Водный обмен растений разных экологических групп

Понятие водного обмена растений, пути и механизмы поступления воды в растения. Корневая система как орган поглощения воды. Передвижение воды по растению. Формы воды в почве. Водный обмен в растениях, принадлежащих к различным экологическим группам.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 30.11.2017
Размер файла 349,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ"

КАФЕДРА БИОЛОГИИ РАСТЕНИЙ И ЖИВОТНЫХ

КУРСОВАЯ РАБОТА БАКАЛАВРА

Водный обмен растений разных экологических групп

по направлению "Педагогическое образование"

профиль "Биология"

Дисциплина "Физиология растений"

Выполнила студентка

очной формы обучения 3 курса, 2 группы

естественно-географического факультета

Небольсина Екатерина Дмитриевна

Научный руководитель:

доктор биологических наук, профессор

Ершова Антонина Николаевна

Воронеж - 2017 г.

Содержание

  • Введение
  • Глава 1. Понятие водного обмена растений, пути и механизмы поступления воды в растения
  • 1.1 Корневая система как орган поглощения воды
  • 1.2 Основные двигатели водного тока
  • 1.3 Передвижение воды по растению
  • 1.4 Формы воды в почве
  • Глава 2. Водный обмен растений разных экологических групп
  • 2.1 Водный обмен растений гидрофитов
  • 2.2 Водный обмен растений гигрофитов
  • 2.3 Водный обмен растений мезофитов
  • 2.4 Водный обмен растений ксерофитов
  • Выводы
  • Список литературы

Введение

Вода - важнейший экологический фактор для всего живого на земле.

Протекание всех биохимических процессов в клетках и нормальное функционирование организма в целом возможны только при достаточном обеспечении его водой в качестве растворителя и метаболита.

У растений вода участвует в реакциях фотосинтеза, а минеральные соли поступают в растения из почвы только в виде водных растворов. Вода - главная составная часть тела растений. Даже находясь в анабиозе, растения содержат воду. Особая роль воды наземных растений заключается в постоянном пополнении больших трат ее на испарение в связи с развитием большой фотосинтезирующей поверхности. [17]

Вода, обуславливая необходимое тургорное давление, определенным образом участвует и в поддержании формы наземных растений как организмов, не имеющих опорного скелета, а также для большой группы растений, живущих в водоемах, морях и океанах, вода является непосредственной средой обитания.

Особенности поддержания водного баланса зависят от того, в какой экологической обстановке они живут, какой образ жизни ведут, насколько могут использовать различные источники влаги и задерживать воду в теле. [3]

Целью данной работы является рассмотрение особенностей водного обмена у растений разных экологических групп.

Для достижения поставленной цели выделены следующие задачи:

1. уточнение экологических типов растений: гидрофиты, гигрофиты, мезофиты и ксерофиты

2. информационный поиск и анализ биологических и эколого-биологических источников по данной проблеме;

3. анализ особенностей водообмена у растений разных экологических групп.

Глава 1. Понятие водного обмена растений, пути и механизмы поступления воды в растения

Вода поступает в растения из почвенного раствора через корневую систему и испаряется из растения через листья. Собственно весь водный обмен в растении состоит из трех основных этапов:

1. Поглощения воды из почвы

2. Передачи воды из корня ко всем органам растения

3. Испарение воды из листьев

1.1 Корневая система как орган поглощения воды

Корень - осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям. [10]

На корне нет листьев, в клетках корня нет хлоропластов. Кроме основного корня, многие растения имеют боковые и придаточные корни. Совокупность всех корней растения называют корневой системой.

Рост корня, его ветвление продолжается в течение всей жизни растительного организма, то есть практически он не ограничен. Меристемы - образовательные ткани - расположены на верхушке каждого корня. Доля меристематических клеток сравнительно велика (10% по массе против 1% у стебля).

Общая поверхность корней обычно превышает поверхность надземных органов в 104-150 раз. При выращивании одиночного растения ржи было установлено, что общая длинна его корней достигает 600 км., при этом на них образуется 15 млрд. корневых волосков. Эти данные говорят об огромной потенциальной способности к росту корневых систем. [14]

Рост корней отличается большой скоростью. Считается, что одно растение риса в благоприятных условиях может образовать до 5 км новых корней в сутки. За счет этого прироста корневой системы в растение может дополнительно поступать 1,5 л воды. Только благодаря такому интенсивному росту корневые системы растения могут использовать скудно рассеянную в почве воду. Важное значение имеет явление гидротропизма, при котором рост корневой системы как бы идет из более иссушенных слоев почвы к более влажным. В зависимости от типа растений распределение корневой системы в почве различно. У некоторых растений корневая система проникает на большую глубину, у других главным образом распространяется в ширину.

С физиологической точки зрения корневая система не однородна. Довольно не вся поверхность корня участвует в поглощении воды. В каждом корне различают несколько зон (рис.1). Правда, не всегда все зоны выражены одинаково четко. [10]

Рис.1 Схема строения корня [18]

Окончание корня с наружи защищено корневым чехликом, напоминающим округлый колпачок, таящий из живых тонкостенных продолговатых клеток. Корневой чехлик служит защитой для точки роста. Клетки корневого чехлика суживаются, что уменьшает трение и способствует проникновению корня в глубь почвы. Под корневым чехликом расположена меристематическая зона. Меристема состоит из многочисленных мелких, усилено делящихся, плотно упакованных клеток, почти целиком заполненных протоплазмой. Следующая зона-зона растяжения. Здесь клетки увеличиваются в объеме (растягиваются). Одновременно в этой зоне появляются дифференцированные ситовидные трубки, затем следует зона корневых волосков. При дальнейшем увеличении возраста клеток, а так же расстояния от кончика корня корневые волоски исчезают, начинается кутинизация и опробковение клеточных оболочек. Поглощение воды происходит главным образом клетками зоны растяжения и зоны корневых волосков. [1]

Поверхность корня в зоне корневых волосков покрыта ризодермой. Это однослойная ткань с двумя видами клеток, формирующими и не формирующими корневые волоски. В настоящее время показано, что клетки, формирующие корневые волоски, отличаются особым типом обмена веществ. У большинства растений клетки ризодермы обладают тонкими стенками. Вслед за ризодермой до перицикла идут клетки коры. Кора состоит из нескольких слоев паренхимных клеток. Важной особенностью коры является развитие системных крупных межклетников. На границе коры и центрального цилиндра развивается один слой плотно прилегающих друг к другу клеток - эндодерма, для которой характерно наличие поясков Каспари. Цитоплазма в клетках эндодермы плотно прилегает к клеточным оболочкам. По мере старения вся внутренняя поверхность клеток эндодермы, за исключением пропускных клеток, покрывается суберином. При дальнейшем старении сверху могут накладываться еще слои. По-видимому, именно клетки эндодермы служат основным физиологическим барьером для передвижения, как воды, так и питательных веществ. В центральном цилиндре расположены проводящие ткани корня. При рассмотрении структуры корня в продольном направлении важно отметить, что начало роста корневых волосков, появление волосков Каспари в стенках эндодермы и дифференциация сосудов ксилемы происходят на одном и том же расстоянии от апикальной меристемы. Именно эта зона является основной зоной снабжения растений питательными веществами. Обычно поглощающая зона составляет 5-10 см в длину. Величина ее зависит от скорости роста корня в целом. Чем медленнее растет корень, тем зона поглощения короче. [7]

Надо отметить, что в целом корневые системы значительно менее разнообразны по сравнению с надземными организмами, в связи с тем что среда их обитания более однородна.

Большое значение для формирования корневых систем играет влажность почвы. Распределение корней по горизонтам почвы часто определяется распределением воды в почве. Обычно в первый период жизни растительного организма корневая система растет чрезвычайно интенсивно и, как следствие, скорее достигает более влажных слоев почвы. Некоторые растения развивают поверхностную корневую систему. Располагаясь близко к поверхности, сильно ветвящиеся корни перехватывают атмосферные осадки. В засушливых районах часто глубоко и мелко укореняющиеся виды растений растут рядом. Первые обеспечивают себя влагой за счет глубоких слоев почвы, вторые за счет усвоения выпадающих осадков. [9]

Важное значение для развития корневых систем имеет аэрация. Именно недостаток кислорода является причиной плохого развития корневых систем на заболоченных почвах. Растения, приспособленные к росту на плохо аэрируемых почвах, имеют в корнях систему межклетников, которые вместе с межклетниками в стеблях и листьях составляют единую вентиляционную систему.

1.2 Основные двигатели водного тока

Поглощение воды корневой системой идет благодаря работе двух концевых двигателей водного тока: верхнего концевого двигателя, или присасывающей силы испарения (транспирации), и нижнего концевого двигателя, или корневого двигателя. Основной силой, вызывающей поступление и передвижение воды в растении, является присасывающая сила транспирации, в результате которого возникает градиент водного потенциала. Водный потенциал - это мера энергии, используемой водой для передвижения. Водный потенциал и сосущая сила одинаковы по абсолютному значению, но противоположны по знаку. [5] Чем меньше насыщенность водой данной системы, тем меньше (более отрицателен) ее водный потенциал. При потере воды растением в процессе транспирации создается ненасыщенность клеток листа водой, как следствие, возникает сосущая сила (водный потенциал падает). Поступление воды идет в сторону большей сосущей силы, или меньшего водного потенциала. [8]

Таким образом, верхний концевой двигатель водного тока в растении - это присасывающая сила транспирации листьев, и его работа мало связана с жизнедеятельностью корневой системы. Действительно, опыты показали, что вода может поступать в побеги и через мертвую корневую систему, причем в этом случае поглощение воды даже ускоряется.

Кроме верхнего концевого двигателя водного тока, в растениях существует нижний концевой двигатель. Это хорошо доказывается на примере таких явлениях, как гуттация. [6]

Листья растений, клетки которых насыщены водой, в условиях высокой влажности воздуха, препятствующей испарению, выделяют капельно-жидкую воду с небольшим количеством растворенных веществ - гуттация. Выделение жидкости идет через специальные водные устьица - гидаторы. Выделяющаяся жидкость - гутта. Таким образом, процесс гуттации является результатом одностороннего тока воды, происходящего в отсутствие транспирации, и, следовательно, вызывается какой-то иной причиной.

К такому же выводу можно прийти и при рассмотрении явления плач растений. Если срезать побеги растения и к срезанному концу присоединить стеклянную трубку, то по ней будет подниматься жидкость. Анализ показывает, что это вода с растворенными веществами - пасока. В некоторых случаях, особенно в весенний период, плач наблюдается и при надрезе веток растений. Определения показали, что объем выделяющейся жидкости (пасоки) во много раз превышает объем корневой системы. Таким образом, плач - это не просто вытекание жидкости в результате пореза. Все сказанное приводит к выводу, что плач, как и гуттация, связана с наличием одностороннего тока воды через корневые системы, не зависящего от транспирации. Силу, вызывающую односторонний ток воды по сосудам с растворенными веществами, не зависящую от процесса транспирации, называют корневым давлением. Наличие корневого давления позволяет говорить о нижнем концевом двигателе водного тока. Корневое давление можно измерить, присоединив манометр к концу, оставшемуся после срезания надземных органов растения, или поместив корневую систему в серию растворов различной концентрации и подобрав такую, при которой плач прекращается. Оказывается, что корневое давление равняется примерно 0,1 - 0,15 МПа. Определения показали, что концентрация наружного раствора, останавливающего плач, значительно выше концентрации пасоки. Это позволило высказать мнение, что плач может идти против градиента концентрации. Было показано также, что плач осуществляется только в тех условиях, в которых нормально протекают все процессы жизнедеятельности клеток. [12]

Надо учитывать, что все эти механизмы будут работать только при достаточном количестве воды в среде и не нарушенном обмене веществ.

1.3 Передвижение воды по растению

Вода, поглощенная клетками корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации, а также силе корневого давления, передвигается до проводящих путей ксилемы. Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам. Еще в 1932 г. немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно не зависимых друг от друга объемов, по которым передвигается вода, - апопласта и симпласта. Апопласт - это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы. [10]

Симпласт - это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодемам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему.

Апопласт, по-видимому, не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая - по другую сторону клеток эндодермы, и включает в себя сосуды ксилемы. Клетки эндодермы благодаря пояскам Каспари представляют как бы барьер для передвижения воды по свободному пространству (межклетникам и клеточным оболочкам).

Для того чтоб попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану и главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. Затем передвижение воды идет по сосудистой системе корня, стебля и листа.

Из сосудов стебля вода движется через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. [4]

Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой, имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту значительно большую 10 м. Сила сцепления увеличивается, так как молекулы воды обладают большим сродством друг к другу. Силы сцепления обладают и между водой и стенками сосудов.

Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды. [11]

В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключается из общего тока проведения воды. Таков путь передвижения воды по растению.

Скорость перемещения воды по растению в течение суток изменяется. В дневные часы она на много больше. При этом разные виды растений различаются по скорости передвижения воды. Если скорость передвижения у хвойных пород обычно 0,5-1,2 м/ч, то у лиственных она значительно выше. У дуба, например, скорость передвижения составляет 27 - 40 м/ч. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее сопротивление. Однако надо учитывать, что в более широкие сосуды могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды. [2]

водный обмен растение вода

1.4 Формы воды в почве

В почве имеются водоудерживающие силы, которые определяют притяжение воды к почвенным частицам, поэтому далеко не вся вода, находящаяся в почве доступна растениям. [3]

Почвенный раствор обладает собственной сосущей силой, поэтому механизм поступления воды в растение прежде всего обуславливается разницей между осмотическим давлением корневого волоска и почвенного раствора. Концентрация почвенного раствора зависит от количества солей в почве, механического состава почвы, соотношения минеральных и коллоидных частиц в почве. Вода, находящаяся в почве, в зависимости от своего состояния может находиться в одной из следующих форм:

Гравитационная - это вода, заполняющая большие почвенные капилляры, попадающая в почву при дожде или поливе, быстро двигающаяся вниз в глубокие слои почвы под действием силы тяжести собственного веса. Для растений существенного значения не имеет, так как хотя и поглощается ими, но быстро уходит из зоны почвы, где располагается корневая система.

Капиллярная - это вода, заполняющая узкие капилляры и удерживающаяся силами поверхностного натяжения менисков. Она находится в почве длительное время, незначительно притягивается к почвенным частицам, является наиболее доступной для растений формой.

Пленочная - это вода, покрывающая непосредственно почвенные частицы, удерживающаяся на их поверхности силами молекулярного притяжения или адсорбционными силами почвенных частиц. Эта вода труднодоступна для растений, поглощается в основном растениями, приспособленными к засушливым условиям, имеющими очень высокую концентрацию клеточного сока.

Гигроскопическая - это вода, находящаяся в воздушно-сухой почве, удерживаемая внутри почвенных частиц силой свыше 100000 килопаскаль. Ее количество колеблется от 5% в песчаной почве до 14% в глинистой почве. Для растений эта вода недоступна.

Имбибиционная - это вода, находящаяся внутри коллоидных частиц почвы, вызывающая их набухание, при этом в набухшей коллоидной частице создаются значительные водоудерживающие силы. Эта форма воды характерна для торфяников. Для растений она также практически недоступна. [3]

Очень важным моментом является соотношение скорости поглощения воды из почвы и скорости испарения воды растением. При испарении воды из листьев корневая система поглощает воду в доступной зоне, в результате чего в близлежащей почве образуется зона иссушения. Корневая система, разрастаясь вширь и вглубь, поглощает воду из более дальних участков почвы, но этот процесс не бесконечен и не всегда достаточно быстро происходит. Поэтому если испарение происходит со значительной скоростью, то корневая система слишком быстро поглощает воду и оказывается полностью в зоне иссушения. В этом случае наличие в почве запасов воды не обеспечивает поглощение воды растением. Статически доступная вода оказывается динамически недоступной. [11]

Глава 2. Водный обмен растений разных экологических групп

По приуроченности к местообитаниям с разными условиями увлажнения и выработке соответствующих приспособлений среди наземных растений различают следующие основные экологические типы: гидрофиты, гигрофиты, мезофиты и ксерофиты. [14]

2.1 Водный обмен растений гидрофитов

Гидрофиты - это растения наземно-водные, частично погруженные в воду, растущие по берегам водоемов, на мелководьях, на болотах. Встречаются в районах с самыми разными климатическими условиями. Такие растения используют частично водную, частично воздушную среду. Из них укореняются в грунте кувшинки из рода Nymphaea, кубышки из рода Nuphar, рдесты, орех водяной - Trapanatans. Также, к ним можно отнести тростник обыкновенный, частуху подорожниковую, вахту трехлистную, калужницу болотную и другие виды. Многие виды наряду с плавающими на поверхности воды листьями имеют и подводные. Плавают на поверхности воды, не укореняясь, ряски, водокрас. [16]

У гидрофитов развиты проводящие и механические ткани. Хорошо выражена аэренхима. В аридных районах при сильной инсоляции их листья имеют световую структуру. У данного типа растений есть эпидерма с устьицами, интенсивность транспирации очень высока, и они могут расти только при постоянном интенсивном поглощении воды.

У гидрофитов, которые частично погруженны в воду, хорошо выражена гетерофиллия - различие строения надводных и подводных листьев на одной и той же особи. Первые имеют черты, обычные для листьев наземных растений, вторые - очень тонкие или рассеченные листовые пластинки. Гетерофиллия отмечена у водного лютика - Ranunculusdiversifolius, кувшинок и кубышек, стрелолиста и других видов. Интересный пример - поручейник, на стебле которого можно видеть несколько форм листьев, представляющих все переходы от типично наземных до водных. [12]

Водная среда существенно отличается от воздушной, поэтому у водных растений существует ряд своеобразных физиологических адаптивных черт. Интенсивность света в воде сильно ослаблена, поскольку часть падающей радиации отражается от поверхности воды, другая - поглощается ее толщей. В связи с ослаблением света фотосинтез у погруженных растений сильно снижается с увеличением глубины. Считают, что выживанию глубоководного фитопланктона в зонах, где освещенность ниже точки компенсации, способствуют его периодические вертикальные перемещения в верхние зоны, где идет интенсивный фотосинтез и пополнение запасов органических веществ.

В воде кроме недостатка света растения могут испытывать и другое затруднение, существенное для фотосинтеза, - недостаток доступной СО2. Углекислота поступает в воду в результате растворения СО2, содержащегося в воздухе, дыхания водных организмов, разложения органических остатков и высвобождения из карбонатов. При интенсивном фотосинтезе растений идет усиленное потребление СО2, в связи с чем легко возникает ее дефицит.

На увеличение содержания СО2 в воде гидрофиты реагируют заметным повышением фотосинтеза. [4]

2.2 Водный обмен растений гигрофитов

Гигрофиты - это растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. При довольно большом разнообразии местообитаний, особенностей водного режима и анатомо-морфологических черт всех гигрофитов объединяет отсутствие приспособлений, ограничивающих расход воды, и неспособность выносить даже незначительную ее потерю. [7]

Среди гигрофитов различают теневые и световые. Теневые - это растения нижних ярусов сырых лесов в разных климатических зонах (недотрога, цирцея альпийская, бодяк огородный, многие тропические травы и т.п.). Из-за высокой влажности воздуха у них может быть затруднена транспирация, поэтому для улучшения водного обмена на листьях развиваются гидатоды, или водяные устьица, выделяющие капельно-жидкую воду. Листья часто тонкие, с теневой структурой, со слабо развитой кутикулой, содержат много свободной и малосвязанной воды. Обводненность тканей достигает 80 % и более. При наступлении даже непродолжительной и несильной засухи в тканях создается отрицательный водный баланс, растения завядают и могут погибнуть.

К световым гигрофитам относятся виды открытых местообитаний, растущие на постоянно влажных почвах и во влажном воздухе (папирус, рис, сердечники, подмаренник болотный, росянка и др.). Переходные группы - мезогигрофиты и гигромезофиты. [13]

Ярко выраженные гигрофиты - травянистые растения и эпифиты влажных тропических лесов, не выносящие сколько-нибудь заметного понижения влажности воздуха. Даже в разгар сезона дождей мелкие эпифитные папоротники на стволах деревьев теряют тургор и засыхают, если на них в течение 2-3 часов падают солнечные лучи. Черты гигрофитов имеют травянистые растения темнохвойных лесов (кислица, майник двулистный, двулепестник альпийский). К гигрофитам можно отнести и виды, растущие на открытых и хорошо освещенных местообитаниях, но в условиях избытка почвенной влаги - близ водоемов, в дельтах рек, в местах выхода грунтовых вод. В наших широтах примером могут служить прибрежные виды: калужница - Calthapalustris, плакун-трава - Lythrumsalikaria, а в странах жаркого климата - папирус, болотные пальмы. Из культурных растений сюда можно отнести рис, культивируемый на полях, залитых водой. [9]

Характерные структурные черты гигрофитов - тонкие нежные листовые пластинки с небольшим числом устьиц, не имеющие толстой кутикулы, рыхлое сложение тканей листа с крупными межклетниками, слабое развитие водопроводящей ткани, тонкие слаборазветвленные корни.

Способность гигрофитов к регуляции водного режима ограничена: устьица большей частью широко открыты, так что транспирация мало отличается от физического испарения. Благодаря беспрепятственному потоку воды и отсутствию защитных приспособлений интенсивность транспирации очень высока: у световых гигрофитов в дневное время листья могут терять за час количество воды, в 4-5 раз превышающее массу листа. Высокая оводнённость тканей гигрофитов поддерживается в основном за счет постоянного притока влаги из окружающей среды.

Другие характерные физиологические черты гигрофитов, обусловленные легкой доступностью влаги, - низкое осмотическое давление клеточного сока, незначительная водоудерживающая способность, приводящая к быстрой потере запасов воды особенно показательны для гигрофитов небольшие величины сублетального водного дефицита: так, для кислицы и майника потеря 15% -20% запаса воды уже необратима и ведет к гибели. В некоторых случаях у растений сильно увлажненных местообитаний возникает необходимость удаления избытка влаги. Обычно, это бывает, когда почва хорошо прогрета и корни активно всасывают воду, а транспирация отсутствует (например, утром или при тумане, когда влажность воздуха 100%). Избыточная влага удаляется путем гуттации. [11]

2.3 Водный обмен растений мезофитов

Мезофиты - эта группа включает растения, произрастающие в средних условиях увлажнения. Сюда относятся растения лугов, травяного покрова лесов, лиственные древесные и кустарниковые породы из областей умеренно влажного климата, а также большинство культурных растений. [16]

Мезофиты - группа весьма разнообразная не только по видовому составу, но и по различным экологическим оттенкам, обусловленным разным сочетанием факторов в природных местообитаниях. Они связаны переходами с другими экологическими типами растений по отношению к воде, так что четкую границу между ними провести очень трудно. Так, среди луговых мезофитов выделяются виды с повышеннымвлаголюбием, предпочитающие постоянно сырые или временно заливаемые участки (лисохвост луговой - Alopecuruspratensis, бекмания обыкновенная - Beckmanniaeruciformis).

Их объединяют в переходную группу гигромезофитов наряду с некоторыми влаголюбивыми лесными травами, предпочитающими наиболее сырые леса, лесные овраги (недотрога - Impatiensnolitangere). С другой стороны в местообитаниях с переодическим или постоянным (небольшим) недостатком влаги много мезофитов с теми или иными ксероморфными признаками с повышенной физиологической устойчивостью к засухе. Эта группа переходная между мезофитами ксерофитами, - ксеромезофиты. Примером могут служить многие виды северных степей, сухих сосновых боров, песчаных местообитаний: клевер-белоголовка - Trifoliummontanum, подмаренник желтый - Galiumverum и другие. [8]

Особое место среди мезофитов занимают степные и пустынные весенние эфемеры и эфемероиды. К этой группе принадлежат растения, ранней весной покрывающие степи и пустыни разноцветным цветущим ковром (многолетники - тюльпаны, гусиные луки; однолетники - маки, вероники). Это виды с чрезвычайно краткой вегетацией и длительным периодом покоя, который однолетние эфемеры переживают в виде семян, а многолетние эфемероиды - в виде покоящихся луковиц, клубней, корневищ. Кроме весенних существуют и осенние эфемероиды, произрастающие в районах с климатическим ритмом средиземноморского типа.

Основные морфолого-анотомические черты мезофитов - средние между чертами гигрофитов и ксерофитов. Мезофиты имеют умеренно развитые корневые системы как экстенсивного, так и интенсивного типа, со всеми переходами между ними. Для листа характерна дифференцировка тканей на более или менее плотную палисадную паренхиму и рыхлую губчатую паренхиму с системой межклетников. Сеть жилок сравнительно негустая. Покровные ткани могут иметь отдельные ксероморфные черты, но не столь ярко выраженные, как у ксерофитов. [3]

Физиологические показатели водного режима мезофитов подтверждают их промежуточную позицию: для них характерны умеренные величины осмотического давления, содержания воды в листьях, предельного водного дефицита. Что касается транспирации, то ее величина в большей степени зависит от условий освещенности и других элементов микро климата.

Один и тот же мезофильный вид, попадая в разные по водоснабжению условия, обнаруживает известную пластичность, приобретая в сухих условиях более ксероморфные, а во влажных более гигроморфные черты. [4]

Пластичность листьев проявляется не только в разных местообитаниях, но даже у одной и той же особи. Например, у деревьев на опушке леса листья на стороне, обращенной в сторону леса, имеют более мезофильный и теневой характер по сравнению с несколько ксероморфными листьями внешней стороны дерева (Таблица 1.) Листья разных высотных ярусов одних и тех же растений находятся в неодинаковых условиях водоснабжения, так как поступление воды в верхние части связано с преодолением большого сопротивления. К тому же у деревьев верхние листья обычно находятся в условиях иного микроклимата. [14]

Таблица 1. Различие анатомо-физиологических показателей листьев на разных сторонах кроны дерева, растущего на опушке леса (I - сторона, обращенная к лесу, II - сторона, обращенная к поляне) [14]

Древесная порода

Площадь листа, см2

Число устьиц на

1 мм2

Содержание воды, %

Содержание хлорофилла, мг/г

Средняя интенсивность фотосинтеза,

мг СО2 /дм2·ч

Толщина листа, мкм

Дуб - Quercusrobur

I

42

45

61

3.0

1.9

97

II

18

125

54

2.4

2.3

181

Липа - Tiliacordata

I

38

38

71

3.6

1.6

93

II

24

45

62

2.0

1.1

106

2.4 Водный обмен растений ксерофитов

Ксерофиты - это растения сухих местообитаний, способные переносить значительный недостаток влаги - почвенную и атмосферную засуху. Они распространены, обильны и разнообразны в областях с жарким и сухим климатом. К этой группе принадлежат виды пустынь, сухих степей, саванн, колючих редколесий, сухих субтропиков. В более гумидных районах ксерофиты участвуют в растительном покрове лишь в наиболее прогреваемых и наименее увлажненных местообитаниях (например, на склонах южной экспозиции). [14]

Неблагоприятный водный режим растений в сухих местообитаниях обусловлен, во-первых, ограниченным поступлением воды при ее недостатке в почве и, во-вторых, увеличением расхода влаги на транспирацию при большой сухости воздуха и высоких температурах. Следовательно, для преодоления недостатка влаги возможны разные пути: увеличение ее поглощения и сокращение расхода, кроме того, способность переносить большие потери воды. Все это используется ксерофитами при адаптации к сухости, но у разных растений в неодинаковой степени, в связи с чем некоторые авторы различают два основных способа преодоления ксерофитами засухи: возможность противостоять иссушению тканей, или активное регулирование водного баланса, и способность выносить сильное иссушение. [16]

По Генкелю П.А. в зависимости от структурных черт и способов регулирования водного режима различают несколько разновидностей ксерофитов: эуксерофиты, гемиксерофиты, пойкилоксерофиты.

По другим классификациям группу ксерофитов разделяют на суккуленты - растения с сочными листьями или стеблями, и склерофиты - растения, наоборот, сухие на вид, часто с узкими и мелкими листьями, иногда свернутыми в трубочку.

Различают листовые суккуленты (агавы, алоэ) и стеблевые, у которых листья редуцированы, а наземные части представлены мясистыми стеблями (кактусы, некоторые молочаи). В пустынях Центральной Америки и Южной Африки суккуленты могут определять облик ландшафта (рис.2).

Рис.2 Суккулентное растение - древовидный кактус из пустыни Аризона [19]

Листья, а в случае их редукции стебли суккулентов имеют толстую кутикулу, часто мощный восковой налет или густоеопушение. Устьица погруженные, открываются в щель, где задерживаются водяные пары.

Днем они закрыты. Это помогает суккулентам сберегать накопленную влагу, но зато ухудшает газообмен, затрудняет поступление СО2 внутрь растения. Поэтому многие суккуленты из семейств лилейных, бромелиевых, кактусовых, толстянковых ночью при открытых устьицах поглощают СО2, который только на следующий день перерабатывают в процессе фотосинтеза. Поглощенный СО2 переводится в малат. Кроме того, при дыхании ночью углеводы разлагаются не до углекислого газа, а до органических кислот, которые отводятся в клеточный сок. Днем на свету малат и другие органические кислоты расщепляются с выделением СО2, который используется в процессе фотосинтеза. Таким образом, крупные вакуоли с клеточным соком запасают не только воду, но и СО2. [15] Так как у суккулентов ночная фиксация углекислоты и переработка ее днем в ходе фотосинтеза разделены во времени, они обеспечивают себя углеродом, не подвергаясь риску чрезмерной потери воды, но масштабы поступления углекислого газа при таком способе невелики, и растут суккуленты медленно.

Осмотическое давление клеточного сока суккулентов мало - всего 3·105 - 8·105 Па (3-8 атм), они развивают небольшую сосущую силу и способны всасывать воду лишь атмосферных осадков, просочившихся в верхний слой почвы. Корневая система их неглубокая, но сильно распростертая, что особенно характерно для кактусов. [13]

Листья склерофитов могут быть также рассеченными, покрытыми волосками или восковым налетом. Хорошо развита склеренхима, поэтому растения без вредных последствий могут терять до 25 % влаги не завядая. В клетках преобладает связанная вода. Сосущая сила корней до нескольких десятков атмосфер, что позволяет успешно добывать воду из почвы. При недостатке воды резко снижают транспирацию. Склерофиты можно подразделить на две группы: эуксерофитов и стипаксерофитов.

К эуксерофитамотносятся многие степные растения с розеточными и полурозеточными, сильно опушенными побегами, полукустарнички, некоторые злаки, полынь холодная, эдельвейс эдельвейсовидный и др. Наибольшую биомассу эти растения создают в период, благоприятный для вегетации, а в жару уровень обменных процессов у них очень низок. [2]

Стипаксерофиты - это группа узколистных дерновинных злаков (ковыли, тонконоги, типчак и др.). Характеризуются низкой транспирацией в засушливый период и могут переносить особенно сильное обезвоживание тканей. Свернутые в трубочку листья имеют внутри влажную камеру. Транспирация идет через погруженные в бороздки устьица внутрь этой камеры, что снижает потери влаги (рис.3).

Рис.3. Поперечный срез листа ковыля Stipacapillata (по A. Кернеру, 1896): A - при засухе (лист свернут); Б - во влажную погоду (пластинка листа развернута). [20]

Для ксерофитов большое значение имеют разнообразные структурные приспособления к условиям недостатка влаги.

Корневые системы обычно сильно развиты, что помогает растениям увеличить поглощение почвенной влаги. По общей массе корневые системы ксерофитов нередко превышают надземные части, иногда весьма значительно. Так, у многих травянистых и кустарниковых видов среднеазиатских пустынь подземная масса больше надземной в 9-10 раз, а у ксерофитов памирских высокогорных холодных пустынь - в300-400 раз. Корневые системы ксерофитов часто бывают экстенсивного типа, то есть растения имеют длинные корни, распространяющиеся в большом объеме почвы, но сравнительно мало разветвленные. Проникновение таких корней на большую глубину позволяет ксерофитам использовать влагу глубоких почвенных горизонтов, а в отдельных случаях - и грунтовых вод. [16]

У других видов корневые системы интенсивного типа: они охватывают относительно небольшой объем почвы, но благодаря очень густому ветвлению максимально используют почвенную влагу. Корни ряда ксерофильных видов имеют специальные приспособления для запасания влаги. Надземные органы ксерофитов также отличаются своеобразными (так называемыми ксероморфными чертами), которые носят отпечаток трудных условий водоснабжения. У них сильно развита водопроводящая система, что хорошо заметно по густоте сети жилок в листьях, подводящих воду к тканям. Эта черта облегчает ксерофитам пополнение запасов влаги, расходуемой на транспирацию.

Разнообразные структурные приспособления защитного характера, направленные на уменьшение расхода воды, в основном сводятся к следующему:

Общее сокращение транспирирующей поверхности. Многие ксерофиты имеют мелкие, узкие, сильно редуцированные листовые пластинки. В особо засушливых пустынных местообитаниях листья некоторых древесных и кустарниковых пород редуцированы до едва заметных чешуек. У таких видов фотосинтез осуществляют зеленые ветви. [1]

Уменьшение листовой поверхности в наиболее жаркие и сухие периоды вегетационного сезона. Для многих кустарников среднеазиатских, североафриканских и других пустынь, а так же для некоторых видов сухих субтропиков средиземноморья характерен сезонный деформизм листьев: ранней весной при еще благоприятном водном режиме образуются относительно крупные листья, которые летом, при наступлении жары и сухости, сменяются мелкими листьями более ксероморфного строения с меньшей интенсивностью транспирации.

Защита листьев от больших потерь влаги на транспирацию. Она достигается благодаря развитию мощных покровных тканей - толстостенного, иногда многослойного эпидермиса, часто несущего различные выросты и волоски, которые образуют густое “войлочное” опушение поверхности листа. У других видов поверхность покрыта водонепроницаемым слоем толстой кутикулы или воскового налета. Развитие защитных покровов на листьях причина того, что степной травостой имеет тусклые, седоватые оттенки, резко отличающиеся от яркой зелени лугов. [17]

Устьица у ксерофитов обычно защищены от чрезмерной потери влаги, например, расположены в специальных углублениях в ткани листа, иногда снабженных волосками и прочими дополнительными защитными устройствами. У ковылей и других степных злаков существует интересный механизм защиты устьиц в самые жаркие и сухие часы дня: при больших потерях воды крупные тонкостенные водоносные клетки эпидермиса теряют тургор, и лист свертывается в трубку; так устьица оказываются изолированными от окружающего сухого воздуха внутри замкнутой полости, где благодаря транспирации создается повышенная влажность. Во влажную погоду клетки эпидермиса восстанавливают тургор, и листовая пластинка вновь развертывается. [9]

Усиленное развитие механической ткани. Клетки тканей листьев у ксерофитов отличаются мелкими размерами и весьма плотной упаковкой, то есть малым развитием межклетников, благодаря чему сильно сокращается внутренняя испаряющая поверхность листа. Поскольку ксерофиты обычно обитают на открытых, хорошо освещенных местообитаниях, многие черты ксероморфной структуры листа - это одновременно и черты световой структуры. Так у многих видов листья имеют мощную иногда многорядную палисадную паренхиму, часто расположенную с обеих сторон.

Ксерофиты обладают рядом разнообразных физиологических адаптаций, позволяющих им успешно выдерживать недостаток влаги.

У ксерофитов обычно повышено осмотическое давление клеточного сока, позволяющее всасывать воду даже при больших водоотнимающих силах почвы, то есть использовать не только легкодоступную, но и труднодоступную почвенную влагу. Оно измеряется тысячами кПа, а у некоторых пустынных кустарников зарегистрированы цифры, достигающие 10000-30000 кПа. [16]

С давних пор пристальное внимание привлекала проблема расхода воды ксерофитами на транспирацию. Казалось бы, многочисленные анатомические приспособления, достаточно надежно защищающие наземные части ксерофитов от сильного испарения, должны способствовать значительному снижению транспирации. Однако выяснилось, что в действительности это не так. При достаточном водоснабжении большинство ксерофитов имеют довольно высокую транспирацию, но при наступлении засушливых условий, они сильно сокращают ее. При этом играет роль и закрывание устьиц, и сильное обезвоживание листа при начинающемся подвядании. Несомненно, анатомо-морфологические приспособления имеют определенное значение, но основную роль в засухоустойчивости ксерофитов в настоящее время отводят физиологическим механизмам. [14]

К числу этих механизмов принадлежит высокая водоудерживающая способность тканей и клеток, обусловленная рядом физиологических и биохимических особенностей.

Большое значение для выживания ксерофитов при резком недостатке влаги имеет их способность переносить глубокое обезвоживание тканей без потери жизнеспособности и способности восстановления нормального содержания воды в растении при возобновлении благоприятных условий. Ксерофиты способны потерять до 75% всего водного запаса и, тем не менее, остаться живыми. Ярким примером в этом отношении служат пустынные растения, которые летом высыхают до состояния, близкого к воздушно-сухому, и впадают в анабиоз, но после дождей возобновляют рост и развитие. [8]

Еще одна система адаптаций, обеспечивающих выживание ксерофитов в аридных условиях, - выработка сезонных ритмов, дающих возможность растениям использовать для вегетации наиболее благоприятные периоды года и резко сократить жизнедеятельность во время засухи. Так, в областях со средиземноморским климатом с резко выраженным летним сухим периодом многие ксерофильные виды имеют “двухтактный” ритм сезонного развития: весенняя вегетация сменяется летним покоем, во время которого растения сбрасывают листву и снижают интенсивность физиологических процессов; в период осенних дождей вегетация возобновляется, и затем уже следует зимний покой. Сходное явление наблюдается и у растений сухих степей в середине и конце лета: потеря части листовой поверхности, приостановка развития, сильное обезвоживание тканей и т.д. Такое состояние, получившее название полупокоя, длится вплоть до осенних дождей, после которых у степных ксерофитов начинают отрастать листья. [7]

Физиологические адаптации суккулентов столь своеобразны, что их необходимо рассмотреть отдельно.

Основной способ преодоления засушливых условий у суккулентов - накопление больших запасов воды в тканях и крайне экономное ее расходование. В условиях жаркого и сухого климата весь водный запас мог бы быть быстро растрачен, но растения имеют защитные приспособления, направленные к сокращению транспирации. Одно из них - своеобразная форма надземных частей суккулентов. В дополнение к этому у многих суккулентов поверхность защищена восковым налетом опушением, хотя есть и суккуленты с тонким не защищенным эпидермисом. Устьица очень немногочисленны, часто погружены в ткань листа или стебля. Днем устьица обычно закрыты, и потеря воды идет в основном через покровные ткани. [14]

Транспирация у суккулентов чрезвычайно мала. Ее трудно уловить за короткий период и приходится определять расход воды не за час, а за сутки или за неделю. Водоудерживающая способность тканей суккулентов значительно выше, чем у других растений экологических групп, благодаря содержанию в клетках гидрофильных веществ. Поэтому и без доступа влаги суккуленты расходуют водный запас очень медленно и долго сохраняют жизнеспособность даже в гербарии.

Ограничения, обусловленные особенностями водного режима суккулентов, создают и другие трудности для жизни этих растений в аридных условиях. Слабая транспирация сводит к минимуму возможность терморегуляции, с чем связано сильное нагревание массивных надземных органов суккулентов. Затруднения создаются и для фотосинтеза, поскольку днем устьица обычно закрыты, а открываются ночью, следовательно, доступ углекислоты и света не совпадают во времени. Поэтому у суккулентов выработался особый путь фотосинтеза, при котором в качестве источника углекислоты, частично используются продукты дыхания. Иными словами, в крайних условиях растения частично используют принцип замкнутой системы с реутилизацией отходов метаболизма. [14]

В силу всех этих ограничений интенсивность фотосинтеза суккулентов невелика, рост и накопление массы идут очень медленно, вследствие чего они не отличаются высокой биологической продуктивностью и не образуют сомкнутых растительных сообществ.

Выводы

Основным источником влаги для растений является вода, находящаяся в почве, и основным органом поглощения воды является корневая система. Роль этого органа прежде всего заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растения большого объема почвы. Сформировавшаяся корневая система представляет собой сложный орган с хорошо дифференцированной внешней и внутренней структурой

Поглощение воды корневой системой идет благодаря работе двух концевых двигателей водного тока: присасывающей силы транспирации и корневого давления.

Вода, поглощенная клетками корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации, а также силе корневого давления, передвигается до проводящих путей ксилемы, и далее ко всем вышележащим органам растения.

В почве имеются водоудерживающие силы, которые определяют притяжение воды к почвенным частицам, поэтому далеко не вся вода, находящаяся в почве доступна растениям. Вода, находящаяся в почве, в зависимости от своего состояния может находиться в одной из следующих форм: гигроскопическая, гравитационная, капиллярная, пленочная, имбибиционная.

По приуроченности к местообитаниям с разными условиями увлажнения и выработке соответствующих приспособлений среди наземных растений различают следующие основные экологические типы: гидрофиты, гигрофиты, мезофиты и ксерофиты.

Гидрофиты - это растения наземно-водные, частично погруженные в воду, растущие по берегам водоемов, на мелководьях. У гидрофитов развиты проводящие и механические ткани. Хорошо выражена аэренхима. У данного типа растений есть эпидерма с устьицами, интенсивность транспирации очень высока, и они могут расти только при постоянном интенсивном поглощении воды.

Гигрофиты - это растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. Среди гигрофитов различают теневые и световые. Теневые - это растения нижних ярусов сырых лесов в разных климатических зонах. К световым гигрофитам относятся виды открытых местообитаний, растущие на постоянно влажных почвах и во влажном воздухе. Характерные структурные черты гигрофитов - тонкие нежные листовые пластинки с небольшим числом устьиц, не имеющие толстой кутикулы, рыхлое сложение тканей листа с крупными межклетниками, слабое развитие водопроводящей ткани, тонкие слаборазветвленные корни.

Мезофиты - эта группа включает растения, произрастающие в средних условиях увлажнения. Основные морфолого-анотомические черты мезофитов - средние между чертами гигрофитов и ксерофитов.

Ксерофиты - это растения сухих местообитаний, способные переносить значительный недостаток влаги - почвенную и атмосферную засуху. Неблагоприятный водный режим растений в сухих местообитаниях обусловлен, во-первых, ограниченным поступлением воды, во-вторых, увеличением расхода влаги на транспирацию при большой сухости воздуха. Группу ксерофитов разделяют на суккуленты - растения с сочными листьями или стеблями, и склерофиты - растения, наоборот, сухие на вид, часто с узкими и мелкими листьями, иногда свернутыми в трубочку. Для ксерофитов большое значение имеют разнообразные структурные приспособления к условиям недостатка влаги. Корневые системы обычно сильно развиты, что помогает растениям увеличить поглощение почвенной влаги. Общее сокращение транспирирующей поверхности.

Ксерофиты обладают рядом разнообразных физиологических адаптаций, позволяющих им успешно выдерживать недостаток влаги. К числу этих механизмов принадлежит высокая водоудерживающая способность тканей и клеток, обусловленная рядом физиологических и биохимических особенностей. Большое значение для выживания ксерофитов при резком недостатке влаги имеет их способность переносить глубокое обезвоживание тканей без потери жизнеспособности. Еще одна система адаптаций, обеспечивающих выживание ксерофитов в аридных условиях, - выработка сезонных ритмов. Стоит рассмотреть отдельно физиологические адаптации суккулентов. Основной способ преодоления засушливых условий у суккулентов - накопление больших запасов воды в тканях и крайне экономное ее расходование. Транспирация у суккулентов чрезвычайно мала.

В дополнение к этому у многих суккулентов поверхность защищена восковым налетом и опушением.

Различные пути регуляции водообмена позволили растениям заселить самые различные по экологическим условиям участки суши. Таким образом, многообразие приспособлений лежит в основе распространения растений по поверхности земли, где дефицит влаги является одной из главных проблем экологических адаптаций.

Список литературы

1. Алехина Н.Д. Физиология растений / Н.Д. Алехина, Ю.В. Балконин - Москва: Академия, 2007. - 640 с.

2. Баранникова Т.В. Практикум по физиологии растений / В.М. Бурень, Д.И. Лаврентович; под ред.Н. Н. Третьякова. - 3-е изд., перераб. и доп. - Москва: Агропромиздат, 1990. - 271 с.

3. Беликов П.С. Физиология растений / П.С. Беликов, Г.А. Дмитриева - Москва: РУДН, 2002. - 248 с.

4. Веретенников А.В. Физиология растений /А.В. Веретенников-Москва: Академический Проект, 2006. - 480 с.

5. Ершова А.Н. Лабораторный практикум по физиологии растений: учебно-метод. пособие для студентов естественно-географического факультета дневной и заочной форм обучения по направлению 050100.62 "Педагогическое образование", профиль "Биология" / А.Н. Ершова, А.С. Фатуллаева, О.С. Бердникова - Воронеж: Воронежский госпедуниверситет, 2015. - 120 с.

...

Подобные документы

  • Меры по предотвращению водного кризиса. Выход из "водной" задолженности путём очищения, опреснения, сокращения потребления воды и вредных выбросов. Эффективные пути экономии воды в промышленном производстве. Способы очистки воды, сохранение ее запасов.

    реферат [1,8 M], добавлен 16.10.2013

  • Водные ресурсы: понятие и значение. Водные ресурсы Алтайского края. Водные экологические проблемы города Барнаула и пути их решения. Подземные воды как источник питьевого водоснабжения. О методах очистки воды. Вода и ее уникальные термические свойства.

    реферат [18,7 K], добавлен 04.08.2010

  • Физико-химическая характеристика питьевой воды. Гигиенические требования к качеству питьевой воды. Обзор источников загрязнения воды. Качество питьевой воды в Тюменской области. Значение воды в жизни человека. Влияние водных ресурсов на здоровье человека.

    курсовая работа [50,2 K], добавлен 07.05.2014

  • Основные потребители воды в горном деле. Структура промышленных сточных вод и регулирование водного потока. Условия образования и состав сточных вод горных предприятий. Качество воды, анализ сточных вод, основные способы их очистки и обеззараживания.

    реферат [190,3 K], добавлен 08.12.2010

  • Происхождение воды на Земле: теории ее появления. Соотношение площадей суши и Мирового океана на нашей планете. Примеры содержания воды в клетках разных организмов, их тканях и органах. Круговорот воды в биосфере. Свойства воды, значение в жизни человека.

    контрольная работа [33,4 K], добавлен 02.04.2010

  • Общая характеристика водной среды. Водный баланс Земли. Гидросфера как природная система. Вода с точки зрения химии, общие свойства воды. Ионный состав природных вод. Подземные воды, загрязнение водоемов. Загрязнение поверхностных и подземных вод.

    реферат [29,7 K], добавлен 09.06.2010

  • Проблема чистой воды в Поволжском регионе и существующие мероприятия для ее решения. Проведение этно-экологических исследований воды и почвы реки Ветлуга и прибрежной территории, анализ проб воды и почвы. Видовой состав Приветлужья и национального парка.

    практическая работа [1,2 M], добавлен 14.02.2012

  • Особенности использования подземной воды и способы ее подготовки. Источники загрязнения питьевых вод летучими хлорорганическими соединениями. Предварительная очистка воды коагуляцией. Сорбционная очистка воды. Заболевания, вызываемые зараженной водой.

    курсовая работа [240,2 K], добавлен 24.09.2013

  • Роль питьевой воды для здоровья населения. Соответствие органолептических, химических, микробиологических и радиологических показателей воды требованиям государственных стандартов Украины и санитарного законодательства. Контроль качества питьевой воды.

    доклад [19,7 K], добавлен 10.05.2009

  • Основание существования биосферы и человека на использовании воды. Химические, биологические и физические загрязнители воды. Факторы, обуславливающие процессы загрязнения поверхностных вод. Характеристика показателей качества воды, методы ее очистки.

    курсовая работа [57,9 K], добавлен 12.12.2012

  • Состояние качества воды в водных объектах. Источники и пути загрязнения поверхностных и подземных вод. Требования к качеству воды. Самоочищение природных вод. Общие сведения об охране водных объектов. Водное законодательство, водоохранные программы.

    курсовая работа [2,6 M], добавлен 01.11.2014

  • Влияние некачественной воды на организм человека. Новые технологии водоподготовки: осветление (коагуляция, отстаивание, фильтрация), умягчение воды, дистилляция или удаление солей, дегазация, устранение запахов. Параметры, влияющие на качество воды.

    реферат [636,2 K], добавлен 06.01.2013

  • Проведение экологического мониторинга состояния питьевой воды. Выявление основных загрязнителей. Установление соответствия качества питьевой воды санитарным нормам. Характеристика основных методов очистки воды для хозяйственно-питьевого водоснабжения.

    презентация [1,1 M], добавлен 12.04.2014

  • Мировые запасы пресной воды, темпы и причины их уменьшения. Источники загрязнения природной воды. Существующие в данной области и проблемы, направления и перспективы их преодоления. Перспективы применение подземных вод как основной источник пресной воды.

    контрольная работа [38,4 K], добавлен 23.04.2015

  • Значение и функции воды. Водные ресурсы суши, их распределение на планете. Водообеспечение стран мира, решение данной проблемы, структура водопотребления. Минеральные, энергетические, биологические ресурсы Мирового океана. Причины недостатка пресной воды.

    реферат [23,3 K], добавлен 25.08.2010

  • Круговорот воды в природе, поверхностные и грунтовые воды. Проблемы водоснабжения, загрязнение водных ресурсов. Методические разработки: "Водные ресурсы планеты", "Исследование качества воды", "Определение качества воды методами химического анализа".

    дипломная работа [105,2 K], добавлен 06.10.2009

  • Вода – вещество, которое находится в жидком состоянии. Свойство прозрачности воды. Вода не имеет запаха. Вода течет. Вода может растворять разные вещества. Воду можно очистить с помощью фильтра. Без воды немыслима жизнь на планете Земля.

    реферат [12,6 K], добавлен 02.04.2007

  • Нормативно-правовая база, регулирующая качество питьевой воды в Украине. Рассмотрение органолептических и токсикологических свойств воды. Ознакомление со стандартами качества питьевой воды в США, их сравнение с украинскими и европейскими стандартами.

    реферат [347,9 K], добавлен 17.12.2011

  • Вода из поверхностных или подземных источников как источник питьевой воды во многих странах мира. Загрязнение источников воды нефтепродуктами и химическими примесями. Технологии очистки воды и почвы от разливов нефти, нефтепродуктов, химических веществ.

    реферат [18,2 K], добавлен 08.04.2014

  • Исследование целей и задач проведения всемирного дня воды и водных ресурсов. Привлечение внимания всего человечества к вопросам освоения и сбережения водных ресурсов. Физические свойства и интересные факты о воде. Проблема дефицита пресной воды в мире.

    презентация [4,1 M], добавлен 07.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.