Оценка взаимосвязи между содержанием железа и концентрацией гидрокарбонатов в воде Волгоградского водохранилища

Изучение источников поступления тяжелых металлов в водные объекты, факторов, влияющих на их содержание, а также поведения тяжелых металлов в экосистеме водоема. Выявление зависимости изменения содержания железа от концентрации гидрокарбонатов в воде.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 17.11.2017
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

по дисциплине: Системная экология

Оценка взаимосвязи между содержанием железа и концентрацией гидрокарбонатов в воде Волгоградского водохранилища

Москва 2013

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1 СОДЕРЖАНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОВЕРХНОСТНЫХ ВОДАХ

1.1 Источники поступления тяжелых металлов в водные объекты

1.2 Поведение тяжелых металлов в экосистеме водоема

1.3 Факторы, влияющие на содержание тяжелых металлов в поверхностных водах

2 ОБЪЕКТ И МЕТОДЫ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

2.1 Объект и предмет исследований

2.2 Методы исследований

3 ВЛИЯНИЕ КОНЦЕНТРАЦИИ ГИДРОКАРБОНАТОВ НА СОДЕРЖАНИЕ ЖЕЛЕЗА В ВОДЕ ВОЛГОГРАДСКОГО ВОДОХРАНИЛИЩА

ВЫВОДЫ

ИНДИВИДУАЛЬНЫЕ ДАННЫЕ К ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ

тяжелый металл водоем железо

Цель выполняемой работы: изучение взаимосвязи между содержанием железа и концентрацией гидрокарбонатов в воде Волгоградского водохранилища.

Задачи исследований:

1. Определить наличие и тесноту связи между содержанием железа и концентрацией гидрокарбонатов в воде.

2. Выявить зависимость изменения содержания железа от изменения концентрацией гидрокарбонатов в воде.

3. Исходные данные.

Гидрокарбонаты

Железо

Гидрокарбонаты

Железо

x

y

x

y

1

119,70

0,100

16

147,30

0,160

2

169,80

0,250

17

154,30

0,230

3

130,50

0,130

18

151,80

0,180

4

152,00

0,170

19

150,70

0,230

5

153,00

0,140

20

140,30

0,170

6

136,80

0,120

21

155,30

0,190

7

113,60

0,050

22

158,40

0,210

8

131,30

0,080

23

150,20

0,200

9

130,20

0,150

24

148,50

0,190

10

129,60

0,090

25

170,79

0,260

11

116,95

0,050

26

144,30

0,150

12

143,20

0,180

27

133,80

0,070

13

138,70

0,100

28

160,30

0,220

14

146,40

0,210

29

121,50

0,100

15

147,30

0,230

30

158,70

0,220

ВВЕДЕНИЕ

Среди загрязнителей биосферы, представляющих наибольший интерес для различных служб контроля ее качества, металлы (в первую очередь тяжелые, то есть имеющие атомный вес больше 40) относятся к числу важнейших. В значительной мере это связано с биологической активностью многих из них. На организм человека и животных физиологическое действие металлов различно и зависит от природы металла, типа соединения, в котором он существует в природной среде, а также его концентрации.

Многие тяжелые металлы проявляют выраженные комплексообразующие свойства. Так, в водных средах ионы этих металлов гидратированы и способны образовывать различные гидроксокомплексы, состав которых зависит от кислотности раствора. Если в растворе присутствуют какие-либо анионы или молекулы органических соединений, то ионы этих металлов образуют разнообразные комплексы различного строения и устойчивости. В ряду тяжелых металлов одни крайне необходимы для жизнеобеспечения человека и других живых организмов и относятся к так называемым биогенным элементам. Другие вызывают противоположный эффект и, попадая в живой организм, приводят к его отравлению или гибели. Эти металлы относят к классу ксенобиотиков, то есть чуждых живому.

Специалистами по охране окружающей среды среди металлов-токсикантов выделена приоритетная группа. В нее входят кадмий, медь, мышьяк, никель, ртуть, свинец, цинк и хром как наиболее опасные для здоровья человека и животных. Из них ртуть, свинец и кадмий наиболее токсичны. К возможным источникам загрязнения биосферы тяжелыми металлами относят предприятия черной и цветной металлургии (аэрозольные выбросы, загрязняющие атмосферу, промышленные стоки, загрязняющие поверхностные воды), машиностроения (гальванические ванны меднения, никелирования, хромирования, кадмирования), заводы по переработке аккумуляторных батарей, автомобильный транспорт.

Кроме антропогенных источников загрязнения среды обитания тяжелыми металлами существуют и другие, естественные, например вулканические извержения: кадмий обнаружили сравнительно недавно в продуктах извержения вулкана Этна на острове Сицилия в Средиземном море. Увеличение концентрации металлов-токсикантов в поверхностных водах некоторых озер может происходить в результате кислотных дождей, приводящих к растворению минералов и пород, омываемых этими озерами. Все эти источники загрязнения вызывают в биосфере или ее составляющих (воздухе, воде, почвах, живых организмах) увеличение содержания металлов-загрязнителей по сравнению с естественным, так называемым фоновым уровнем. Хотя, как было упомянуто выше, попадание металла-токсиканта может происходить и путем аэрозольного переноса, в основном они проникают в живой организм через воду. Попав в организм, металлы-токсиканты чаще всего не подвергаются каким-либо существенным превращениям, как это происходит с органическими токсикантами, и, включившись в биохимический цикл, они крайне медленно покидают его.

Для контроля качества поверхностных вод созданы различные гидробиологические службы наблюдений. Они следят за состоянием загрязнения водных экосистем под влиянием антропогенного воздействия. Поскольку такая экосистема включает в себя как саму среду (воду), так и другие компоненты (донные отложения и живые организмы - гидробионты), сведения о распределении тяжелых металлов между отдельными компонентами экосистемы имеют весьма важное значение. Надежные данные в этом случае могут быть получены при использовании современных методов аналитической химии, позволяющих определить содержание тяжелых металлов на уровне фоновых концентраций.

Нужно отметить, что успехи в развитии методов анализа позволили решить такие глобальные проблемы, как обнаружение основных источников загрязнения биосферы, установление динамики загрязнения и трансформации загрязнителей, их перенос и миграцию. При этом тяжелые металлы были классифицированы как одни из важнейших объектов анализа.

Поскольку их содержание в природных материалах может колебаться в широких пределах, то и методы их определения должны обеспечивать решение поставленной задачи. В результате усилий ученых-аналитиков многих стран были разработаны методы, позволяющие определять тяжелые металлы на уровне фемтограммов (10 ? 15 г) или в присутствии в анализируемом объеме пробы одного атома, например никеля в живой клетке. К сложной и многогранной проблеме, которую представляют собой химические загрязнения окружающей среды тяжелыми металлами и которая охватывает различные дисциплины и уже превратилась в самостоятельную междисциплинарную область знаний, профессиональный интерес проявляют не только химики-аналитики, биологи и экологи (их деятельность традиционно связана с этой проблемой), но и медики. В потоке научной и научно-популярной информации, а также в средствах массовой информации все чаще появляются материалы о влиянии тяжелых металлов на состояние здоровья человека. Так, в США обратили внимание на проявление агрессивности у детей в связи с повышенным содержанием в их организме свинца. В других регионах планеты рост числа правонарушений и самоубийств также связывают с повышением содержания этих токсикантов в окружающей среде. Представляет интерес обсуждение некоторых химических и эколого-химических аспектов проблемы распространения тяжелых металлов в окружающей среде, в частности в поверхностных водах.

В течение достаточно длительного времени существовало твердое убеждение, что важные биологические функции выполняют только натрий, калий, магний, железо и кальций, которые в целом дают почти 99% всех атомов металла в организме человека и (кроме железа) также относятся к группе макроэлементов. Гидратированные атомы четырех из этих металлов, а именно: натрия, калия, магния и кальция, участвуют в процессах осмоса и передачи нервных сигналов, а также обусловливают прочность костной ткани скелета. Железо входит в состав молекулы гемоглобина - важнейшего белка, участвующего в связывании кислорода атмосферы и переносе его клеткам органов и тканей, то есть в процессе дыхания. Интерес к функциям переходных элементов, которые (в том числе железо) относятся к тяжелым металлам и содержатся в организме в следовых количествах, проявился сравнительно недавно. Сформировался новый раздел науки - бионеорганическая химия, изучающая структуру, свойства и реакции соединений биогенных элементов in vivo. Из-за низкого содержания в живом организме их стали называть микроэлементами.

Важность микроэлементов в осуществлении жизненных функций человека в отношении многих элементов уже доказана (марганец, цинк, молибден, фтор, иод и селен), в отношении других (хром, никель, ванадий, олово, мышьяк, кремний) вероятна. Главный критерий, по которому отличают макроэлементы от микроэлементов - потребность организма в элементе, определяемая в мг/кг массы в сутки. Все перечисленные микроэлементы в организме функционируют либо в форме гидратированных ионов, либо, подобно железу, в виде координационных соединений.

1. СОДЕРЖАНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОВЕРХНОСТНЫХ ВОДАХ

1.1 Источники поступления тяжелых металлов в водные объекты

Основными загрязнителями окружающей среды являются тяжелые металлы. К ним относятся химические элементы с относительной атомной массой свыше 40 и плотностью более 5 г/см3, хотя некоторые к тяжелым металлам относят химические элементы с атомной массой свыше 50 и плотностью более 6 г/см3.

Термин «тяжелые металлы» заимствован с технической литературы, где металлы делятся на тяжелые и легкие. В растениях тяжелые металлы входят в группу микроэлементов наряду с физиологически необходимыми, такими как цинк, медь, железо, марганец, молибден, кобальт и др. Все без исключения микроэлементы могут оказывать отрицательное влияние на растения, если концентрация их доступных форм превышает определенные пределы. Это связано с тем, что действие любых химических веществ носит строго дозовый характер. Поэтому термин «тяжелые металлы» следует применять в негативном плане по отношению к более токсичным, не нужным растению элементам, а термин микроэлементы - по отношению к физиологически полезным [1].

Известны «металлические ряды», расположенные по степени их токсичности для растений. Несмотря на некоторые их различия, можно констатировать, что наиболее ядовитыми как для высших растений, так и для микроорганизмов являются Hg, Pb, Cd, Сu, Zn, Ni, Co. К этому ряду, вероятно, также следует добавить Sn, Be, Ag.

Из большого разнообразия тяжелых металлов наибольшую опасность представляют кадмий, свинец, ртуть, цинк и медь, что связано с их высокой токсичностью [2].

В последние годы в связи с прогрессирующим загрязнением водоемов различными токсичными веществами, а также ростом хозяйственно-питьевого и промышленного водопотребления проблеме,, чистой'' воды уделяется большое внимание.

Содержание тяжелых металлов в водоемах определяется разнообразным количеством факторов. Под факторами формирования химического состава природных вод понимают причины, обусловливающие течение разнообразных процессов, которые вызывают изменения минерализации и химического состава воды. Эти факторы разделяются на физико-географические, физико-химические, физические, биологические и искусственные. Уровень концентрации тяжелых металлов может также зависеть от антропогенной нагрузки на водоем [3,4].

При оценке состояния экосистемы важно учитывать загрязненность водного объекта токсичными веществами. Наибольшую опасность среди них представляют тяжелые металлы. Известно, что в определенных концентрациях они не только влияют на качество пресных вод, но и становится токсичными для гидробионтов и аккумулируются в их тканях. По трофическим цепям металлы могут попадать в организм человека. Эти обстоятельства и обуславливают необходимость исследования загрязненности водой среды тяжелыми металлами [5,6].

С экологической точки зрения химические элементы можно условно разделить на группу необходимых для нормального протекания биологических процессов и те, участие которых в биологических процессах до настоящего времени не доказано. При этом в разряд тяжелых металлов (металлы с плотностью выше 3,5 г/см3) попадают элементы обеих групп.

Своим появлением в водной среде элементы обязаны природным процессам, развивающимся при контакте поверхностных вод с породами и почвами водосборного бассейна, а также с деятельностью человека.

В работе указывается, что особенностью поведения тяжелых металлов в водных экосистемах является то, что они не подвержены радиоактивному распаду как радионуклиды, не разлагаются и не деградируют, как токсичные органические вещества. Металлы не исчезают из водных экосистем, а постоянно перераспределяются по отдельным компонентам, накапливаются в гидробионтах различных трофических уровней [5]. Таким образом, донные отложения являются накопителем металлов-микроэлементов, попадающих в водоем, причем при интенсивной антропогенной нагрузке их концентрация в донных отложениях достигает больших величин.

В последнее время доказано, что информация о количественном содержании тяжелых металлов в природных водах недостаточно для оценки их качества и выяснения механизмов потребления водными организмами. Для решения этих вопросов крайне важным является изучение физико-химических форм металлов. Наиболее доступными являются незакомплексованные ионы. Следовательно, связывание тяжелых металлов в комплексные соединения с растворенным органическим веществом, как и адсорбция на взвесях, - процессы, существенно снижающие их токсичность.

Первым шагом к расшифровке сложных механизмов взаимодействия металлов с органическим веществом является определение преобладающих величин молекулярной массы их комплексных соединений [7,8].

В настоящее время известно значительное число источников непосредственного загрязнения водоема металлами как природного, так и антропогенного происхождения при бытовой и производственной деятельности человека. Такими источниками тяжелых металлов в водоемах являются атмосферные осадки, промышленные отходы, естественная эрозия, стоки с почв, сбросные воды ирригационных систем, городские, промышленные и бытовые стоки, добыча и выплавка металлов, ископаемое топливо, процессы горения (при котором выделяется свинец и другие металлы), рециркуляция твердых отходов [9].

При ведении сельскохозяйственного производства вымывание остатков удобрений и ядохимикатов из плодородного слоя почвы также вносит вклад в загрязнение водоемов определенными микроэлементами.

Еще один путь загрязнения вод - это самоосаждение загрязняющих веществ из воздуха, в котором содержатся выбросы промышленных предприятий, выхлопные газы. Находящиеся в воздухе частицы могут увлекаться осадками на поверхность водоемов [10].

Основным источником поступления меди в природные воды являются предприятия цветной металлургии (промышленные выбросы, отходы, сточные воды), транспорт, медьсодержащие удобрения, пестициды, процесс сварки, сжигание топлива в различных отраслях промышленности. Вынос с загрязненной металлом речной водой, стоками, осаждение из воздушной среды, а также в результате хозяйственной деятельности человека, приводят к повышению концентрации меди в поверхностных водах и, соответственно, в донных отложениях [11,12].

Выбросы промышленных предприятий являются активным источником поступления хрома в водоемы. Кроме того, хром выделяется при сжигании твердых видов топлива и активно рассеивается в атмосфере, а также проступает в окружающую среду при производстве нержавеющих сталей, красителей, химикатов, хромирования металлических изделий. Основные поставщики хромсодержащих аэрозолей в порядке уменьшения масштабов выбросов - это производство и переработка феррохрома, изготовление огнеупорных материалов, сжигание угля и производство хромовых сталей. Из-за высокой температуры кипения пары хрома быстро конденсируются в виде пленки окиси на частицах аэрозолей и разносятся ветром на большие расстояния. Также большие концентрации хрома содержатся в выбросах легкой, машиностроительной, деревообрабатывающей и химической промышленности. Непосредственным источником поступления хрома в поверхностные воды являются стоки гальванических мастерских, а также отходы процессов травления и полировки металлов. Определенный вклад вносят коммунальные сточные воды [4,13].

К числу наиболее важных источников поступления свинца относят продукты, образующиеся при высокотемпературных технологических процессах, выхлопные газы двигателей внутреннего сгорания. С выхлопными газами в атмосферу поступает до 260000 тонн свинца. Особую опасность для гидросферы представляют сточные воды производств. Ареал рассеивания свинца вокруг металлургических предприятий достигает 30-40 км [14,15].

Фоновая концентрация микроэлементов и тяжелых металлов в поверхностных водах водоемов обусловлена многочисленными факторами. В их число входят химический и гранулометрический состав отложений, их тип, окислительно-восстановительные условия, рН среды, мощность осадков, а также сезон и метеоусловия. При этом для каждого водоема может быть свойственны свои механизмы распределения микроэлементов в водной среде при сочетании некоторых перечисленных факторов.

Водоемы замедленного стока (пруды, озера, водохранилища) аккумулируют стоки водосборного бассейна, промышленные, бытовые, сельскохозяйственные сточные воды, а вместе с ними разнообразные химические компоненты, в том числе соединения металлов. Внутри водоема металлы включаются в развивающиеся там сложные процессы. Все они в совокупности определяют формы нахождения металлов и их межфазовые взаимодействия, в результате которых основные запасы концентрируются в донных отложениях водоемов [16,17].

Основным источником поступления меди в природные воды являются предприятия цветной металлургии (промышленные выбросы, отходы, сточные воды), транспорт, медьсодержащие удобрения, пестициды, процесс сварки, сжигание топлива в различных отраслях промышленности [11].

Примерно 75 % поступающей в атмосферу меди имеет антропогенное происхождение. Меньшее значение имеет поступление при сжигании древесины и производстве стали и железа. Важнейшим природным источником поступления меди в атмосферу является ветровая пыль. Вынос с загрязненной металлом речной водой, стоками, осаждение из воздушной среды, а также в результате хозяйственной деятельности человека, приводят к повышению концентрации меди в поверхностных водах и, соответственно, в донных отложениях [18, 19].

В водной среде медь находится преимущественно в трех основных формах: взвешенной, коллоидной и растворенной. Последняя может включать свободные ионы и комплексные соединения меди с органическими и неорганическими лигандами. Количество меди, связанной с твердыми частицами может составлять 12-97 % общего ее содержания в речных водах.

Содержание растворимых форм меди в незагрязненных пресных водах обычно колеблется от 0,5 до 1,0 мкг/л, возрастая до 2 мкг/л в городских районах. Значительно более высокие концентрации характерны для горнорудных районов, а также в периоды половодий.

Содержание меди в донных отложениях определяется присутствием природных сорбентов - глинистых минералов, гуминовых кислот, железомарганцевых оксидов. Незагрязненные пресноводные донные отложения обычно содержат меди не более 20 мг/кг. Десорбция меди из осадков зависит от pH, солености, присутствия природных и синтетических хелатов [20,21].

Свинец - один из главных компонентов загрязнения окружающей среды. Это давно уже известный яд, и даже среди многочисленных современных токсикантов это вещество наиболее заметно. Еще в Древнем Риме были известны свинцовые трубы для водопроводов и свинцовые сплавы для кухонной посуды и сосудов для вина. Химическое обнаружение свинца в останках захоронений древних римлян указывает на то, что в их организме было слишком много этого металла. Может быть, в этом и кроется одна из причин упадка империи [22,23].

Антропогенное поступление свинца значительно превышает природное. Около 50 % всех выбросов в атмосферу свинца происходит при сжигании топлива (нефти, бензина). Другим источником является выплавка цветных и черных металлов, горнодобывающая промышленность. Естественным и довольно значительным поставщиком свинца в биосферу являются воздушные пылевые массы.

Свинец концентрируется в почве и воздухе. Он считается металлом с низкой биологической доступностью и больше накапливается в кормах. В растение поступает через корни и путем некорневого поглощения листьями. Растения с широкими листьями содержат свинца больше, чем с узкими. Зерно злаковых, клубни картофеля и корни сахарной свеклы не накапливают свинца [24].

В нейтральной и слабощелочной почве подвижность свинца примерно в 100 раз меньше, чем кадмия.

Особенности распределения и миграции свинца в природных водах обусловливаются интенсивностью осаждения и комплексообразованием с органическими и неорганическими лигандами. Доля свинца, связанного с твердым взвешенным веществом, изменяется от 15 до 83 % его валового содержания. Физико-химические формы свинца в питьевой воде характеризуются практически полным отсутствием его свободных ионов. Существенная часть свинца связана с коллоидами (гидроксидами железа и органическими макромолекулами).

Содержание растворенного свинца в незагрязненных водах обычно не превышает 3 мкг/л [25]. Высокие концентрации могут наблюдаться вблизи крупных автомагистралей и городов. В незагрязненных донных отложениях концентрация свинца колеблется в пределах 2-50 мг/кг и зависит от характера подстилающих пород.

Антропогенное поступление никеля в биосферу происходит при производстве цветных металлов, железа, стали, фосфатных удобрений, сжигании топлива. Природными источниками поступления никеля в поверхностные воды являются пылевые частицы, поднятые ветровыми воздушными массами. Современное антропогенное поступление никеля в окружающую среду превышает природное в 3 раза. На продукты сгорания дизельного топлива приходится 57 % общего количества выбрасываемого в атмосферу никеля.

В водной среде двухвалентный никель образует стабильные комплексы с неорганическими и органическими лигандами. Органические лиганды с кислородом, азотом и серой образуют высокоустойчивые комплексы, тогда как гуминовые и фульвокислоты - умеренно устойчивые. Количество никеля, связанного с взвесью колеблется в широких пределах: от 5 до 98 %. Содержание никеля во взвешенных частицах обратно пропорционально их размерам. Свыше 90 % валового никеля переносится в речных потоках частицами размером 0,2-20 мкм. Ассоциированная доля никеля с оксидами железа и марганца составляет от 14 до 48 %.

Содержание растворенного никеля в незагрязненных водах суши обычно колеблется в пределах 1-3 мкг/л [26,27]. Под влиянием различных промышленных источников загрязнения его содержание может увеличиться до 10-50 мкг/л, в то время как в водах, приуроченных богатых никелем породам, оно составляет 200 мкг/л.

Никель не является широко распространенным загрязняющим элементом в донных отложениях водных систем. Его содержание в донных осадках редко превышает 50-100 мг/кг.

Загрязнение окружающей среды связано в определенной мере с интенсивным применением никеля в различных отраслях народного хозяйства и в быту. Большая часть его идет на изготовление сплавов с другими металлами. Уже известно около 3000 сплавов, которые используются для различных целей, в том числе для создания конструкций атомных реакторов. Никель применяется также в производстве щелочных аккумуляторов и антикоррозийных покрытий и как катализатор многих химических процессов. Данный металл получил распространение и в быту. Это ювелирные изделия и монеты, пуговицы, инструменты, режущие приспособления [28].

В организме животных и растений никель взаимодействует с другими элементами. Накоплено много данных, свидетельствующих об антагонистических взаимоотношениях между никелем и медью. Течение экспериментальной кадмиевой интоксикации смягчалось при предварительном введении животным никеля. Взаимоотношения между ним и 3-валентным железом синергическое, ас2-валентным железом - антагонистическое. Из всего количества никеля, поступившего в организм человека с пищевым рационом, до 90 % выводится с фекалиями, около 10 % - через почки и частично с потом.

Эродированные ветром почвенные частицы вносят до 58 % цинка, поступающего из природных источников в биосферу. Поступление с растительной продукцией составляет около 20 %. Антропогенный вклад цинка в окружающую среду превышает природный в 8 раз, причем производство и использование цветных металлов дает до 43 % общего выброса этого металла в атмосферу. Определенную долю вносит сжигание древесины и отходов [29].

Цинк принадлежит к числу весьма важных в биологическом отношении элементов. В промышленности большая часть добываемого металла используется для изготовления сплавов, оцинкованного железа и сухих гальванических элементов. В почву он поступает с удобрениями, пестицидами и промышленными отходами. Обогащение ландшафта цинком может произойти при систематическом использовании в качестве органического удобрения осадков сточных вод городов, а также при сжигании на полях отходов резины, в состав которой он входит как элемент, улучшающий вулканизацию.

В воде, при нейтральном значении pH, цинк присутствует в двухвалентной форме, доступной для сорбции взвешенными минеральными коллоидами и органическим веществом.

Цинк проявляет различные свойства при взаимодействии с твердыми частицами, что во многом зависит от физико-химических особенностей водной системы. Данные о реках мира [30] показывают, что цинк, связанный с твердыми взвешенными частицами, составляет до 10-78 % его общих значений (3-60 мкг/л). Биологическая доступность форм цинка в донных отложениях возрастает в следующем порядке: обменные > карбонатные > связанные с оксидами железа и марганца > органические > остаточные (нерастворимые). Высвобождение этого металла из донных отложений зависит от окислительно-восстановительных условий, рН и присутствия выщелачивающих лигандов как природного, так и искусственного происхождения. Степень обогащения цинком гуминовых и фульвокислот донных отложений меньше, чем для меди, свинца, никеля и хрома. В целом, менее 5 % цинка в отложениях связано с органическим веществом.

Содержание растворенного цинка в незагрязненных пресноводных системах колеблется от 0,5 до 15 мкг/л. Более высокие содержания характерны для водных систем промышленных территорий. Например, в озерах, расположенных в зоне влияния выбросов завода по выплавке свинца и цинка в Флин-Флоне (Канада), концентрации растворенного цинка превышают 100 мкг/л [31]. В реках в зоне влияния рудников содержание цинка превышало 3000 мкг/л.

Уровни общего содержания цинка в донных отложениях пресноводных систем в районах добычи металлов превышают 1000 мг/кг сухого веса. Более низкие уровни содержания характерны для рек, протекающих через городские районы; в незагрязненных зонах его содержание не превышает 50 мг/кг [32].

Кадмий - опасный токсикант (считается даже токсичнее свинца). Этот металл отнесен Всемирной организацией здравоохранения к числу наиболее вредных для здоровья. Поскольку в природной среде кадмий встречается в очень малых количествах, его вредное действие выявлено лишь недавно. Дело в том, что последние два десятилетия этот металл стал находить все большее техническое применение. Кадмий содержится в мазутах и других тяжелых нефтяных остатках, в каменном угле, его используют для кадмирования неблагородных металлов. Источниками загрязнения кадмием являются электронная и лакокрасочная промышленность, осадки сточных вод, сапропеля, фосфорные удобрения (содержат от 5 до 100 мг/кг), он выделяется в атмосферу с выхлопными газами автотранспорта, при плавке руд и сгорании топлива. Основное потребление кадмия промышленностью связано с производством щелочных аккумуляторов и получением различных сплавов. При современном уровне химизации на каждый гектар сельскохозяйственных земель поступает не более 3 г кадмия, что составляет при массе пахотного слоя 3 млн кг 0,001 мг кадмия на 1 кг почвы. ПДК кадмия в почве находится в пределах 1-5 мг/кг воздушно-сухой почвы [33,34].

В водоемах кадмий почти исключительно встречается в виде двухвалентного катиона, в виде органических соединений его нет. Токсичность кадмия в водоемах зависит от жесткости воды, кислотности, а также от содержания ионов и металлов. Кальций и магний понижают в жесткой воде токсичность кадмия, а цинк, наоборот, повышает. В первую очередь кадмий попадает в водоемы при поверхностной обработке металлов для защиты от коррозии и при переработке руд, которые не содержат железа. В бытовых сточных водах также может содержаться много кадмия [35].

Характерной особенностью режима элементов и тяжелых металлов в водоемах замедленного стока является направленность большинства внутри водоемных процессов на образование их труднорастворимых соединений и на седиментацию последних [36].

Неорганическая адсорбция токсикантов является наиболее эффективным способом уменьшения концентрации металлов в речных водах, причем основную роль играют взвешенные вещества. Донные отложения водоемов являются хранилищем основных запасов соединений тяжелых металлов и, таким образом, потенциальным источником вторичного загрязнения водоема. Общая направленность процессов миграции металлов сверху вниз характерна для всех водоемов замедленного стока и определяет их общую тенденцию к самоочищению водных масс от вносимых в них любым путем соединений тяжелых металлов. Однако следует отметить, что микроэлементы могут поступать в донные отложения не только сверху (из водной толщи), но и снизу, из глубинных слоев самих осадков. В восстановительных условиях это приведет к обогащению водных масс, в окислительных условиях это приведет к образованию трудно растворимых оксидов, что благоприятствует процессам самоочищения водных масс от соединений тяжелых металлов [37].

Самоочищение, как совокупность биологических, химических и физических процессов, обычно приводит к восстановлению природных качеств воды, однако эффективность этого процесса зависит от концентрации входящих в нее компонентов. Самоочищение водоемов во многом определяется миграционной способностью элементов. К главным термодинамическим факторам миграции относятся: температура, давление, химический состав воды, сорбционные процессы. Адсорбционная способность донных отложений и взвешенных в воде частиц может стать одним из основных факторов, способствующих восстановлению первоначального состава природных вод [38].

Сорбция на поверхности взвешенных частиц обеспечивается физической адсорбцией, катионным обменом, а также химической адсорбцией, характеризующейся образованием химических ассоциатов между ионами металлов и поверхностью частиц. Наибольшей сорбционной емкостью характеризуются взвешенные вещества с размером частиц от 0,05 мм и менее, которые в условиях высоких скоростей длительное время находятся в русловом потоке и играют определенную роль в межфазовом распределении тяжелых металлов в системе вода - взвешенное вещество [39,40].

Опасность загрязнения окружающей среды тяжелыми металлами сводится к следующему:

Попадая в почву, тяжелые металлы усиливают минерализацию органического вещества, вызывая негативные изменения в почвенно-поглощающем комплексе, вследствие замещения кальция и магния. Сложное влияние они оказывают на биоту почвы и ее ферментативную активность. В ней снижается численность полезных микроорганизмов, увеличивается количество грибов, подавляется активность многих ферментов (пероксидаза, каталаза и др.). Это приводит к деградации плодородия почвы и снижает ее способность к самоочищению;

Проникая в растения, они могут активно участвовать в метаболических процессах, но могут сохраняться и в виде неактивных соединений в клетках и на клеточных мембранах. В результате снижается продуктивность растений и качество продукции, происходят изменения в направленности физиолого-биохимических процессов и реализации генетической программы растений, нарушаются естественно сложившиеся фитоценозы;

Тяжелые металлы, накапливаясь в растениях, по трофическим цепям с кормом и продуктами питания попадают в организм животных и человека, вызывая различные заболевания. Опасность увеличивается еще и потому, что высшие растения без видимых признаков отравления могут накапливать токсичные для человека и животных концентрации тяжелых металлов. В связи с этим особую актуальность приобретают исследования превращения тяжелых металлов по всей экологической цепи почва - растение - животное - человек с целью улучшения гигиенического качества продукции и среды обитания человека. Тяжелые металлы могут усваиваться живыми организмами также непосредственно из воды и воздуха [41].

Причины токсичного действия тяжелых металлов на растения и другие живые организмы, по-видимому, заключаются в следующем:

во-первых, все тяжелые металлы обладают сильным денатурирующим действием и вызывают снижение активности ферментов и других метаболически важных белков клетки: они могут повреждать мембраны клетки, нарушая тем самым их проницаемость;

во-вторых, возможна конкуренция тяжелых металлов с необходимым растению элементом питания, что может привести к дефициту последнего и нарушить нормальный ход метаболических процессов. Так, кадмий замещает цинк, барий и стронций замещают кальций, цезий замещает калий [42,43].

1.2 Поведение тяжелых металлов в экосистеме водоема

Важнейшим показателем качества среды обитания является степень чистоты поверхностных вод. Металл-токсикант, попав в водоем или реку, распределяется между компонентами этой водной экосистемы. Однако не всякое количество металла вызывает расстройство экосистемы. При оценке способности экосистемы сопротивляться внешнему токсическому воздействию принято говорить о буферной емкости экосистемы. Так, под буферной емкостью пресноводных экосистем по отношению к тяжелым металлам понимают такое количество металла-токсиканта, поступление которого существенно не нарушает естественного характера функционирования всей изучаемой экосистемы. При этом сам металл-токсикант распределяется на следующие составляющие: 1) металл в растворенной форме; 2) сорбированный и аккумулированный фитопланктоном, то есть растительными микроорганизмами; 3) удерживаемый донными отложениями в результате седиментации взвешенных органических и минеральных частиц из водной среды; 4) адсорбированный на поверхности донных отложений непосредственно из водной среды в растворимой форме; 5) находящийся в адсорбированной форме на частицах взвеси.

На формы нахождения тяжёлых металлов в водах оказывают влияние гидробионты (например, моллюски). Так, при изучении поведения меди в поверхностных водах наблюдают сезонные колебания ее концентрации: в зимний период они максимальны, а летом вследствие активного роста биомассы снижаются. При осаждении взвешенных органических частиц, которые обладают способностью адсорбировать ионы меди, последние переходят в донные отложения, что и приводит к наблюдаемому эффекту. Следует также отметить, что интенсивность этого процесса зависит от скорости седиментации взвесей, то есть косвенно от таких факторов, как размеры и заряд адсорбирующих ионы меди частиц[44].

Кроме аккумулирования металлов за счет адсорбции и последующей седиментации в поверхностных водах происходят другие процессы, отражающие устойчивость экосистем к токсическому воздействию такого рода загрязнителей. Наиболее важный из них состоит в связывании ионов металлов в водной среде растворенными органическими веществами. При этом общая концентрация токсиканта в воде не меняется. Тем не менее, принято считать, что наибольшей токсичностью обладают гидратированные ионы металлов, а связанные в комплексы опасны в меньшей мере либо даже почти безвредны. Специальные исследования показали, что между общей концентрацией металла-токсиканта в природных поверхностных водах и их токсичностью нет однозначной зависимости.

В природных поверхностных водах содержится множество органических веществ, 80% которых составляют высокоокисленные полимеры типа гумусовых веществ, проникающих в воду из почв. Остальная часть органических веществ, растворимых в воде, представляет собой продукты жизнедеятельности организмов (полипептиды, полисахариды, жирные и аминокислоты) или же подобные по химическим свойствам примеси антропогенного происхождения. Все они, конечно, претерпевают различные превращения в водной среде. Но все они в то же время являются своего рода комплексообразующими реагентами, связывающими ионы металлов в комплексы и уменьшающими тем самым токсичность вод.

Различные поверхностные воды по-разному связывают ионы тяжёлых металлов, проявляя при этом различную буферную емкость. Воды южных озер, рек, водоемов, имеющих большой набор природных компонентов (гумусовые вещества, гуминовые кислоты и фульвокислоты) и их высокую концентрацию, способны к более эффективной природной детоксикации по сравнению с водами водоемов Севера и умеренной полосы. Поэтому токсичность вод, в которых оказались загрязнители, зависит и от климатических условий природной зоны. Следует отметить, что буферная емкость поверхностных вод по отношению к металлам-токсикантам определяется не только наличием растворенного органического вещества и взвесей, но и аккумулирующей способностью гидробионтов, а также кинетикой поглощения ионов металлов всеми компонентами экосистемы, включая комплексообразование с растворенными органическими веществами. Все это говорит о сложности процессов, протекающих в поверхностных водах при попадании в них металлов-загрязнителей.

Интересно отметить, что гуминовые кислоты, эти специфические природные высокомолекулярные соединения, образующиеся при превращении растительных остатков в почвах под влиянием микроорганизмов, способны, видимо, в наибольшей степени связывать ионы тяжелых металлов в прочные комплексы. Так, константы устойчивости соответствующих гуматов (комплексов ионов тяжелых металлов с гуминовыми кислотами) имеют значения в пределах 105-1012 в зависимости от природы металла. А устойчивость самих гуматов зависит от кислотности водной среды.

Также немаловажным фактором при загрязнении воды тяжёлыми металлами является процесс аккумуляции (включая биоаккумуляцию). Любопытным оказался случай обнаружения залежей киновари (сульфида ртути) в одном из районов Карпат. Для геологов эта находка стала неожиданностью. Оказалось, что в средние века в селениях, расположенных в горах выше по течению реки, систематически применяли препарат ртути для лечения некоторых заболеваний. Шли годы, река собирала этот металл, переносила его вниз по течению и аккумулировала в одной из природных ловушек в виде донных отложений. Дальнейшая его трансформация дала в итоге киноварь. Этот пример показывает, что в природе происходят непрерывное перемещение, миграция и накопление токсикантов антропогенного происхождения, при этом они, кроме того, подвергаются химическому превращению в более устойчивые формы.

Из основных металлов-загрязнителей наиболее опасны для здоровья человека и животных ртуть, свинец и кадмий как представляющие наибольшую опасность для здоровья человека и животных. По классу опасности эти тяжёлые металлы относятся к первому классу (чрезвычайно опасное химическое вещество).

Тяжёлые металлы, к примеру ртуть легко образуют соединения и комплексы с органическими веществами в растворах и в организме, хорошо усваиваются организмами из воды и передаются по пищевой цепи. В водных средах ртуть образует металлорганические соединения типа R-Hg-X и R-Hg-R, где R - метилили этил-радикал.

На нахождение в водной среде той или иной формы ртути большое влияние оказывают кислотность среды и ее окислительный потенциал. Так, в хорошо аэрированных водоемах преобладают соединения Hg(II). Ионы ртути легко связываются в прочные комплексы с различными органическими веществами, находящимися в водах и выступающими в качестве лигандов. Особенно прочные комплексы образуются с серосодержащими соединениями. Ртуть реагирует с SH-группами белковых молекул, среди которых - важнейшие для организма ферменты. Ртуть также реагирует с белковыми группами -СООН и NH2 с образованием прочных комплексов - металлопротеидов. А циркулирующие в крови ионы ртути, попавшие туда из легких, также образуют соединения с белковыми молекулами. Нарушение нормальной работы белков-ферментов приводит к глубоким нарушениям в организме, и прежде всего - в центральной нервной системе, а также в почках.

Кроме этого, ртуть легко адсорбируется на взвешенных частицах вод. При этом фактор концентрирования достигает порой 105, то есть на этих частицах сконцентрировано ртути в сто тысяч раз больше, чем находится в равновесии в водной среде. Десорбция ртути из донных отложений происходит медленно, поэтому повторное загрязнение поверхностных вод после того, как источник загрязнения установлен и ликвидирован, также имеет заторможенную кинетику.

Выбросы ртути в воду опасны и тем, что поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимых в воде токсичных органических соединений ртути. Органические соединения ртути в целом намного более токсичны, чем неорганические, прежде всего из-за их липофильности и способности более эффективно взаимодействовать с элементами ферментативных систем организма. Эти чрезвычайно ядовитые производные образуются в результате так называемого биологического метилирования. Оно происходит под действием микроорганизмов, например, плесени и характерно не только для ртути, но и для мышьяка, селена, теллура. Ртуть и ее неорганические соединения, которые широко используются на многих производствах, со сточными водами попадают на дно водоемов. Обитающие там микроорганизмы превращают их в диметилртуть (CH3)2Hg, которая относится к числу наиболее ядовитых веществ. Диметилртуть далее легко переходит в водорастворимый катион HgCH3+. Оба вещества поглощаются водными организмами и попадают в пищевую цепочку; сначала они накапливаются в растениях и мельчайших организмах, затем - в рыбах. Метилированная ртуть очень медленно выводится из организма - месяцами у людей и годами у рыб. Поэтому концентрация ртути вдоль биологической цепочки непрерывно увеличивается, так что в рыбах-хищниках, которые питаются другими рыбами, ртути может оказаться в тысячи раз больше, чем в воде, из которой она выловлена. Именно этим объясняется так называемая «болезнь Минамата» - по названию приморского города в Японии, в котором за несколько лет от отравления ртутью умерло 50 человек и многие родившиеся дети имели врожденные уродства. Опасность оказалась так велика, что в некоторых водоемах пришлось приостановить лов рыбы - настолько она оказалась «нашпигованной» ртутью. Страдают от поедания отравленной рыбы не только люди, но и рыбы, тюлени. При этом самый большой аккумулятор соединений ртути (до 97%) - поверхностные воды. Около половины всей ртути в природную среду попадает по техногенным причинам. В незагрязненных поверхностных водах содержание ртути колеблется в пределах 0,2-0,1 мкг/л, в морских - в три раза меньше. Водные растения также поглощают тяжёлые металлы. Органические соединения R-Hg-R' в пресноводном планктоне содержатся в большей концентрации, чем в морском. Из организма органические соединения ртути выводятся медленнее, чем неорганические.

Что касается свинца, то половина от общего количества этого токсиканта поступает в окружающую среду в результате сжигания этилированного бензина. В водных системах свинец в основном связан адсорбционно со взвешенными частицами или находится в виде растворимых комплексов с гуминовыми кислотами. При биометилировании, как и в случае со ртутью, свинец в итоге образует тетраметилсвинец. В незагрязненных поверхностных водах суши содержание свинца обычно не превышает 3 мкг/л. В реках промышленных регионов отмечается более высокое содержание свинца. Снег способен в значительной степени аккумулировать этот токсикант: в окрестностях крупных городов его содержание может достигать почти 1 млн мкг/л, а на некотором удалении от них ~1-100 мкг/л.

Водные растения хорошо аккумулируют свинец, но по-разному. Иногда фитопланктон удерживает его с коэффициентом концентрирования до 105, как и ртуть. В рыбе свинец накапливается незначительно, поэтому для человека в этом звене трофической цепи он относительно мало опасен. Метилированные соединения в рыбе в обычных условиях содержания водоемов обнаруживаются относительно редко. В регионах с промышленными выбросами накопление тетраметилсвинца в тканях рыб протекает эффективно и быстро - острое и хроническое воздействие свинца наступает при уровне загрязненности 0,1-0,5 мкг/л. В организме человека свинец может накапливаться в скелете, замещая кальций.

Другой важный загрязнитель водоёмов - кадмий. По химическим свойствам этот металл подобен цинку. Он может замещать последний в активных центрах металлсодержащих ферментов, приводя к резкому нарушению в функционировании ферментативных процессов.

Кадмий обычно проявляет меньшую токсичность по отношению к растениям в сравнении с метилртутью и сопоставим по токсичности со свинцом. При содержании кадмия ~ 0,2-1 мг/л замедляются фотосинтез и рост растений. Интересен следующий зафиксированный эффект: токсичность кадмия заметно снижается в присутствии некоторых количеств цинка, что еще раз подтверждает предположение о возможности конкуренции ионов этих металлов в организме за участие в ферментативном процессе.

Порог острой токсичности кадмия варьирует в пределах от 0,09 до 105 мкг/л для пресноводных рыб. Увеличение жесткости воды повышает степень защиты организма от отравления кадмием. Известны случаи сильного отравления людей кадмием, попавшим в организм по трофическим цепям (болезнь итай-итай). Из организма кадмий выводится в течение длительного периода (около 30 лет).

В водных системах кадмий связывается с растворенными органическими веществами, особенно если в их структуре присутствует сульфгидрильные группы SH. Кадмий образует также комплексы с аминокислотами, полисахаридами, гуминовыми кислотами. Как и в случае со ртутью и другими тяжёлыми металлами адсорбция ионов кадмия донными осадками сильно зависит от кислотности среды. В нейтральных водных средах свободный ион кадмия практически нацело сорбируется частицами донных отложений.

1.3 Факторы, влияющие на содержание тяжелых металлов в поверхностных водах

Формирование химического состава природных вод - это процесс обмена химическими веществами природных вод с другими природными средами в различных физико-географических условиях, в результате чего в природные воды переходят или извлекаются твердые, растворенные, газообразные вещества (Моисеенко, 1997).

К основным факторам, определяющим количественные и качественные характеристики металла на его пути от источника поступления до образования в водном потоке реки устойчивых сосуществующих растворенных форм, можно отнести:

1. Тип источника поступления (точечный или диффузный).

2. Гидрологический режим реки.

3. Химический состав воды, окислительно-восстановительного потенциала (Eh), показатель активности ионов водорода (рН).

4. Физико-химический состав взрывчатых веществ и ДО.

2. ОБЪЕКТ И МЕТОДЫ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

Волгоградское водохранилище образовано плотиной Волжской ГЭС им. 22-го съезда КПСС на р. Волге, на территории Волгоградской и Саратовской областей РСФСР. Заполнение происходило в течение 1958--61. Площадь 3117 км2, объём 31,5 км3, длина 540 км, наибольшая ширина 17 км, средняя глубина 10,1 м. Осуществляет сезонное регулирование стока. Используется в целях энергетики, водного транспорта, ирригации и водоснабжения. Рыболовство (лещ, судак, сазан). На берегах В. в. расположены гг. Саратов, Энгельс, Камышин, Дубовка, Вольск, Маркс.

Осуществляет сезонное регулирование стока (колебания уровня до 3 м). Используется в целях энергетики, водного транспорта, ирригации и водоснабжения. Рыболовство (лещ, судак, сазан). Волгоградское водохранилище -- очень важный рекреационный ресурс, место туризма и отдыха. В плотине Волжской ГЭС эксплуатируется один из крупнейших в России рыбоподъёмников. Основные порты: Саратов, Камышин, Николаевск, Быково, Приморск, Дубовка. В 1980-х годах было развернуто строительство канала Волго-Дон 2, который бы напрямую соединял Волгоградское водохранилище с рекой Дон. (В отличие от существующего Волго-Донского канала, который начинается к югу от Волгограда, ниже по течению от Волжской ГЭС.) Проект был законсервирован в 1990 г.

2.1 Объект и предмет исследований

Объектом исследования является вода Волгоградского водохранилища. Волгоградское водохранилище образовано плотиной Волжской ГЭС им. 22-го съезда КПСС на Волге, на территории Волгоградской и Саратовской областей России. Заполнение водохранилища происходило в течение 1958--1961 гг.

Рис.1 - Волгоградское водохранилище на карте

Площадь 3117 кмІ, объём 31,5 кмі, длина 540 км, наибольшая ширина 17 км, средняя глубина 10,1 м. По своей площади Волгоградское водохранилище уступает только Куйбышевскому и Рыбинскому. Осуществляет сезонное регулирование стока (колебания уровня до 3 м). Используется в целях энергетики, водного транспорта, ирригации и водоснабжения. Рыболовство (лещ, судак, сазан). На берегах Волгоградского водохранилища расположены города Саратов, Энгельс, Камышин, Дубовка, Вольск, Маркс.

Волгоградское водохранилище -- очень важный рекреационный ресурс, место туризма и отдыха. В плотине Волжской ГЭС эксплуатируется один из крупнейших в России рыбоподъёмников. Основные порты: Саратов, Камышин, Николаевск, Быково, Приморск, Дубовка.

В 1980-х годах было развернуто строительство канала Волго-Дон 2, который бы напрямую соединял Волгоградское водохранилище с рекой Дон. (В отличие от существующего Волго-Донского канала, который начинается к югу от Волгограда, ниже по течению от Волжской ГЭС.) Проект был законсервирован в 1990 г.

Предметом исследования стала взаимосвязь между содержанием железа и концентрации гидрокарбонатов в воде[45].

2.2 Методы исследований

В ходе работы были использованы следующие статистические методы: корреляционно-регрессионный и дисперсионный анализы.

Задачу определения наличия вязей определяем с помощью корреляционного анализа. Он позволяет выявить есть ли связь между признаками и даёт возможность определить степень тесноты данной связи. Само понятие корреляция обозначает наличие взаимной согласованности в изменчивости двух или нескольких признаков, явлений. Корреляционный анализ изучает сопряжённую изменчивость двух или нескольких признаков. При положительной корреляционной связи (прямой) осуществляется рост одного признака по мере роста другого.

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.