Энергия в экосистемах, жизнь как термодинамический процесс

Рассмотрение процесса обмена энергией в экосистемах. Характеристика первого Закона термодинамики или закона сохранения энергии. Изучение трофической цепи. Оценка экологической пирамиды. Законы воздействия экологических факторов на живые организмы.

Рубрика Экология и охрана природы
Вид лекция
Язык русский
Дата добавления 26.09.2017
Размер файла 403,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Энергия в экосистемах, жизнь как термодинамический процесс

Рассмотрим процесс обмена энергией в экосистемах.

Энергию определяют, как способность производить работу. Свойства энергии описываются законами термодинамики.

Первый Закон (начало) термодинамики или закон сохранения энергии утверждает, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново.

Второй закон (начало) термодинамики или закон энтропии утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше ее энтропия.

Самопроизвольные процессы ведут систему к состоянию равновесия с окружающей средой, к росту энтропии, производству положительной энтропии. Если неживую неуравновешенную с окружающей средой систему изолировать, то всякое движение в ней скоро прекратится, система в целом угаснет и превратится в инертную группу материи, находящуюся в термодинамическом равновесии с окружающей средой, то есть в состоянии с максимальной энтропией. Это наиболее вероятное для системы состояние и самопроизвольно без внешних воздействий она выйти из него не сможет. Так, например, раскаленная сковородка, остыв, рассеяв тепло, сама уже не нагреется; энергия при этом не потерялась, она нагрела воздух, но изменилось качество энергии, она уже не может совершать работу. Таким образом, в неживых системах устойчиво их равновесное состояние.

У живых систем есть одно принципиальное отличие от неживых - они совершают постоянную работу против уравновешивания с окружающей средой. Это утверждение имеет следующий термодинамический смысл: как в неживых системах устойчиво их равновесное состоянии, так в живых системах устойчиво неравновесное состояние.

Жизнь - это единственный на Земле естественный самопроизвольный процесс, в котором энтропия системы уменьшается. Почему это возможно? Все живые системы являются открытыми для обмена энергией. В окружающей их среде есть огромное количество даровой энергии Солнца, а в составе самой живой системы есть компоненты, обладающие механизмами, позволяющими эту энергию улавливать (извлекать), концентрировать, а затем снова рассеивать в окружающую среду. Как рассмотрено выше, рассеивание энергии, то есть увеличение энтропии, - это процесс, характерный для любой системы, как неживой, так и живой, самостоятельное улавливание и концентрирование энергии - это способность только живой системы. При этом происходит извлечение порядка, организации их окружающей среды, то есть выработка отрицательной энергии - негоэнтропии. Такой процесс образования порядка в системе из хаоса окружающей среды называется самоорганизацией. Он ведет к уменьшению энтропии живой системы, противодействует ее уравновешиванию с окружающей средой, то есть росту энтропии, что для живой системы при достижении максимальной энтропии - равновесия с окружающей средой - означает смерть.

Таким образом, любая живая система, в том числе и экосистема, поддерживает свою жизнедеятельность благодаря, во-первых, наличию в окружающей среде в избытке даровой энергии; во-вторых, способности за счет устройства составляющих ее компонентов эту энергию улавливать и концентрировать, а использовав - рассеивать в окружающую среду. Даровая энергия окружающей среды - это энергия Солнца. Доходящая до Земли энергия Солнца улавливается в количестве 1 %. Этого одного процента энергии достаточно для обеспечения ей всего живого вещества планеты и поддержания им состояния с низкой энтропией. Улавливают энергию Солнца и превращают ее в потенциальную энергию органического вещества растения - продуценты. Весь остальной живой мир получает необходимую для жизнедеятельности энергию, в основном поедая их.

Трофическая цепь (цепь питания)

Перенос энергии пищи от ее источника - продуцента через ряд организмов, происходящий путем поедания одних организмов другими, называется пищевой или трофической цепью.

Перенос энергии по трофической цепи осуществляется следующим образом: животное употребило в пищу растение или консумента более низкого порядка. Содержащееся в пище органическое вещество расщепляется в присутствии кислорода с выделением энергии. Этот процесс, обратный фотосинтезу, называется дыханием. Он имеет место в каждой клетке живого организма, поэтому его еще называют клеточным дыханием:

C6H12O6 + 6О2 > 6СО2 + 6Н2О + энергия

Около 90 % выделившейся энергии расходуется организмом на поддержание своей жизнедеятельности, то есть на обеспечение всех необходимых ему функций, после чего она в виде выделяемого организмом тепла рассеивается в окружающую среду и по сути дела безвозвратно теряется для всей живой системы. И только около 10 % энергии идет на построение тела, рост и размножение организма. Именно эти 10 % энергии и доступны следующему трофическому уровню. Таким образом, энергии с переходом от одного уровня к другому остается все меньше. Но здесь нужно иметь в виду, что чем выше трофический уровень, тем в более концентрированной форме содержится в живых организмах энергия. Это объясняется присущей только живому веществу спецификой - обладанием механизмами концентрирования энергии. Таким образом, сначала улавливание, а затем концентрирование энергии с переходом от одного трофического уровня к другому обеспечивает повышение упорядоченности, организации живой системы, то есть уменьшение ее энтропии. Для поддержания низкой энтропии в равной степени важно, чтобы у элементов системы были эффективные механизмы как для улавливания и концентрации энергии - извлечения негоэнтропии из окружающей среды, так и для рассеивания ее в окружающую среду - освобождение от накапливающейся положительной энтропии. В таком сочетании они есть только в живых системах. Поэтому жизнь как термодинамический процесс представляет собой непрерывный обмен живых систем с окружающей средой, при котором происходит освобождение от производимой положительной энтропии и извлечение отрицательной, то есть порядка и организации.

Необходимо понимать, что энтропия уменьшается в конкретной локальной зоне, при этом в окружающей среде она возрастает. Таким образом, рост упорядоченности в одной части системы приводит к усилению неупорядоченности в других ее частях.

Для описания поведения энергии в экосистемах употребляют термин поток энергии, поскольку в отличие от циклического движения вещества превращения энергии идут в одном направлении. Энергия, однажды использованная каким-либо организмом, превращается в тепло и утрачивается для экосистемы. Она не может быть снова "пущена в дело" как вода или неорганические вещества, по отношению к которым используется термин круговорот воды и веществ. Для своей жизнедеятельности каждый живой компонент, будь то организм или экосистема, должен получать от окружающей среды на входе постоянный приток дополнительной энергии. Живые замкнутые термодинамические системы невозможны.

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или их биомассой, или заключенной в них энергией, рассчитанных на единицу площади в единицу времени. Графически трофическую структуру сообщества представляют в виде пирамиды (рис. 1). Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а последующие уровни образуют следующие этажи пирамиды. При этом высота всех блоков - этажей одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. В зависимости от того, количественное соотношение, каких величин отражает пирамида, она называется пирамидой чисел, биомасс или энергий.

Рис. 1 Экологическая пирамида

Из количественных оценок, связанных с энергией, для трофических цепей известно правило десяти процентов: с одного трофического уровня экологической пирамиды энергий на другой в среднем переходит около 10 % энергии, поступающей на предыдущий уровень.

Законы воздействия экологических факторов на живые организмы

Несмотря на многообразие экологических факторов и различную природу их происхождения, существуют некоторые общие правила и закономерности их воздействия на живые организмы.

Для жизни организмов необходимо определенное сочетание условий. Если все условия среды обитания благоприятны, за исключением одного, то именно это условие становится решающим для жизни рассматриваемого организма. Оно ограничивает (лимитирует) развитие организма, поэтому называется лимитирующим фактором. Первоначально было установлено, что развитие живых организмов ограничивает недостаток какого-либо компонента, например, минеральных солей, влаги, света и т.п. В середине XIX века немецкий химик органик Юстас Либих первым экспериментально доказал, что рост растения зависит от того элемента питания, который присутствует в относительно минимальном количестве Он назвал это явление законом минимума; в честь автора его еще называют законом Либиха. энергия экосистема термодинамика трофический

В современной формулировке закон минимума звучит так: выносливость организма определяется самым слабым звеном в цели его экологических потребностей. Однако, как выяснилось позже, лимитирующим может быть не только недостаток, но и избыток фактора, например, гибель урожая из-за дождей, перенасыщение почвы удобрениями и т.п. Понятие о том, что наравне с минимумом лимитирующим фактором может быть и максимум, ввел спустя 70 лет после Либиха ввел американский зоолог В.Шелфорд, сформулировавший закон толерантности. Согласно закону толерантности лимитирующим фактором процветания популяции (организма) может быть как минимум, так и максимум экологического воздействия, а диапазон между ними определяет величину выносливости (предел толерантности) или экологическую валентность организма к данному фактору (рис.3).

Благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения. Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование организма или популяции уже невозможно.

Принцип лимитирующих факторов справедлив для всех типов живых организмов - растений, животных, микроорганизмов и относится как к абиотическим, так и к биотическим факторам. Например, лимитирующим фактором для развития организмов данного вида может стать конкуренция со стороны другого вида. В земледелии лимитирующим фактором часто становятся вредители, сорняки, а для некоторых растений лимитирующим фактором развития становится недостаток (или отсутствие) представителей другого вида. Например, в Калифорнию из Средиземноморья завезли новый вид инжира, но он не плодоносил, пока оттуда же не завезли единственный для него вид пчел- опылителей.

В соответствии с законом толерантности любой избыток вещества или энергии оказывается загрязняющим среду началом. Так, избыток воды даже в засушливых районах вреден и вода может рассматриваться как обычный загрязнитель, хотя в оптимальных количествах она просто необходима. В частности, избыток воды препятствует нормальному почвообразованию в черноземной зоне.

Виды, для существования которых необходимы строго определенные экологические условия, называют стенобиотными, а виды, приспосабливающиеся к экологической обстановке с широким диапазоном изменения параметров, - эврибиотными. Предел толерантности организма изменяется при переходе из одной стадии развития в другую. Часто молодые организмы оказываются более уязвимыми и более требовательными к условиям среды, чем взрослые особи.

До сих пор речь шла о пределе толерантности живого организма по отношению к одному фактору, но в природе все экологические факторы действуют совместно.

Оптимальная зона и пределы выносливости организма по отношению к какому-либо фактору среды могут смещаться в зависимости от того, в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия факторов. Например, известно, что жару легче переносить при сухом, а не влажном воздухе; угроза замерзания значительно выше при низкой температуре с сильным ветром, чем в безветренную погоду. Для роста растений необходим, в частности, такой элемент, как цинк, именно он часто оказывается лимитирующим фактором. Но для растений, растущих в тени, потребность в нем меньше, чем для находящихся на солнце. Происходит так называемая компенсация действия факторов.

Однако взаимная компенсация имеет определенные пределы и полностью заменить один из факторов другим нельзя. Полное отсутствие воды или хотя бы необходимых элементов минерального питания делает жизнь растений невозможной, несмотря на самые благоприятные сочетания других условий. Отсюда следует вывод. что все условия среды, необходимые для поддержания жизни, играют равную роль и любой фактор может, ограничивать возможности существования организмов - это закон равнозначности всех условий жизни.

Известно, что каждый фактор неодинаково влияет на разные функции организма. Условия, оптимальные для одних процессов, например для роста организма, могут оказаться зоной угнетения для других, например для размножения, и выходить за пределы толерантности, то есть приводить к гибели, для третьих. Поэтому жизненный цикл, в соответствии с которым организм в определенные периоды осуществляет преимущественно те или иные функции - питание, рост, размножение, расселение, - всегда согласован с сезонными изменениями факторов среды, как, например, с сезонностью в мире растений, обусловленной сменой времен года.

Среди законов, определяющих взаимодействие индивида или особи с окружающей его средой, выделим правило соответствия условий среды генетической предопределенности организма. Оно утверждает, что вид организмов может существовать до тех пор и постольку, поскольку окружающая его природная среда соответствует генетическим возможностям приспособления данного вида к ее колебаниям и изменениям. Каждый вид живого возник в определенной среде, в той или иной степени приспособился к ней и дальнейшее существование вида возможно лишь в данной или близкой к ней среде. Резкое и быстрое изменение среды жизни может привести к тому, что генетические возможности вида окажутся недостаточными для приспособления к новым условиям. На этом, в частности, основана одна из гипотез вымирания крупных пресмыкающихся с резким изменением абиотических условий на планете: крупные организмы менее изменчивы, чем мелкие, поэтому для адаптации им нужно гораздо больше времени. В связи с этим коренные преобразования природы опасны для существующих видов, в том числе и для самого человека.

Функционирование биосферы

Все экосистемы, даже самая крупная -- биосфера, являются открытыми системами: они должны получать и отдавать энергию. Разумеется, экосистемы, входящие в биосферу, также в разной степени открыты для потоков веществ, для иммиграции и эмиграции организмов. Поэтому концепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и самоподдержания экосистемы среды на входе и среды на выходе. Функционирующая реальная экосистема должна иметь вход и в большинстве случаев пути оттока переработанной энергии и веществ.

Принципиальное различие между потоками вещества и энергии в экосистеме заключается в том, что биогенные элементы, составляющие органическое вещество, могут многократно участвовать в круговороте веществ, тогда как поток энергии однонаправлен и необратим. Каждая порция энергии используется только однократно. В соответствии со вторым законом термодинамики на каждом этапе трансформации энергии значительная ее часть неизбежно теряется, рассеивается в виде теплоты.

Биосфера -- глобальная экосистема. Она не образует сплошного слоя с четкими границами, а как бы «пропитывает» другие геосферы планеты, охватывая всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы.

Биосфера -- это совокупность частей земных оболочек (лито-, гидро- и атмосферы), которая заселена живыми организмами, находится под их воздействием и занята продуктами их жизнедеятельности.

Учение о биосфере В.И. Вернадского

Развернутое развитие учения о биосфере принадлежит В.И. Вернадскому, исключительно важное место в трудах В.И. Вернадского занимают пионерные представления о роли человека в эволюции природы Земли. Эти взгляды позднее стали известны как учение о ноосфере -- сфере разума -- человеческой «оболочке» Земли.

Согласно В.В. Вернадскому вещество биосферы состоит из:

* живого вещества -- биомассы современных живых организмов;

* биогенном вещества -- всех форм детрита, а также торфа, угля, нефти и газа биогенного происхождения;

* биокосного вещества -- смесей биогенных веществ с минеральными породами небиогенного происхождения (почва, илы, природные воды, газо- и нефтеносные сланцы, часть осадочных карбонатов);

* косного вещества -- горных пород, минералов, осадков, не затронутых прямым биогеохимическим воздействием организмов.

Вернадский подчеркивал, для строения биосферы характерны физико-химическая и геометрическая разнородности. Разнородность строения является господствующим фактором, резко отличающим биосферу от всех других оболочек земного шара. Живое вещество едва ли составляет 1-2 сотых процента по весу, но геологически оно является самой большой силой в биосфере, определяет все идущие в ней процессы. Биосфера состоящая из разнородных структур - живого и неживого вещества, поддерживает в состоянии динамического равновесия все протекающие в ней процессы благодаря непрерывному потоку (круговороту) атомов из косной материи через живое вещество снова в неживую природу. Геологическая роль живых организмов состоит в создании современного газового состава атмосферы, формировании горных пород, вод мирового океана. На основании учения Вернадского в настоящее время биосферу определяют как активную оболочку Земли, в которой совокупная деятельность живых организмов проявляется как геохимический фактор планетарного масштаба.

Одним из уникальных этапов эволюции биосферы явилось возникновение разума и интеллекта как высшей познавательной способности живого организма. Благодаря появлению разума возникает общество - совокупность индивидуумов, способных к совместному труду и к планомерной деятельности. Появление интеллекта радикальным образом ускорило темпы практически всех процессов, протекающих во внешней оболочке Земли - биосфере. Но, вследствие появления интеллекта развитие человека как биологического вида стало замедляться. Эволюция, морфологическое совершенствование человека, в том числе и развитие мозга, закончилось. Появление жизни на планете - это реализация одной из возможных форм самоорганизации материи. Поэтому необходимо понимать, что человек как биологический вид, обладающий разумом, есть явление уникальное и неповторимое, но он - всего-навсего одна из бесчисленного множества возможных реализаций самоорганизации материи и развиваться вопреки законам функционирования биосферы не может. Он просто будет уничтожен породившей его вселенной, в которой будут реализовываться все новые и новые формы самоорганизации материи, поэтому, мысля космическими категориями, у человека нет другого выхода и выбора, как действовать в согласии с планетарными объективными законами эволюции. Человек превращается в решающую геологообразующую силу, развитие окружающей среды и общества сделаются неразрывными, биосфера должна будет перейти однажды в сферу разума - в ноосферу, в результате чего развитие планеты сделается направленным - направляемым силой разума. Вернадский считал, что согласованное с природой развитие общества потребуют специальной организации общества, создания специальных структур, которые будут способны обеспечить это совместное согласованное развитие. Выполнение принципа совместного развития потребует от человечества регламентации своих действий, определенных ограничений. Уже сегодня человечество подвело планету к той предельной черте, дальше которой начинаются необратимые процессы.

Грозящая всему человечеству катастрофа состоит в том, что нарушен один из признаков, которым должна обладать экосистема: биосфера как экосистема деятельностью человека выведена из состояния устойчивости. В силу своих масштабов и многообразия взаимосвязей она не должна от погибнуть, она перейдет в новое устойчивое состояние изменив при этом свою структуру, прежде неживую, а вслед за ней неизбежно и живую. Человек как биологический вид меньше других имеет приспособиться к новым быстро изменяющимся условиям и, скорее всего, исчезнет первым. Поучительным и наглядным тому примером является история острова Пасхи.

На одном из полинезийских островов, носящем название острова Пасхи, в результате сложных миграционных процессов в VII веке возникла замкнутая изолированная от всего мира цивилизация. В благоприятном субтропическом климате она за сотни лет существования достигла известных высот развития, создав самобытную культуру и письменность, до наших дней не поддающуюся расшифровке. А в ХVII веке она без остатка погибла, уничтожив вначале растительный и животный мир острова, а затем погубив себя в прогрессирующей дикости и каннибализме. У последних островитян не осталось уже воли и материала, чтобы построить спасительные лодки или плоты. В память о себе исчезнувшее сообщество оставило полупустынный остров с гигантскими каменными фигурами - свидетелями былого могущества.

Биогеохимические принципы В.И.Вернадского.

Первый. Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению. Прогрессивная эволюция любой экосистемы ведет к увеличению суммарного протока энергии через нее. Эта закономерность проявляется в способности живого к распространению, к развитию, во «всюдности жизни» (выражение В.И. Вернадского).

Второй. Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, идет в направлении, усиливающем биогенную миграцию атомов. Согласно этому принципу преимущества в ходе эволюции получают те организмы, которые приобрели способность усваивать новые формы энергии или «научились» полнее использовать химическую энергию, запасенную в других организмах.

Третий. Живое вещество находится в непрерывном химическом обмене с космической средой, его окружающей, и создается и поддерживается на нашей планете космической энергией Солнца. Этот принцип очень важен для понимания тех процессов, которые обычно называют «самоорганизацией биологических структур».

Основные функции биосферы.

Благодаря способности трансформировать солнечную энергию в энергию химических связей растения и другие организмы выполняют ряд фундаментальных биогеохимических функций планетарного масштаба.

Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания растений и животных. Растения сыграли решающую роль в смене восстановительной среды на окислительную, в эволюции планеты и в формировании современной атмосферы. Они строго контролируют концентрацию кислорода и СО2, оптимальные для всей современной биоты.

Концентрационная функция. Пропуская через свое тело большие объёмы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию и концентрирование химических элементов. Это относится не только к биосинтезу органики, но и к таким явлениям, как образование толщ осадочных известняков, месторождений серы, некоторых металлических руд и т.п. Ранние этапы биологической эволюции проходили в водной среде. Организмы научились извлекать из разбавленного водного раствора необходимые для них вещества, многократно увеличивая их концентрацию в своем теле.

Окислительно-восстановительная функция живого вещества тесно связана с биогенной миграцией элементов и концентрированием веществ. Многие вещества в природе крайне устойчивы и не подвергаются окислению при обычных условиях. Например, молекулярный азот - один из важнейших биогенных элементов, является устойчивым. Но живые клетки располагают настолько эффективными катализаторами -- ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может происходить в абиогенной среде.

Информационная функция живого вещества биосферы. Именно с появлением первых примитивных живых существ на планете появилась и активная («живая») информация, отличающаяся от той «мертвой» информации, которая, по Л.Бриллюэну, является простым отражением структуры. Организмы оказались способными к получению информации путем соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и перерабатывать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором.

Перечисленные функции живого вещества экосферы обращены в основном к внешним факторам существования. Все вместе они образуют мощную средообразующую функцию экосферы. Деятельность живых организмов обусловила современный состав атмосферы, от которой зависят радиационный и тепловой режимы на планете, спектральный состав достигающего поверхности Земли солнечного света. Растительный покров существенно определяет водный баланс, распределение влаги и климатические особенности больших пространств. Живые организмы играют ведущую роль в самоочищении воздуха, рек и озер, от них во многом зависит солевой состав природных вод и распределение многих химических веществ между сушей и океаном. Благодаря растениям, животным и микроорганизмам создается почва и поддерживается ее плодородие. Следует четко представлять, что окружающая нас среда - это не возникшая когда-то фиксированная и непреходящая физическая данность, а живое дыхание природы, каждое мгновенье создаваемое работой множества живых существ.

Средообразующая функция экосферы тесно связана со средорегулирующей функцией -- биотической регуляцией окружающей среды. Таким образом, биота экосферы формирует и контролирует состояние окружающей среды.

Законы экологии

Все связано со всем (о всеобщей связи вещей и явлений в природе). Все живое на Земле подчинено единому потоку солнечной энергии, включено в глобальные круговороты веществ - все это связывает пространственно удаленные природные комплексы и придает биосфере признаки единой коммуникативной системы. Следствиями из этого закона являются:

Закон больших чисел - совокупное действие большого числа случайных факторов приводит к результату, почти не зависящему от общих условий, не случайному результату (хаотическое движение молекул в объеме газа приводит к определенным значениям температуры и давления).

Принцип Ле Шателье- Брауна - при внешнем воздействии, выводящем систему из состояния устойчивого равновесия , это равновесие смещается в направлении, при котором эффект внешнего воздействия уменьшается. На биологических уровнях он реализуется в виде способности экологических систем к авторегуляции:

любое частое изменение в системе неизбежно приводит к развитию цепных реакций, идущих в сторону нейтрализации произведенного изменения;

любая система функционирует с наибольшей эффективностью;

любые изменения в природе оказывают прямое или опосредованное воздействие на человека.

Все должно куда-то деваться (о законах сохранения). В отличие от человеческого производства природы в целом безотходна - замкнутость круговорота веществ в биосфере. Деятельность человека привела к возникновению высоких концентраций ряда элементов и появлению стойких синтетических соединений, чужеродных живым организмам - ксенобиотикам. Поскольку из всего колоссального объема материалов и веществ, извлекаемых из недр, перерабатываемых и синтезируемых человеком в природный круговорот попадает лишь малая часть, в природе появляется мусор и нарушается замкнутость круговорота веществ. Законы сохранения имеют постулаты:

закон развития системы за счет окружающей среды. Абсолютное саморазвитие невозможно.

закон неустранимости отходом, согласно которому образующиеся отходы не могут быть устранены, они могут быть переведены из одной формы ы другую или перемещены в пространстве.

Ничто не дается даром (о цене развития).

Системы эволюционируют в сторону усложнения и совершенствования организации.

Любое новое приобретение в эволюции сопровождается утратой старых и возникновению новых свойств.

С ростом сложности организации систем темпы эволюции возрастают.

Не существует «бесплатных» ресурсов.

Природа знает лучше (о главном критерии эволюционного отбора). По изобретательности использования законов природы, совершенству, экономичности и эффективности технические устройства намного уступают биологическим системам. Сопоставим: гидравлический компрессор - сердце, компьютер - человеческий мозг и т.д. Все в природе должно было пройти жестокий конкурс на вакансию в биосфере. Главный критерий этого отбора - вписанность в глобальный биотический круговорот, увеличении его эффективности, заполнение всех экологических ниш. У любого вещества должен существовать разлагающий его фермент и продукты распада должны вновь вовлекаться в круговорот. Каждый биологический вид, нарушающий круговорот вымирал. Деятельность человека многократно нарушает естественные круговороты.

На всех не хватит (закон ограниченности ресурсов). В природе организмы размножаются с интенсивностью, обеспечивающей максимально возможное число. Масса питательных веществ на Земле ограничена. Поэтому значительное увеличение численности и массы каких-либо организмов может происходить только за счет уменьшения численности и массы других организмов. Этот закон - источник всех форм конкуренции, соперничества и антагонизма в природе.

Главные проблемы и задачи экологии

Безудержный экономический рост и техногенный тип мирового хозяйства привели к возникновению глобальных экологических проблем: опустыниванию, обезлесению, истощению природных ресурсов, разрушению озонового слоя, парниковому эффекту, кислотным дождям, дефициту пресной воды, загрязнению Мирового океана, исчезновению видов животных и растений, деградации земель и др.

Объем антропогенного воздействия на природу и окружающую человека среду в ХХ веке стал слишком велик и приблизился к пределу устойчивости биосферы, а по некоторым параметрам и превзошел его. Проявления и свидетельства этого многообразны:

деградация естественных экосистем уменьшает биологическое разнообразие и нарушает природные потоки вещества и энергии;

потребление возобновимых (пресная вода, почвенный гумус, продукция растений) природных ресурсов превысило темпы их естественного воспроизводства;

резко сокращаются запасы многих не возобновимых (минеральные, топливные ресурсы);

отходы производства и потребления содержат множество веществ, не утилизируемых в естественных круговоротах;

антропогенное воздействие нарушило естественные круговороты, появились признаки нарушения биосферного равновесия.

Размещено на Allbest.ru

...

Подобные документы

  • Обмен энергией в экосистеме. Переход энергии из одной формы в другую согласно первому закону термодинамики. Возрастание энтропии в замкнутой системе согласно второму закону термодинамики. Процессы, связанные с превращениями энергии в экосистемах.

    презентация [1,6 M], добавлен 22.12.2013

  • Специфика экологических задач. Система живых и неживых компонентов. Превращение энергии внутри экологической системы. Свойства живых систем. Показатель отношения гетеротрофного метаболизма к автотрофному. Живые организмы и их абиотическое окружение.

    реферат [139,6 K], добавлен 03.04.2011

  • Понятие, структура и виды экосистем. Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах. Особенности циркуляции солнечной энергии. Биосфера как глобальная экосистема; взаимодействие живого и неживого, биогенная миграция атомов.

    курсовая работа [67,1 K], добавлен 10.07.2015

  • Состав и структура экологической системы. Биотический круговорот веществ и энергия в экологической системе. Перенос веществ и энергии в природных экосистемах. Пример наземной экосистемы дубравы. Экологическая система в виде диаграммы потока энергии.

    презентация [6,8 M], добавлен 11.06.2010

  • Общие правила и закономерности влияния экологических факторов на живые организмы. Классификация экологических факторов. Характеристика абиотических и биотических факторов. Понятие об оптимуме. Закон минимума Либиха. Закон лимитирующих факторов Шелфорда.

    курсовая работа [445,5 K], добавлен 06.01.2015

  • Теоретические основы биоиндикации. Закономерности воздействия экологических факторов на живые организмы: правило "оптимума". Анализ взаимосвязи регуляции обмена веществ и биоиндикации. Биохимические и физиологические реакции на антропогенные стрессоры.

    курс лекций [841,1 K], добавлен 29.05.2010

  • Влияние экологических факторов на состояние экосистем. Особенности воздействия солнечного света. Состав лучистой энергии, воздействие на растения видимого света. Сезонная ритмичность в жизнедеятельности организмов, тепловой режим. Криофилы и термофилы.

    лекция [15,8 K], добавлен 15.11.2009

  • Циклы и цепи питания биоценоза: продуценты или производители, консументы или потребители, это редуценты или деструкторы - разрушители органического вещества. Анализ экологической пирамиды. Получение потоков энергии в экосистеме через цепи питания.

    реферат [226,7 K], добавлен 07.06.2009

  • Предмет экологии и задачи ее изучения в процессе подготовки специалистов в области экономики. Понятия среды обитания и экологических факторов. Закон сохранения и превращения энергии. Равновесие замкнутых открытых систем. Природа тепловой формы энергии.

    реферат [41,1 K], добавлен 10.10.2015

  • Ознакомление с особенностями трофических уровней в экосистеме. Рассмотрение основ передачи вещества и энергии по цепи питания, выедания и разложения. Анализ правила пирамиды биологической продукции - закономерности создания биомассы в цепях питания.

    презентация [1,2 M], добавлен 21.01.2015

  • Ртуть в водных экосистемах, ее распространенность и свойства. Источники поступления и место в водных экосистемах. Методы определения ртути (холодного пара и атомной флуоресценции), а также используемые в данном процессе анализаторы. Уровни ртути в Оби.

    курсовая работа [1,6 M], добавлен 22.01.2017

  • Влажность и адаптация к ней организмов. Типы взаимоотношений организмов в биоценозах. Передача энергии в экосистемах. Пищевая специализация и энергетический баланс консументов. Антропогенное воздействие на литосферу. Процессы водной и ветровой эрозии.

    реферат [32,4 K], добавлен 21.02.2012

  • Социально-политическая роль экологии в обществе. Процесс и механизм передачи энергии в экосистемах, последствия его нарушения. Система экологических нормативов и стандартов. Методы контроля качества воды. Экономический механизм охраны окружающей среды.

    контрольная работа [19,5 K], добавлен 07.10.2013

  • Понятие и сущность экологических факторов, анализ законов их воздействия на живые организмы. Описание круговорота элементов в экосистеме, их изменения при стрессовых воздействиях. Методика расчета выбросов загрязняющих веществ автомобильным транспортом.

    контрольная работа [24,1 K], добавлен 05.10.2010

  • Экосистема как основная функциональная единица экологии, включающая живые организмы и абиотическую среду, схема строения биогеоценоза. Влияние природных и антропогенных факторов на экосистемы. Пути разрешения кризисного состояния экологических систем.

    реферат [72,3 K], добавлен 27.11.2009

  • Основные особенности экологической ниши. Характеристика и сущность закона толерантности Шелфорда. Значение лимитирующего фактора в жизнедеятельности организма. Существование видов в биогеоценозе. Формулировка закона минимума и анализ закона толерантности.

    контрольная работа [83,7 K], добавлен 12.12.2011

  • Воздействие экологических факторов окружающей среды (климата, температуры, влажности) на живые организмы. Проявление биотических факторов во взаимоотношениях организмов при совместном обитании: хищничество, паразитизм, симбиоз. Свойства популяции.

    реферат [20,9 K], добавлен 06.07.2010

  • Общая характеристика оппортунистических грибов. Плесневые грибы в природных и антропогенных экосистемах. Повреждение материалов и изделий плесневыми грибами. Заболевания, вызываемые плесневыми грибами. Паразитарная адаптация возбудителей микозов.

    курсовая работа [1,7 M], добавлен 07.06.2016

  • Процесс преобразования энергии в пастбищных и детритных пищевых цепях. Взаимозависимость интенсивности метаболизма и размеров особи на трофическом уровне. Методи определения питания гетеротрофов: изучения содержания желудка, использование изотопных меток.

    презентация [86,7 K], добавлен 09.09.2010

  • Изменения экологических факторов, из зависимость от деятельности человека. Особенности взаимодействия экологических факторов. Законы минимума и толерантности. Классификация экологических факторов. Абиотические, биотические и антропические факторы.

    курсовая работа [1,1 M], добавлен 07.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.