувствительные косвенные, например, загрязнение их промышленными выбросами.

...

Подобные документы

  • Развитие современной технологической цивилизации. Прямое и косвенное, преднамеренное и непреднамеренное воздействия на природу. Химическое и антропогенное загрязнение окружающей среды. Воздействие на гидросферу и литосферу. Загрязнение атмосферы.

    реферат [33,4 K], добавлен 22.10.2012

  • Антропогенное воздействие хозяйственно-производственной деятельности человека на главные составляющие биосферы - атмосферу, гидросферу, литосферу. Рекомендации по совершенствованию системы рационального взаимодействия в системе человек - окружающая среда.

    реферат [43,8 K], добавлен 24.08.2009

  • Многообразие экологических факторов среды как совокупности соответствующего условия среды и его ресурса (запаса). Основные среды обитания: водная, наземно-воздушная и почвенная. Абиотические, биотические и антропогенные экологические факторы среды.

    реферат [810,8 K], добавлен 05.04.2011

  • Роль гидросферы в природе и жизни человека. Источники загрязнения вод, влияние антропогенной деятельности на гидросферу. Глобальные и региональные экологические последствия в Мировом океане. Дефицит воды, управление водными ресурсами, их очистка и охрана.

    курсовая работа [61,1 K], добавлен 24.05.2016

  • Изменения экологических факторов, из зависимость от деятельности человека. Особенности взаимодействия экологических факторов. Законы минимума и толерантности. Классификация экологических факторов. Абиотические, биотические и антропические факторы.

    курсовая работа [1,1 M], добавлен 07.01.2015

  • Воздействие экологических факторов окружающей среды (климата, температуры, влажности) на живые организмы. Проявление биотических факторов во взаимоотношениях организмов при совместном обитании: хищничество, паразитизм, симбиоз. Свойства популяции.

    реферат [20,9 K], добавлен 06.07.2010

  • Понятие антропогенных факторов и общий механизм их влияния на гидросферу. Гидросфера как водная среда жизни. Антропогенные источники ионизирующего излучения. Абиотические и биотические экологические факторы. Классификация техногенных воздействий.

    реферат [37,7 K], добавлен 29.06.2010

  • Антропогенное воздействие человека на литосферу и атмосферу. Методики исследования загрязнения окружающей среды и оценки ее качества. Оценка воздействия загрязняющих веществ промышленных предприятий Волгоградской агломерации на состояние атмосферы.

    диссертация [579,3 K], добавлен 02.09.2009

  • Исследование биосферы - области распространения органической жизни, включающей литосферу, гидросферу, а также нижние слои атмосферы и живого вещества в ней. Особенности биологического круговорота углерода и серы и антропогенного влияния на атмосферу.

    контрольная работа [29,7 K], добавлен 14.03.2010

  • 5 основных видов вмешательства человека в экологические процессы. Виды загрязнений окружающей среды. Естественное и антропогенное загрязнение атмосферы. Экологические последствия глобального загрязнения атмосферы. Основные виды воздействия на почву.

    презентация [17,2 M], добавлен 07.05.2015

  • Основные экологические проблемы, связанные с переработкой железных руд. Твердые отходы предприятий по переработке руды, воздействие их на атмосферу, гидросферу и почвенный покров территорий. Воздействие выбросов предприятий отрасли на здоровье населения.

    контрольная работа [36,5 K], добавлен 12.03.2017

  • Определение объема выброса загрязняющих веществ в атмосферу, гидросферу и литосферу в период строительства и эксплуатации объекта исследования. Защита почв, растительного и животного мира от возможного воздействия. Физические факторы воздействия.

    курсовая работа [145,1 K], добавлен 29.09.2013

  • Среда обитания человека. Социальные факторы, факторы общественной среды человека. Уменьшение населения в богатых индустриальных государствах. Парадокс урбанизации. Социогенные и природные экологические факторы негативного воздействия на человека.

    учебное пособие [84,2 K], добавлен 10.01.2009

  • Структура окружающей среды. Комплексное воздействие факторов среды на организм. Влияние природно-экологических и социально-экологических факторов на организм и жизнедеятельность человека. Процесс акселерации. Нарушение биоритмов. Аллергизация населения.

    реферат [20,2 K], добавлен 19.02.2009

  • Влияние экологических факторов на состояние экосистем. Особенности воздействия солнечного света. Состав лучистой энергии, воздействие на растения видимого света. Сезонная ритмичность в жизнедеятельности организмов, тепловой режим. Криофилы и термофилы.

    лекция [15,8 K], добавлен 15.11.2009

  • Основные причины и показатели деградации почв. Главные пути воздействия химических элементов литосферы на биоту и человека. Наиболее экологически значимые поля. Антропогенное воздействие и ресурсная экологическая функция литосферы. Утилизация шлаков.

    презентация [251,5 K], добавлен 19.12.2013

  • Воздействие человека на окружающую среду. Основы экологических проблем. Парниковый эффект (глобальное потепление климата): история, признаки, возможные экологические последствия и пути решения проблемы. Кислотные осадки. Разрушение озонового слоя.

    курсовая работа [1,3 M], добавлен 15.02.2009

  • Антропогенное воздействие на растительный и животный мир, принципы рационального природопользования и охраны окружающей среды. Экологическая проблема парникового эффекта и глобального потепления: источники, механизм возникновения, возможные последствия.

    контрольная работа [20,3 K], добавлен 06.05.2010

  • Анализ физического, химического и биологического загрязнения гидросферы. Антропогенное воздействие на географическую оболочку земли. Поступление загрязнений в атмосферу в виде аэрозолей и газообразных веществ. Результаты антропогенного воздействия.

    доклад [16,0 K], добавлен 14.02.2012

  • Антропогенное воздействие на литосферу, ее экологическая функция, техногенные изменения основных составляющих. Наиболее существенные типы деградации почв. Степень проявления и скорость протекания различных процессов опустынивания. Вред от пестицидов.

    реферат [32,5 K], добавлен 24.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.