Учет процессов массопереноса загрязняющих компонентов в системах автоматизации проектирования водозаборов подземных вод

Применение методов самоорганизации для идентификации процессов массопереноса загрязняющих компонентов подземных вод с целью оптимизации техногенной нагрузки на природную среду. Анализ моделей массопереноса ионов марганца и железа в подземных водах.

Рубрика Экология и охрана природы
Вид статья
Язык русский
Дата добавления 28.04.2017
Размер файла 245,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

УДК 628.1:658.5

UDC 628.1:658.5

Учет процессов массопереноса загрязняющих компонентов в системах автоматизации проектирования водозаборов подземных вод

ACCOUNTING OF PROCESSES OF weight carrying OF POLLUTING COMPONENTS IN SYSTEMS OF AUTOMATION OF DESIGNING OF WATER INTAKES OF UNDERGROUND WATERS

Стародубцев Виктор Сергеевич

д.т.н., к.г.-м.н., профессор

Starodubtsev Victor Sergeevich

Dr.Sci.Tech, Cand.Geol-Min.Sci., professor

Российский государственный социальный университет филиал в г.Воронеж, Воронеж, Россия

Russian state social university branch in Voronezh, Voronezh, Russia

В статье рассматривается применение методов самоорганизации для идентификации процессов массопереноса загрязняющих компонентов подземных вод с целью оптимизации техногенной нагрузки на природную среду

In the article, application of methods of self-organizing for identification of processes of weight carrying polluting components of underground waters for the purpose of optimization of technogenic loading on environment is considered

Ключевые слова: природно-техническая система, водозабор подземных вод, массоперенос, структурная идентификация, системы автоматизации проектирования

Keywords: natural-technical system, water intake of underground waters, weightcarrying, structural identification, systems of automation of designing

Развитие территориально-производственных комплексов (ТПК) структурно порождает развитие промышленного, транспортного, пищевого и других производств. В свою очередь, промышленное производство в условиях превалирования экономических законов над экологической безопасностью вызывает расширение и интенсификацию загрязнения геосфер Земли. Источниками загрязнения стали практически все промышленные предприятия, транспорт, зоны отдыха, крупные сельскохозяйственные и животноводческие комплексы. Наиболее подвержена антропогенному воздействию гидросфера Земли, где техногенное воздействие может сказываться как за счет прямого загрязнения промышленными, коммунальными, поверхностными стоками, загрязнения нефтью и нефтепродуктами, которое стало обычным явлением для мест их хранения и продажи (нефтебазы, автозаправочные станции и т.д.), так и за счет вторичного комплекса загрязнений гидросферы, формирующегося на основе загрязняющих веществ, которые содержатся в атмосферных осадках. В связи с этим необходим системный подход к развитию природно-техногенных процессов в природно-технических системах (ПТС) ТПК.

Рассмотри реализацию системного подхода на примере идентификации процессов массопереноса загрязняющих компонентов подземных вод в ПТС инфильтрационного водозабора подземных вод (ВПВ) №11 г.Воронежа.

ВПВ № 11 находится в 16 км севернее промышленного центра на правобережной пойменной террасе. Водозабор состоит из 48 эксплуатационных скважин (ЭС), расположенных вдоль берега водохранилища (рисунок 1). Эксплуатируемый неоген-четвертичный водоносный комплекс представлен мелкозернистыми песками, переходящими в основании в крупнозернистые и гравелистые разности с галькой. По химическому составу воды ВПВ №11 пресные с минерализацией 0,25-0,4 г/л, гидрокарбонатного кальциево-магниевого типа.

Общий дебит ВПВ №11 в настоящее время составляет 201 тыс.м3/сут.

Анализ ПТС ВПВ показал, что гидрогеохимическая обстановка осложняется повышенным содержанием железа и марганца в подземных водах эксплуатируемого неоген-четвертичного водоносного комплекса. В связи с дефицитом питьевой воды в г.Воронеже, в размере 150 тыс.м3/сут, ЭС стараются располагать ближе к урезу Воронежского водохранилища - контуру обеспеченного питания. Но, с другой стороны, располагая, таким образом, ЭС мы сокращаем путь фильтрации подземного потока, время его контакта с водовмещающими породами, что, в свою очередь, приводит к поступлению в сборные резервуары воды с повышенным содержанием железа и марганца.

Рисунок 1. ПТС ВПВ №11 с участками погребенных пойменных отложений

Такая ситуации вызвала необходимость детального изучения процессов массопереноса железа и марганца в системах водозаборов средствами математического моделирования процессов массопереноса загрязняющих компонентов подземных вод. Для этого были разработаны методика и алгоритм структурной идентификации процесса массопереноса загрязняющих компонентов подземных вод [1], на базе которых было создано программное обеспечение - комплекс программ MASPERENOS [1].

С учетом трудностей решения уравнения геомиграции [3] предлагается использовать методы структурной идентификации и в частности метод группового учета аргументов (МГУА) [2]. Учитывая один из основных принципов теории МГУА - принцип "свободы выбора решений", дифференциальное уравнение конвективно-диффузионного переноса мигранта в двумерном потоке [3], используем полное описание класса структур для идентификации процесса массопереноса загрязняющих компонентов подземных вод вида

(1)

+,

где с - концентрация ионов загрязняющего компонента (например, железа или марганца) в подземных водах (прогнозируемая переменная в мг/л); а1 - а4 - соответствующие коэффициенты при производных; t - время; x, y - пространственные координаты; k - запаздывание по времени, k = 1, 2, 3; Ш1 - водоотбор в тыс.м3/сут; Ш2 - температура воздуха в C0; Ш3 - осадки в мм; Ш4 - рН поверхностных вод; Ш5 - содержание О2 в поверхностных водах водохранилища мг/л; Ш6 - содержание ионов хлора в поверхностных водах водохранилища мг/л; а5 - а10 - соответствующие коэффициенты при Ш 1 - Ш6; а11 - свободный член.

Методику структурной идентификации процессов массопереноса загрязняющих компонентов подземных вод реализует алгоритм идентификации прогностических моделей процесса геомиграции, который можно представить в виде цепочки, состоящей из 7 блоков и 12 этапов [1].

Блок А

Ввод данных.

Построение сетки на области моделирования.

Блок B

Формирование модели, исходя из полного описания (1).

Нормирование и центрирование данных.

,

где Xj,i - текущее значение переменной;

i = 1, ... , N, где N - длина выборки;

j = 1, ... , K, где K - количество переменных;

XC - среднее значение исходной переменной;

DC - дисперсия исходной переменной.

Определение зависимых величин с помощью коэффициента парной корреляции (Ri,j).

массоперенос ион загрязняющий вода

где М1 - начало выборки, а М2 - конец выборки, i, j = 1, 2, …, n, где n - количество переменных взятых для проведения эксперимента по идентификации целевых функций изучаемых процессов.

Блок С

Задание частного описания модели, исходя из полного описания (1).

Определение коэффициентов модели по методу наименьших квадратов.

Блок D

Определение значения критерия несмещенности (nсм) модели.

,

где Y - фактическое значения выходной величины (количество школьников различных категорий качества знаний); YА и YB - модельное значение выходной величины. Модели получены YА - по выборке А, а YB - по выборке B. По критерию несмещенности находятся N1 лучших моделей, которые затем участвуют в сравнении моделей по критерию сходимости. На основе проведения экспериментов по идентификации прогностических моделей массопереноса загрязняющих компонентов подземных вод в системах ВПВ г.Воронежа было установлено, что число N1 30.

Блок E

Определение значения критерия сходимости (i) для N1 лучших по критерию несмещенности моделей.

,

где Yim - модельное значение выходной величины; Y - табличное значение выходной величины (данные режимных наблюдений за значениями концентрации железа в подземных водах). По критерию сходимости отбираются N2 модели, которые затем участвуют в сравнении моделей по критерию эпигнозного прогноза.

Блок F

Определение значения критерия эпигнозного прогноза (P) для N2 лучших по критерию сходимости моделей.

.

Критерий эпигнозного прогноза позволяет отбирать лучшие модели прогностической направленности.

Блок G

Определение комбинированного критерия Ks.

,

где nmax и imax - максимальное значение критериев минимума смещения и сходимости.

Выбор оптимальной модели по совокупности критериев.

В связи с большой протяженностью ВПВ №11 (около 4-х км) была проведена квантификация ПТС ВПВ №11 на подсистемы с целью выявления особенностей процесса массопереноса ионов железа и марганца. При квантификации ПТС ВПВ №11 учитывалось то, что в середине 80-х годов производилось расширение ВПВ №11 за счет намыва берега. Всего было выделено 3 подсистемы: 1 подсистема - ЭС № 14, 17 и 18; 2 подсистема - ЭС № 28, 29 и 45; 3 подсистема - ЭС № 9, 10, 11 и12.

В результате проведения эксперимента по структурной идентификации процесса массопереноса ионов марганца в подземных водах ПТС ВПВ №11 были получены следующие прогностические модели (таблица 1).

Таблица 1. Модели процессов массопереноса ионов марганца в подземных водах ПТС ВПВ №11

Система

Модель

Общая

Подсистема №1

Подсистема №2

+

Подсистема №3

Анализ выражения модели общей системы показывает, что массоперенос ионов марганца в ПТС ВПВ №11 связан с миграцией марганца по площади депрессионной воронки, на что указывает первая производная по Х, присутствующая в модели с нулевым запаздыванием, что соответствует предварительным выводам о местном источнике загрязнения. Результаты моделирования показывают, что процесс массопереноса ионов марганца для различных подсистем ВПВ №11 имеет много похожего. Для всех подсистем характерно наличие производных, как по оси Х, так и по оси Y, что свидетельствует о миграции ионов марганца непосредственно во внутренних областях депрессионной воронки ВПВ и подтверждает версию о наличии источника загрязнения непосредственно в этой области (погребенные пойменные отложения в результате намыва береговой зоны). В то же время возможен и массоперенос ионов марганца из водохранилища (наличие в моделях параметров Ш4 и Ш6 поверхностных вод водохранилища). Следует отметить у всех моделей незначительное (-1) запаздывание по времени у параметра водоотбора (), что может также свидетельствовать, что загрязнение находится непосредственно в районе депрессионной воронки.

Для получения прогностической модели массопереноса ионов железа принятые модели были оценены по критерию эпигнозного прогноза и сценарному критерию. С учетом полного описания (1) модели процесса массопереноса ионов железа в ПТС ВПВ №11 представлены в таблице 2.

Анализ выражения для общей системы показывает, что массоперенос ионов железа в ПТС ВПВ №11 связан с миграцией железа по площади депрессионной воронки, на что указывает вторая производная по Х, присутствующая в модели с запаздыванием (-2), что соответствует значительным размерам ПТС ВПВ №11.

Таблица 2. Модели процессов массопереноса ионов железа в подземных водах ПТС ВПВ №11 + 0,0077 + 0,000031 + 0,407 - 6,914

Система

Модель

Общая

Подсистема №1

Подсистема №2

Подсистема №3

Наличие в модели температурного параметра подтверждает сделанные предварительные выводы о влиянии температуры воздуха на содержание ионов железа в подземных водах ВПВ №11. Влияние Воронежского водохранилища отражено в модели параметром содержания О2 в поверхностных водах водохранилища.

Результаты моделирования подсистем показывают, что процесс массопереноса ионов железа для различных подсистем ВПВ №11 различается. Для первой подсистемы миграция ионов железа происходит непосредственно во внутренних областях депрессионной воронки ВПВ (наличие соответственно первой производной по Х), что может свидетельствовать о наличии источника загрязнения непосредственно в этой области. В то же время следует отметить, что у модели второй подсистемы присутствует первая производная по оси Y, что может свидетельствовать о миграции ионов железа из водохранилища, так как подсистема географически располагается ближе других подсистем к урезу водохранилища. Модель третьей подсистемы содержит производные как по оси Х, так и по оси Y. Эту особенность можно объяснить тем, что третья подсистема находится как раз как по центру депрессионной воронки ПТС ВПВ №11, так и в центре захороненных болотных отложений, в результате чего загрязнение поступает со всех сторон.

Следует отметить отсутствие у моделей второй и третьей подсистем запаздывания по времени у параметра водоотбора (), либо его незначительное запаздывание (-1) у модели первой подсистемы, что может также свидетельствовать, что загрязнение находится непосредственно в районе депрессионной воронки.

С учетом выявленных особенностей массопереноса ионов марганца и железа в ПТС ВПВ №11 рекомендуется при расширении системы ВПВ создать открытые инфильтрационные сооружения (два бассейна шириной по дну 20 м, длиной 300 метров и глубиной бассейна 3 м) для пополнения запасов грунтовых вод на расстоянии 150-200 метров от уреза водохранилища с размещением 12 эксплуатационных скважин, что обеспечит как качество питьевой воды (удаленность от водохранилища и погребенных пойменных отложений), так и значительное (до 36 тыс.м3/сут) увеличение ее добычи.

Литература

1. Жуков С.А. Моделирование процессов массопереноса загрязняющих компонентов подземных вод //Экология и промышленность России. № 7. 2008. № 7. С. 24 - 27.

2. Ивахненко А.Г. Индуктивный метод самоорганизации моделей сложных систем.-Киев: Наук. думка, 1982. 296с.

3. Шестаков В.М. Динамика подземных вод.-М.: Изд-во МГУ, 1979.-368с.

Размещено на Allbest.ru

...

Подобные документы

  • Геолого-гидрогеологическая характеристика скважины. Методы оценки качества подземных вод. Проведение анализов химического, радиационного и микробиологического загрязнения подземных вод скважин. Характеристика зоны санитарной охраны водозаборов.

    дипломная работа [883,4 K], добавлен 15.03.2015

  • Рассмотрение особенностей стронция и его поведения в подземных водах мира, России и области. Изучение экологической гидрогеохимии элемента в подземных водах. Выбор природных сорбентов для очистки питьевой воды от стронция, выявление лучшего из них.

    дипломная работа [1,2 M], добавлен 14.11.2017

  • Нормы, критерии и методики оценки загрязненности донных отложений. Модели прогноза массопереноса тяжелых металлов во внутриводоемных процессах. Комплексный химический анализ компонентного состава донных отложений. Учет кинетики геохимических процессов.

    дипломная работа [2,8 M], добавлен 02.06.2014

  • Взаимосвязь подземной гидросферы с окружающей средой. Особенности трансграничного (глобального) переноса загрязненных атмосферных осадков. Влияние окружающей среды на качество подземных вод. Источники загрязнения подземных вод суши, их последствия.

    курсовая работа [53,7 K], добавлен 13.10.2015

  • Оценка качества подземных вод Нюксенского района Вологодской области для обоснования рационального использования их как хозяйственно-питьевых и минеральных лечебных вод. Техногенные источники загрязнения подземных вод, их влияние на здоровье населения.

    дипломная работа [1,5 M], добавлен 09.11.2016

  • Формирование химического состава подземных вод. Миграция элементов в подземных водах. Водные ресурсы и баланс Кавказа. Влияние химического состава воды на здоровье населения. Методы определения показателей, гигиенические нормативы качества питьевой воды.

    дипломная работа [159,5 K], добавлен 14.07.2010

  • Общие сведения о ЗАО "Красноярский ДОК", характеристика источников и расчет выбросов загрязняющих веществ в атмосферу. Способы охраны поверхностных и подземных вод. Рекультивация нарушенных земель, мероприятия по охране почв от отходов производства.

    дипломная работа [983,2 K], добавлен 25.01.2015

  • Характеристика предприятия как источника загрязнения атмосферы. Расчет масс загрязняющих веществ, содержащихся в выбросах предприятия. Характеристика газоочистного оборудования. Нормирование сбросов загрязняющих веществ в окружающую природную среду.

    курсовая работа [724,3 K], добавлен 21.05.2016

  • Характеристика производственных процессов предприятия. Характеристика источников выделения загрязняющих веществ. Расчет валовых выбросов загрязняющих веществ по ТЭЦ-12 за 2005 год. Максимально-разовые и валовые выбросы загрязняющих веществ в атмосферу.

    курсовая работа [35,7 K], добавлен 29.04.2010

  • Воздействие человека на биосферу на нынешнем этапе развития техносферы. Проблема загрязнения и истощения поверхностных и подземных вод. Классификация и свойства веществ, загрязняющих воды. Юридическая ответственность за экологические правонарушения.

    реферат [34,1 K], добавлен 20.10.2009

  • Краткая характеристика физико-географических и климатических условий. Характеристики источников выброса загрязняющих веществ в атмосферу и обоснование данных о выбросах вредных веществ. Охрана поверхностных и подземных вод от загрязнения и истощения.

    курсовая работа [27,8 K], добавлен 18.01.2011

  • Характеристика производственных процессов предприятия, технологического оборудования, машин и агрегатов. Расчет выбросов загрязняющих веществ в атмосферу. Сброс сточных вод в бытовую систему канализации. Утилизация отходов от установок пылегазоочистки.

    курсовая работа [893,9 K], добавлен 13.03.2013

  • Характеристика природных условий участка. Этапы геоэкологических, топографо-геодезических и камеральных работ. Исследование проб атмосферного воздуха, почвы, поверхностных и подземных вод, растительности для определения концентраций загрязняющих веществ.

    курсовая работа [3,6 M], добавлен 17.12.2013

  • Главные источники соединений железа в поверхностных водах. Аналитическая классификация катионов, связанная с их разделением на аналитические группы при последовательном действии групповыми реагентами. Окислительные состояния хрома в природных водах.

    статья [610,7 K], добавлен 06.09.2015

  • Качество питьевой воды, доступ к чистой воде городского и сельского населения. Основные пути и источники загрязнения гидросферы, поверхностных и подземных вод. Проникновение загрязняющих веществ в круговорот воды. Методы и способы очистки сточных вод.

    презентация [3,1 M], добавлен 18.05.2010

  • Анализ содержания загрязняющих веществ в снежном покрове придорожной территории. Расчет коэффициента концентрации загрязняющих веществ и показателя загрязнения атмосферных осадков. Источники загрязнения, экологические нагрузки загрязняющих веществ.

    курсовая работа [188,5 K], добавлен 05.12.2012

  • Мировой водный баланс и принципы его поддержания, распределение водных масс в гидросфере земли. Природно-климатические условия исследуемого района работ. Основные источники загрязнения подземных вод, место и значение среди них нефтяного загрязнения.

    дипломная работа [118,9 K], добавлен 06.06.2015

  • Влияние городов на биосферу и здоровье людей, их воздействие на литосферу, почвы, атмосферу. Промышленность как фактор загрязнения окружающей среды. Гидрогеологическая характеристика и общая оценка подземных вод. Основные источники их загрязнения.

    дипломная работа [72,8 K], добавлен 01.02.2015

  • Подземные воды как часть геологической среды. Практическое значение подземных вод. Характеристика техногенного воздействия на подземные воды (загрязнение подземных вод). Вода в промышленности, охрана источников питьевого водоснабжения от загрязнения.

    презентация [1,9 M], добавлен 18.06.2012

  • Понятие и структура почвы. Источники ее загрязнения. Виды загрязняющих природную среду веществ. Характеристики основных загрязнителей. Методы их контроля Исследование почв территории поселка по содержанию в них кислотности, железа, нитратов и кальция.

    курсовая работа [587,8 K], добавлен 27.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.