Совершенствование технологии удаления азота и фосфора в комплексе по очистке сточных вод и обработке осадка

Анализ факторов, определяющих скорость и эффективность процессов нитрификации, денитрификации и дефосфатирования, а также количественная оценка их влияния на упомянутые процессы. Производственная проверка химико-биологических схем очистки сточных вод.

Рубрика Экология и охрана природы
Вид автореферат
Язык русский
Дата добавления 03.02.2018
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Автореферат

диссертации на соискание ученой степени доктора технических наук

Совершенствование технологии удаления азота и фосфора в комплексе по очистке сточных вод и обработке осадка

05.23.04 - Водоснабжение, канализация,

строительные системы охраны водных ресурсов

СОЛОВЬЕВА Елена Александровна

Санкт - Петербург, 2009

Работа выполнена в ГОУ ВПО «Санкт-Петербургский государственный архитектурно - строительный университет»

Научный консультант: доктор технических наук, профессор Мишуков Борис Григорьевич

Официальные оппоненты: доктор технических наук, профессор Аюкаев Ренат Исхакович Петрозаводский государственный университет

доктор технических наук, профессор Иванов Виктор Григорьевич Петербургский государственный

университет путей сообщения доктор технических наук, профессор Ильин Юрий Александрович

Военный инженерно-технический университет (Санкт-Петербург)

Ведущая организация: Государственное унитарное предприятие «Проектный институт по проектированию городских инженерных сооружений» (ГУП «ЛЕНГИПРОИНЖПРОЕКТ»), г. Санкт-Петербург

Защита состоится « 16 » марта 2010 г. в 14.00 часов на заседании совета по защите докторских и кандидатских диссертаций Д 212.223.06 при ГОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет» по адресу: 190005, Санкт-Петербург, 2-я Красноармейская ул. д. 4, зал заседаний. Телефакс: (812) 316-58-72

С диссертацией можно ознакомиться в фундаментальной библиотеке Санкт-Петербургского государственного архитектурно-строительного университета.

Автореферат разослан «_____» февраля 2010 г.

Ученый секретарь

диссертационного совета Васильев В.Ф.

Актуальность темы диссертации. В системе защиты окружающей среды от загрязнения очистка сточных вод является одним из основополагающих компонентов. В настоящее время в данной области наметились новые тенденции и подходы, образующие понятие «техника и технологии ХХI века», направленные на решение проблем, существование которых ранее не принималось во внимание. В соответствии с современными воззрениями, основной причиной ухудшения качества вод, забираемых для питьевых нужд, является эвтрофикация поверхностных источников. Ведущим фактором, определяющим интенсивность эвтрофикации, является поступление в водоемы со сточными водами значительного количества биогенных элементов - азота и фосфора. Новый подход к очистке сточных вод заключается в смене приоритетов. Если ранее основной задачей очистки считалось изъятие и окисление массы органических веществ, то сейчас основным видом загрязнений, подлежащих удалению, становятся биогенные элементы - азот и фосфор.

Удаление азота и фосфора из сточных вод снижает возможность эвтрофикации водных объектов, ставшей проблемой мирового масштаба. Бурное развитие технологий и технических средств ликвидации биогенного загрязнения базируется на использовании современного высокотехнологичного оборудования, а также систем автоматического контроля и управления. Разработки в этом направлении весьма актуальны, обмен научным и практическим опытом крайне необходим.

Качество очищенных сточных вод, сбрасываемых в водоемы, согласно рекомендациям Хельсинской комиссии по защите вод Балтийского моря от загрязнения (ХЕЛКОМ), должно поэтапно улучшаться. Для этого в Санкт-Петербурге и пригородах построены и действуют очистные станции нового поколения, на которых, в рамках сотрудничества ГУП «Водоканал Санкт-Петербурга» с Германией, Францией, Данией, Финляндией, Швецией и другими странами Европы и мира, отрабатываются новые технологии и технические средства.

Настоящая работа направлена на комплексную оценку, развитие и совершенствование технологии удаления азота и фосфора из сточных вод, в том числе и из вторичных загрязнений, поступающих с возвратными стоками от узлов обработки осадков. Совершенствуемый процесс имеет общепринятое сокращенное наименование «Денифо» т.е. денитрификация и дефосфатирование.

Целью исследований в диссертационной работе автора является комплексная производственная проверка новых технологических процессов, направленных на максимальное изъятие азота и фосфора из сточных вод, с учетом потоков сливных вод и фугата, а также экспериментальное подтверждение и математическая интерпретация полученных результатов. Для достижения цели был решен ряд практических и теоретических задач.

Задачами исследования в соответствии с поставленной целью являлись:

· обоснование и экспериментальная проверка способов подготовки сточных вод для достижения наилучших результатов биологической или химико-биологической очистки;

· выявление факторов, определяющих скорость и эффективность процессов нитрификации, денитрификации и дефосфатирования, а также количественная оценка их влияния на упомянутые процессы;

· производственная проверка наиболее современных и совершенных технологических схем очистки сточных вод, выявление их достоинств и недостатков;

· разработка новых технологических схем очистки сточных вод, более надежных и эффективных чем существующие;

· производственная проверка химико-биологических схем очистки сточных вод, предусматривающих реагентное удаление азота и фосфора, выявление их достоинств и недостатков, оценка экономичности применения химических реагентов;

· совершенствование применяемых технологических схем путем поиска новых точек ввода реагента, обеспечивающих минимальный уровень выноса вредных примесей, образующихся при использовании реагентов для наиболее глубокого изъятия азота и фосфора;

· математическая интерпретация процессов биологической очистки на основе моделей простых химических и многостадийных биохимических реакций, формулирование практических зависимостей для расчета элементов биоблока;

· определение массы выноса азота и фосфора с иловыми водами и фугатом (вторичных загрязнений) при обезвоживании осадков, разработка комплекса мер по их минимизации;

· формирование и описание комплексной системы очистки сточных вод и обработки осадков, обладающей высокой эффективностью и надежностью действия, соответствующей требованиям отечественных нормативов и международных соглашений по качеству очистки сточных вод.

Научная новизна. В ходе исследований, направленных на решение поставленных задач, выявлен ряд факторов, зависимостей и закономерностей, не учитываемых ранее. Поскольку в настоящей диссертационной работе современные очистные сооружения впервые рассматриваются как комплексная система по удалению из городских сточных вод азота и фосфора, элементы научной новизны приводятся раздельно по основным изученным процессам.

В процессах биологического удаления азота и фосфора установлено:

· скорость нитрификации зависит от содержания общего азота в сточных водах и предварительного изъятия органических веществ в денитрификаторе;

· нитрификация и денитрификация интенсифицируются с ростом поступления органических веществ улучшенной структуры, что достигается подбраживанием загрязнений в сточной воде и в осадке первичных отстойников;

· предварительная денитрификация возвратного активного ила с частью потока сточных вод улучшает анаэробиоз в анаэробной зоне биоблока и способствует интенсивному удалению фосфора;

· дефосфатирование интенсифицируется при поступлении в анаэробную зону биоблока всего потока денитрифицированного возвратного ила, а также при подаче в биоблок со сточными водами тонкодисперсных частиц взвеси и органических кислот.

Производственными испытаниями технологических схем с реагентным удалением фосфора доказано:

· повышенные дозы реагента являются причиной роста содержания металлов в очищенной воде и вызывают увеличение зольности осадка, что отрицательно влияет на условия его сжигания;

· традиционный общепринятый способ введения реагента перед первичными отстойниками является затратным, приводит к излишнему изъятию органических веществ (по БПК5), что отрицательно влияет на дальнейшую биологическую очистку и снижает эффективность удаления азота вследствие ослабления денитрификации;

· общепринятый способ введения реагента в иловую смесь перед вторичными отстойниками требует повышенной дозы реагента, вследствие конкуренции между фосфатами и другими анионами;

· предложенный автором способ ввода реагента в поток циркулирующего активного ила позволяет сохранить высокую эффективность удаления фосфора при минимальных (по сравнению со всеми прочими вариантами) дозах реагента и обеспечивает низкий уровень содержания металла в очищенной воде.

По работе узла обезвоживания осадков установлено:

· при совместном обезвоживание ила и осадков (с длительным пребыванием в резервуарах) приводит к интенсивному вытеснению фосфора фосфатов в сливные воды, и соответствующему повышению содержания фосфора в очищенной воде;

· оперативные меры по реагентному удалению фосфора из иловых вод и фугата не обеспечивают содержания фосфатов в очищенной воде на уровне требований ПДК;

· доказана эффективность раздельной обработки (уплотнения и обезвоживания) осадков и ила, которая гарантирует минимальный вынос фосфора с возвратными водами и фугатом;

По совершенствованию технологии обработки сточных вод и осадков:

· установлены особенности функционирования различных технологических схем на очистных станциях гг. Пушкина, Сестрорецка, на Юго-Западных очистных сооружениях, подтверждена надежность их работы в течение ряда лет;

· проведено комплексное исследование работы всей очистной станции (от приемной камеры до точки выпуска очищенной воды, включая узел обработки осадка), как системы, предназначенной для удаления из сточных вод азота и фосфора, и выполнена математическая интерпретация происходящих в данной системе процессов;

· для вновь проектируемых очистных станций предложена ранее не применявшаяся, более гибкая и маневренная технологическая схема «Uni».

Защищаемые научные положения. Предметом защиты диссертационной работы является представление современной станции аэрации как комплексной системы, предназначенной для удаления азота и фосфора из сточных вод биологическими и химико-биологическими методами, математическая интерпретация отдельных процессов и экспериментальное подтверждение эффективности работы сооружений в производственных условиях.

На защиту выносятся:

· технологии работы станций аэрации как комплексных систем, ориентированных на эффективное биологическое удаление азота и фосфора из сточных вод и осадков;

· технологии глубокой химико-биологической очистки сточных вод и осадков от азота и фосфора с применением химических реагентов.

Обоснованность научных положений, рекомендаций и выводов базируется на следующих принципах:

· достоверности исходных данных, полученных автором лично, в результате опытов, поставленных на действующих очистных сооружениях;

· достоверности исходных данных, предоставленных автору в составе официальных отчетов станций аэрации с декадными показателями качества исходных и очищенных сточных вод;

· результатах длительных производственных экспериментов, поставленных автором на действующих очистных станциях;

· применении адекватного поставленным задачам математического аппарата для формулирования теоретических зависимостей.

Надежность и эффективность предложенных автором технологических решений подтверждается документами (актами и справками о внедрении), удостоверяющими использование результатов разработок в промышленном масштабе. сточный нитрификация денитрификация очистка

Научная значимость. Научная значимость диссертации заключается в раскрытии особенностей функционирования очистной станции как единой системы, ориентированной на удаление из сточных вод и возвратных потоков азота и фосфора, а также в выборе рациональных, эффективных и надежных комплексных технологических схем биологической и химико-биологической (безреагентной и реагентной) обработки сточных вод и осадков.

Проведенный в ходе работы производственные эксперименты позволили выработать способы повышения эффективности очистки сточных вод, такие как: подбраживание загрязнений в стоках, раздельное уплотнение и обезвоживание осадков, а также осуществить выбор точки ввода реагента, обеспечивающий высокое качество очищенной воды при его минимальном расходе и соответствующем снижении содержания металлов в очищенной воде.

Публикация справочно-методических изданий по материалам, вошедшим в настоящую диссертационную работу, способствовала подготовке аспирантов и студентов, а также повышению квалификации кадров научно-исследовательских и проектных организаций.

Практическая значимость. Основой практической значимости настоящей работы является подготовка ряда рекомендаций по проектированию и эксплуатации канализационных очистных сооружений (КОС) с применением новых технологий. Рекомендации обобщены в журнальных публикациях автора и в трех монографиях, которые при посредничестве журналов «Вода и экология. Проблемы и решения», «Вода: технология и экология» распространены в проектных и эксплуатационных организациях, а также в ведущих высших учебных заведениях России и ближнего зарубежья.

Предложенные автором решения находят применение и в стратегическом планировании развития системы водоотведения. Данная стратегия подробно описана в издании «Водоснабжение и водоотведение в Санкт - Петербурге» под общей редакцией Ф.В. Кармазинова (2008 г.), в написании которого, а также в составлении Генеральной Схемы развития систем водоотведения в Санкт-Петербурге на 2015-2025 гг. принимала участие автор настоящей диссертации.

Личный вклад соискателя. Автором диссертации организован и осуществлен комплекс научных исследований на действующих очистных станциях Санкт-Петербурга и пригородов, представляющих собой современные системы сооружений по глубокой очистке сточных вод и обработке осадков, оснащенных новейшими техническим оборудованием, средствами управления и автоматизации технологических процессов.

Собраны, систематизированы и обобщены материалы работы производственных сооружений за длительный период их эксплуатации, проведена математическая обработка, подготовлена, опубликована и внедрена методика расчета очистных станций в комплексе обработки воды и осадка.

Соискатель участвовала в работах на экспериментальной секции аэротенка (100000 м3/сут) Северной станции аэрации, на комплексах очистных сооружений гг. Сестрорецка и Зеленогорска. Работы проводилась по заказам ГУП «Водоканал Санкт-Петербурга» - «Правобережный Водоканал.

На канализационной очистной станции г. Кронштадта при личном участии автора была предложена и внедрена технология денитрификации в первом коридоре аэротенка с применением барботажа. Подобное решение (с поперечной циркуляцией иловой смеси) по предложению автора внедрено и успешно функционирует на станции аэрации г. Зеленогорска,.

Также автором диссертации проверено влияние сбраживания осадка первичных отстойников, циркуляции иловой смеси (путем уменьшения рециркуляции в 1,5 раза) и нитратсодержащей иловой смеси (путем выключения перекачивающих насосов) на ход процессов биологической очистки очистных канализационных сооружений г. Сестрорецка в производственных условиях.

Личное участие автора отражено в совершенствовании технологии очистки сточных вод на ряде действующих КОС и в организации научно-исследовательских работ на некоторых из них.

Перечень выполненных автором работ:

· разработка программы производственных экспериментов;

· проведение поисковых опытов и внедрения положительных результатов в схему станции;

· организации дополнительного лабораторно-технического контроля исследований на станциях аэрации;

· обработка результатов измерений и анализов, определении параметров эффективности работы сооружений;

· формулировка математических описаний процессов очистки;

· подготовка практических рекомендаций по совершенствованию процесса очистки сточных вод

· составление регламентов по эксплуатации очистных сооружений

Апробация работы. Результаты работы докладывались и обсуждались на следующих научно-технических конференциях:

· ежегодных научных конференциях профессоров, преподавателей, научных работников, инженеров и аспирантов СПбГАСУ, начиная с 1998 г.;

· конференции «Чистая вода. Новейшие инженерные разработки в области водоподготовки и водоотведения.» Санкт-Петербург;

· международной научно-практической конференции «Проблемы и перспективы развития водного хозяйства малых городов» г. Витебск, Беларусь;

· Всероссийской научной конференции «Ресурсосбережение водо- и почвоохранные биотехнологии, основанные на использовании живых экосистем», Казань;

· научно-практической конференции НПП «Биотехпрогресс» Санкт-Петербург.

Внедрение результатов работы и тематически связанных рекомендаций автора осуществлено на следующих объектах:

· на Сестрорецкой СА - в виде рекомендаций по совершенствованию схемы, наладке сооружений и разработки регламента по их эксплуатации;

· на Зеленогорской СА - в виде рекомендаций по изменению конструкции аэротенков и их испытаниям, а также составления инструкций по эксплуатации биоблока;

· на Кронштадтской СА - в виде рекомендаций по изменению аэрационной системы, введению денитрификатора в технологическую схему станции, испытанию системы очистки со сбраживанием загрязнений в сточных водах;

· на ЮЗОС: в виде подготовки и обучения эксплуатационного персонала, участия в пуско-наладочных работах;

· на Северной СА - в форме участия в испытаниях опытно - промышленной секции №5 аэротенка производительностью 100000 м3/сут с проведением пуско-наладочных работ и составлением регламента по эксплуатации; на той же станции - в виде рекомендаций по уплотнению избыточного активного ила при добавке флокулянта;

· на Колпинской СА - в виде рекомендаций по совместному и раздельному обезвоживанию осадков;

· на Петродворцовой СА - в виде рекомендаций по проектированию.

По рекомендациям автора:

· ГУП "Ленгипроинжпроект" проектирует очистные станции п. Металлострой (240000 м3/сут), г. Ломоносова (60000 м3/сут), а также Красносельскую СА (150000 м3/сут);

· ЗАО «Проектный институт «Ленинградский Водоканалпроект» проектирует реконструкцию очистных сооружений г. Петрозаводска (140000 м3/сут), г. Кировска (16000 м3/сут), г. Выборга Ленинградской области и г. Ленска (Якутия, 20000 м3/сут).

· Построены и действуют станции малой производительности (институт «Водопроект - Гипрокоммунводоканал г. Санкт - Петербург») в Ленинградской области (база отдыха «Буревестник», 300 м3/сут), в г. Находке, в г. Смоленске, и на других подобных объектах в различных регионах РФ.

Публикации: по теме диссертации всего опубликовано 40 работ, в том числе 1 монография, 3 монографии в соавторстве, 2 учебных пособия, 34 статьи (из них 9 -в изданиях, входящих в перечень ВАК РФ), а также 3 отчета по научно-исследовательским работам.

Работа выполнена в Санкт-Петербургском государственном архитектурно - строительном университете, и является обобщением результатов исследований, проведенных автором диссертации в течение 10 лет на действующих очистных сооружениях Санкт - Петербурга и пригородов.

Структура и объем работы. Диссертация состоит из введения, шести глав, заключения, списка цитируемой литературы из 142 наименований, 13 приложений. Работа изложена на 259 страницах текста (без учета приложений), включает 100 рисунков и 34 таблицы. В приложениях приводятся акты и справки о внедрении результатов диссертационной работы, основные данные по работе КОС и др. документы.

Проведение исследований и написание настоящей диссертации было бы невозможно без содействия доктора технических наук, профессора Б.Г. Мишукова, которому автор приносит слова благодарности за ценные советы и постоянную помощь в выполнении работ.

Автор диссертации выражает искреннюю признательность за помощь и поддержку сотрудникам ГУП «Водоканал Санкт-Петербурга» Г.П. Медведеву, Б.В. Васильеву, Е.М. Протасовскому, МГУП «Мосводоканал» Д.А. Даниловичу.

Автор диссертации также глубоко признательна главным технологам станций аэрации Г.Н. Рафаловичу, С.Е. Маскалевой, О.А. Ломиноге и сотрудникам ХБЛ ССА и Сестрорецкой станции аэрации за многолетнюю помощь в работе, а также сотрудникам ЦСА, ПСА и Зеленогорской станций аэрации, сотрудникам ГУП «Ленгипроинжпроект», ЗАО «Проектный институт «Ленинградский Водоканалпроект», «Водопроект Гипрокоммунводоканал Санкт-Петербург».

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность темы диссертационной работы, формулируется цель и задачи исследований, приводятся сведения о новизне исследований, апробации работы и практической реализации ее результатов, обосновывается выбор объектов для проведения исследований.

Исследования проводились на действующих очистных сооружениях г. Санкт - Петербурга и пригородов. Лабораторные исследования, полупроизводственные, опытно-промышленные испытания были проведены в Санкт-Петербурге в 1983-1995 гг. (к.т.н. Я.М. Добрых и к.т.н. И.И. Иваненко), и были использованы для дальнейших исследований. Объектами, на которых проводилось изучение процессов, служили следующие станции аэрации (по проектной производительности):

· Сестрорецкая станция аэрации (СА) (17000 м3/сут),

· Пушкинская СА (72000 м3/сут),

· Зеленогорская СА (11000 м3/сут),

· Северной СА (1250000 м3/сут),

· Кронштадтская СА (33000 м3/сут).

Для исследований использовались сведения о результатах работы:

· Юго-Западных очистных сооружений (ЮЗОС) (330000 м3/сут),

· Центральной СА (1500000 м3/сут),

В первой главе диссертации (Характеристика исходных и осветленных сточных вод НА ИЗУЧАЕМЫХ КАНАЛИЗАЦИОННЫХ ОЧИСТНЫХ СООРУЖЕНИЯХ) дается характеристика расхода и состава сточных вод на изучаемых объектах, приводится состав исходных сточных вод в сухую погоду и состав осветленных сточных вод после механической очистки. Таким образом, освещены условия формирования исходных данных при проведении исследований процессов биологической и химико-биологической очистки сточных вод от азота и фосфора. При этом установлено, что концентрации загрязнений в исходных и осветленных сточных водах на исследуемых объектах, типичны для большинства КОС Российской Федерации. Данный факт позволяет распространить результаты, полученные автором диссертации, за пределы Северо-западного региона.

Состав сточных вод в сухую погоду может быть определен по эквивалентному количеству загрязнений на одного жителя, г/челЧсут (65 по взвешенным веществам, 120 по ХПК, 55 по БПК5, 11 по азоту общему, 1,8 по общему фосфору) и количеству отводимых сточных вод (в среднем 400-450 л/челЧсут).

Описание хода механической очистки сточных вод было выполнено автором диссертации в более ранних работах и детально изложено в книге «Удаление азота и фосфора на очистных сооружениях городской канализации» (СПб, 2004 г.). В отличие от существующих способов расчета в формулу введена зольность взвешенных веществ (от 30-55 %). Предложен способ учета количества загрязнений, выводимых с осадком первичных отстойников (1,69 г/г по ХПК, 0,71 г/г по БПК5, 0,072 г/г по общему азоту и 0,018 г/г по общему фосфору в пересчете на сухое беззольное вещество осадка).

Системный подход к оценке состава осветленной воды, выходящей из первичного отстойника, базируется на основании результатов эксплуатации первичных отстойников действующих канализационных очистных станций гг. Москвы и Санкт-Петербурга, с учетом удаления загрязнений (включая азот и фосфор) с оседающим в отстойниках осадком.

Во второй главе диссертации (СОВРЕМЕННОЕ СОСТОЯНИЕ ТЕХНОЛОГИИ БИОЛОГИЧЕСКОГО УДАЛЕНИЯ АЗОТА И ФОСФОРА) приводится информация о развитии систем и сооружений для биологической очистки сточных вод, современных схемах биологического удаления азота и фосфора, анализируются процессы биологической очистки в анаэробных, аноксидных, оксидных условиях, оцениваются существующие математические модели процессов биологической очистки. На основании вышеизложенной информации формулируются цели и задачи исследований.

В главе показано, что на практике применяются различные способы и схемы биологического удаления азота и фосфора. Основой биологической очистки сточных вод является инженерное управление развитием и сохранением полезного биоценоза и в создании надлежащих условий для существования каждой группы бактерий, осуществляющих удаление азота и фосфора.

При этом основными параметрами для оценки эффективности очистки служат ХПК, БПК5, концентрация взвешенных веществ и соединений азота и фосфора. Учитывая сложность определения количества микроорганизмов, задействованных в процессах нитрификации, денитрификации и дефосфатирования (аммонификаторов, нитрификаторов, денитрификаторов, фосфор-содержащих и фосфор-мигрирующих), ход биологической очистки оценивается по нагрузке на ил. Параметры возраста ила, его дозы и прироста используются как вспомогательные.

Успешное проведение дефосфатирования путем вытеснения в анаэробных и последующего поглощения фосфатов в аэробных условиях возможно в условиях жесткого анаэробиоза при полном отсутствии растворенного кислорода, минимальном присутствии нитритов и нитратов в поступающих потоках сточных вод и в циркулирующем активном иле, достаточном количестве биологически усваиваемых органических веществ.

Эффективная денитрификация в аноксидной зоне возможна при отсутствии растворенного кислорода (в объеме иловой смеси или внутри хлопков ила) и обильном снабжении ила легкоокисляемыми органическими веществами в количестве 8-15 г БПК5 на 1 г денитрифицированного азота. Наиболее экономичным способом является предшествующая денитрификация, базирующаяся на запасе органических веществ в сточных водах.

Нитрификация, как наиболее длительный и ответственный процесс, зависит от концентрации растворенного кислорода. Поэтому предложено осуществлять нитрификацию в области средней концентрации растворенного кислорода 2,5-3,0 мг/л, т. е. в диапазоне слабого его влияния на ход процесса. Для нитрификации азота аммонийного бактериями- нитрификаторами в оксидной зоне необходим небольшой избыток растворенного кислорода, предварительное изъятие 50-60% загрязнений по БПК5, благоприятный температурный режим (Т=10-20°). В условиях поступления разбавленных вод и низкой нагрузки на ил допустимо применять температурную поправку для нитрификации в виде KT=1,072T-15.

Для достижения положительных результатов очистки целесообразно принимать конструкции биоблока с жесткими перегородками, исключая тем самым влияние переходных процессов (от анаэробных условий к аноксидным, от аноксидных к оксидным и наоборот). При этом обеспечивается отсутствие кислорода и перенос нитратов в анаэробные зоны, а также создается благоприятный кислородный режим в оксидных зонах и в потоках циркулирующей иловой смеси.

В математических описаниях процессов на практике используются модели, построенные на базе одностадийных и многостадийных биохимических реакций. При этом наблюдаются приблизительно одинаковые погрешности расчетов (расхождения составляют 1 - 3%). Модели одностадийных реакций более просты в обращении.

Цели и задачи исследований, сформулированные во второй главе, в полном объеме приведены в первой части настоящего автореферата.

В третьей главе диссертации (ИССЛЕДОВАНИЕ ПРОЦЕССОВ БИОЛОГИЧЕСКОГО и химико-биологического УДАЛЕНИЯ АЗОТА И ФОСФОРА НА ИЗУЧАЕМЫХ ОБЪЕКТАХ В ПРОИЗВОДСТВЕННЫХ УСЛОВИЯХ) приводятся основные результаты проведенных автором работы производственных экспериментов и теоретических исследований.

Автором в течение ряда лет проводился производственный эксперимент по подбраживанию осадка в первичном отстойнике на КОС г. Сестрорецка. Осадок откачивался из одного из отстойников и направлялся во второй первичный отстойник, который работал в режиме сбраживателя.

Введение сбраживателя положительно отразилось на усилении процесса денитрификации: общий азот в очищенной воде снизился с 10-13 мг/ до 8-10 мг/л, общий фосфор с 1,1-1,5 мг/ до 0,8-1,0 мг/л. Контроль за брожением проводился по показаниям редоксметра. Окислительно-восстановительный потенциал (ОВП) колебался в пределах минус 100 до 60 mV, вода имела темно-серый цвет и слабый запах сероводорода. Качество исходной и осветленной воды показано в табл. 1

Таблица 1 Качество исходной и осветленной воды со сбраживанием и без сбраживания осадка первичных отстойников

Показатели состава, мг/л

Без сбраживателя 2005 г.

Со сбраживателем 2006 г.

исходная

осветленная

исходная

осветленная

Взвешенные вещества

160

45

170

59

ХПК

360

160

380

220

БПК5

100

60

110

75

азот общий

30

-

30

-

азот аммонийный

18

-

20

-

фосфор общий

3,7

-

4,0

-

фосфор фосфатов

1,9

-

2,1

-

Разница между качеством осветленного стока и смеси осветленного и сброжненной воды по БПК5 и ХПК была невелика, в пределах погрешности измерений. На Юго-Западных очистных сооружениях (ЮЗОС) г. Санкт-Петербурга один из четырех первичных отстойников также был переведен на режим сбраживания осадка. Денитрификация и дефосфатирование улучшились.

Подобные явления были отмечены и во время проведения исследований на опытной пятой секции аэротенка Северной станции аэрации, на которой низкая остаточная концентрация фосфора была обусловлена подбраживанием сточных вод в подводящем коллекторе.

Производственные испытания по биологическому удалению азота и фосфора на канализационных очистных станциях. КОС г. Сестрорецка проведены автором диссертации в 2006 -2007 гг.. Измерение окислительного - восстановительного потенциала по ходу очистки воды показало (рис. 1), что в анаэробной и аноксидной зонах восстановительный потенциал недостаточен для интенсивного проведения процессов вытеснения фосфора и восстановления нитратов.

Рис. 1. Изменения ОВП по зонам биоблока (КОС г. Сестрорецка) (номера точек в биоблоке см. рис. 2)

После использования одного из первичных отстойников как сбраживателя ОВП стал изменяться и достигал более желательных значений в анаэробной зоне аэротенка. Слабые восстановительные условия в анаэробной и аноксидной зонах решено было усилить за счет регулирования рециркуляции ила и иловой смеси. Кратность рециркуляции была снижена с 90 до 60%. Постепенное увеличение дозы ила с 1-2 до 4 г/л усилило и стабилизировало нитрификацию, количество азота нитратов возросло до 8,8-9,2 мг/л. В анаэробной части блока происходило вытеснение фосфатов, в аноксидной - денитрификация, в оксидной части - потребление фосфора и нитрификация. Оперативный контроль за сбраживанием примесей проводилось эксплуатационным персоналом по органолептическому показателю наличия сероводорода (потемнение воды, запах).

Полученные автором фактические параметры работы биоблока на рис. 2, а результаты эксперимента приведены в таблице 2 (осенне-зимний период) и таблице 3 (весенне-летний период).

Таблица 2. Результаты работы биоблока КОС г. Сестрорецка в осенне-зимний период

Показатели состава, мг/л

ноябрь 2006 г.

декабрь 2006 г.

вход

выход

вход

выход

Взвешенные вещества

140

4,4

150

9,5

ХПК

320

52

440

49

БПК5

120

3,9

130

4,7

азот общий

23

11

30

11

азот аммонийный

22

0,32

23

0,3

азот нитратный

0,11

8,8

0,1

9,2

фосфор общий

4,0

0,67

3,4

0,54

фосфор фосфатов

1,8

0,56

1,3

0,21

Таблица 3 Результаты работы биоблока КОС г. Сестрорецка в весенне-летний период

Показатели состава, мг/л

апрель-август 2007 г.

вход

выход

Взвешенные вещества

140

5,0

ХПК

310

44

БПК5

106

4,6

азот общий

26

8,0

азот аммонийный

18

0,3

азот нитратный

0,083

5,4

фосфор общий

3,6

0,8

Фосфор фосфатов

2,5

0,6

Рис. 2. Изменения показателей состава воды в биоблоке КОС г. Сестрорецка в осенне-зимний и весенне-летний периоды. Точками 1-18 обозначены места отбора проб. N-NH4; N-NO3 - азот аммонийный и нитратный; P-PO4 - фосфор фосфатов.

Значительное влияние на качество очистки сточных вод от фосфора оказывают вторичные загрязнения. Совместное уплотнение осадка первичных отстойников и избыточного ила имитирует процессы вытеснения фосфора в анаэробной зоне, в результате этого вынос фосфатов со сливной водой приводит к повышению концентрации фосфора в очищенной воде. Еще худшие результаты наблюдаются при длительном пребывании в резервуарах смеси осадка и ила.

Для предотвращения появления вторичных загрязнений на Сестрорецкой станции аэрации была внедрена система раздельного уплотнения и обезвоживания осадков. Продолжительность уплотнения избыточного ила сокращено до 5-7 ч во избежание выноса фосфора. Обезвоживание осадков возможно осуществлять последовательно, т. е. сначала избыточный ил, а затем осадок первичных отстойников, так как длительное хранение осадка не влияет на вынос фосфора. Раздельное уплотнение ила и осадка при раздельном их обезвоживании позволили снизить уровень загрязненности сливных вод и фугата по фосфору до уровня 10-20 мг/л, что благоприятно отражается на конечных результатах очистки.

Технологические схемы блока биологической очистки отличаются большим разнообразием, но в основном включают три основных элемента в биоблоке: зону анаэробной обработки смеси ила и сточных вод; аноксидную зону для денитрификации; оксидную (аэробную) зону для проведения нитрификации. Каждая часть блока биологической очистки (биоблока) может состоять из нескольких отсеков с различным оснащением.

Удаление азота и удаление фосфора взаимосвязаны. Глубокое удаление азота, возможное при снижении нагрузки на ил, снижает прирост ила и не способствует повышению содержания фосфора в клетках.

С другой стороны, повышение нагрузки на ил интенсифицирует удаление фосфора. Выбирая режим работы аэротенков, следует определить приоритетный вид удаляемого загрязнения - азот или фосфор в очищенной воде, в увязке с достигаемым уровнем очистки.

В силу достаточно жестких требований по содержанию фосфора в очищенной воде приоритеты перемещаются в сторону удаления фосфора. Следует обратить внимание на возможные негативные явления, связанные с рециркуляцией возвратного ила. В ночные часы, при малом расходе сточных вод и низкой их концентрации, наблюдалось накопление нитратов в предденитрификаторе см. схему на рис. 3д.

Рис. 3. Наиболее эффективные технологические схемы блоков биологического удаления соединений азота и фосфора из сточных вод: а - АА/О; б - Phoredox modification; в - UCT; г - JHB; д - JHB modification. Ана -анаэробная часть; Ано - аноксидная часть; Окс - оксидная часть; ВО - вторичный отстойник; СВ - подача сточных вод; ОВ - очищенная вода; Ri - рециркуляция активного ила; RN - рециркуляция нитратсодержащей иловой смеси.

Рис. 4. Универсальная схема «Uni» процесса Денифо. ПД - предденитрификатор; Ана -анаэробная часть; Ано - аноксидная часть; Окс - оксидная часть; Ано-Окс - маневренная зона; ВО - вторичный отстойник; СВ - подача сточных вод; ОВ - очищенная вода; Ri - рециркуляция активного ила; RN - рециркуляция нитратсодержащей иловой смеси.

Наиболее распространенными схемами биологической очистки являются UCT и JHB modification (рис. 3). Автором диссертации для вновь создаваемых КОС рекомендуется более гибкая адаптивная схема расположения блоков под названием «Uni», показанная на рис. 4. Из теории сложных систем известно, что адаптивная система, при прочих равных условиях, обеспечивает лучшие результаты обработки, по сравнению со статичными системами, и системами с программным или ручным управлением.

В этой схеме циркулирующий активный ил Ri впускается дробно в предденитрификатор (ПД) и в основной денитрификатор Ано в зависимости от содержания нитратов в иле. Для денитрификации ила в ПД подается часть сточных вод q1 , в соответствии с потребностью в необходимом количестве органических веществ для денитрификации (8-10 мг БПК5 на 1 мг азота нитратов). Остальная часть стока направляется в анаэробный отсек для усиления вытеснения фосфора из клеток бактерий. Рециркуляция нитратсодержащей иловой смеси RN включается периодически при излишнем накоплении нитратов в оксидной зоне, либо постоянно. В системе возможно использование реагентов для углубления очистки сточных вод от фосфора.

Схема Uni, сочетающая в себе достоинства схем UCT и JHB modification, в случае применения современных компьютерных комплексов мониторинга и контроля параметров сточных вод и очищенной воды в режиме реального времени, позволяет реализовать адаптивную систему очистки, оперативно реагирующую на изменения внешних и внутренних параметров.

Поступающие от комплекса мониторинга и контроля параметров управляющие сигналы могут быть использованы для переключения режимов схемы Uni, переброски потоков сточных вод, возвратных вод, циркулирующего активного ила, а также определения дозы реагента.

Для глубокой очистки сточных вод от фосфора применяется реагентная обработка. В качестве реагентов используются соединения железа и алюминия. Реагенты на основе железа предпочтительны, вследствие меньшей токсичности. На практике в качестве реагента для удаления фосфора широко используется ферросульфат (Fe2(SO4)3), коммерческое наименование Ferix-3 (фирма Kemira).

Автором проводились производственные эксперименты по реагентному удалению фосфора из сточных вод на Сестрорецкой и Зеленогорской КОС. На Сестрорецкой КОС было проведено три цикла испытаний: при подаче реагента перед первичными отстойниками, при подаче реагента в иловую смесь перед вторичными отстойниками и при подаче реагента в циркулирующий активный ил. Во время проведения первого цикла испытаний было установлено, что при дозе реагента 4,0-7,0 г/м3 по Fe+3 снижение количества фосфора фосфатов в первичных отстойниках было не столь эффективным, так как в осветленной воде оставалось от 0,78 до 2,13 г/м3 фосфора (в среднем 1,46 г/м3). Стало очевидным, что в секциях аэротенков происходило активное связывание фосфатов избыточным количеством железа, выходящим с осветленной водой, в связи с чем концентрация фосфора фосфатов в иловой смеси и в очищенной воде снижалась до уровня чувствительности метода их определения (менее 0,10 г/м3).

Во втором цикле испытаний место ввода реагента было изменено. Реагент с дозой 3,0-4,0 г/м3 по Fe+3 подавался в распределительную чашу вторичных отстойников. Сразу же обнаружилось неравномерное распределение реагента между отстойниками вследствие неустойчивого движения иловой смеси в чаше: струя воды с реагентом чаще всего попадала только в один отстойник, повысилось содержание железа в очищенной воде до 0,4-0,6 г/м3. Количество фосфора в очищенной воде при этом снизилось до 0,4 - 0,6 г/м3. По результатам третьего цикла испытаний сформулирован вывод о предпочтительности ввода реагента в циркулирующий ил: при подаче Ferix-3 1,5-2,0 г/м3 по Fe+3 обеспечивалось снижение концентрации фосфора в очищенной воде до 0,2 - 0,4 г/м3.

Результаты обследования КОС г. Зеленогорска (табл. 4) показали, что введение реагента до первичных отстойников дозой 4,0-5,0 г/м3 по Fe+3, снижает количество фосфатов только до 0,14-0,5 мг/л.

Таблица 4. Результаты обследования КОС г. Зеленогорска

дата

Показатели качества очищенной воды, мг/л

N-NH4

N-NO3

P-PO4

28.11.07

0,27

13,2

0,17

05.12.07

0,15

9,63

0,25

12.12.07

0,15

11,4

0,31

19.12.07

0,15

6,60

0,50

26.12.07

0,15

16,20

0,24

23.01.08

0,18

13,50

0,20

30.01.08

0,20

13,90

0,26

06.02.08

0,11

11,60

0,14

В четвертой главе диссертации (расчет элементов блока биологической очистки) помещены результаты математического описания хода дефосфатирования, денитрификации и нитрификации при биологической очистке сточных вод. Предложен комплексный параметр для оценки качества очищенной воды с использованием ХПК и степенью окисления азота аммонийного.

Для определения скорости очистки и продолжительности пребывания сточных вод составляются балансы по азоту и фосфору.

Количество азота нитрифицированного (мг/л):

(1)

где - общий азот в осветленной воде; - азот в избыточном иле; и - азот органический и аммонийный в очищенной воде.

Количество денитрифицированного азота (мг/л):

(2)

где - общий азот в очищенной воде. Вынос азота с приростом ила равен •Pi, - содержание азота в иле, г N/ г ила, а Pi - прирост ила, г/м3.

Величина равна

(3)

По опыту работы очистных станций г. Москвы известно, что минимальное значение может быть составлять 5-7 мг/л при отсутствии механической очистки сточных вод, когда весь запас органических веществ, включая взвешенные вещества, направляется на денитрификацию нитратного азота. Фосфор из системы выводится с избыточным активным илом, поэтому основной задачей технологии является повышение содержания фосфатов в клетках ила. Количество общего фосфора в очищенной воде:

(4)

где - общий фосфор в осветленной воде.

Активный ил в традиционных аэротенках содержит 0,012-0,018 г/г фосфора, в то время как наличие анаэробной зоны может повысить содержание до 0,03-0,04 г/г, а при подаче реагента до 0,05-0,07 г/г.

В последующих расчетах оценивается вынос из системы азота и фосфора в составе избыточного активного ила. Прирост ила зависит от нагрузки на активный ил, по данным работы очистных станций Санкт-Петербурга

(5)

где - нагрузка на активный ил по БПК5, кг/кгЧсут; г=0,45 для БПК5.

Расчеты по определению параметров работы и объемов отдельных отсеков биоблока проводятся различными способами. Использование динамических моделей в эксплуатационных условиях практически невозможно, так как отсутствует измерительная техника для круглосуточного непрерывного контроля качества исходной, осветленной и биологически очищенной воды. Кроме того, следует учесть, что деление массы ила на группы микроорганизмов весьма условно. Исходя из этого, автором предложены обобщенные способы расчета, доступные для использования проектными и эксплуатационными организациями.

До начала детальных расчетов осуществляются оценочные расчеты по биоблоку в целом. В качестве основного параметра выбирают наиболее значимый. В зарубежной практике таким параметром назначается возраст ила в целом по биоблоку (либо по оксидной зоне).

Для системы с активным илом автором в качестве ведущего параметра предложено принимать нагрузку на активный ил, на общую биомассу либо на его беззольную часть. Нагрузка на ил определяет, как и для всех живых организмов, режим питания и размножения микроорганизмов, эффект очистки, состав биоценоза ила, плотность биоценоза при осаждении и уплотнении ила. Нагрузка на ил по БПК5, БПКn или ХПК напрямую связана с потреблением азота и фосфора, так как имеется прямая корреляция между содержанием органических веществ, азота и фосфора в различных формах.

Достаточно хорошо изучено влияние температуры воды на интенсивность биохимических реакций и, как следствие, на нагрузку на активный ил. В последние годы, в связи улучшением аналитической базы, чаще используют БПК5 для вычисления нагрузки; низкие значения БПК5 очищенной воды (на уровне 4 - 6 мг/л) позволяют пренебрегать этой величиной и исчислять нагрузку только по БПК5 поступающей воды.

Нагрузка по БПК5 на массу ила Hi.

(6)

Другой параметр - возраст ила иi - обозначает условную продолжительность пребывания ила в аэротенке (биоблоке) до момента его вывода и системы. Возраст ила вычисляют в зависимости от его прироста Pi

(7)

При этом не учитывают вынос ила с очищенной водой (в пределах 7-9 г/м3) из вторичных отстойников, как величину малозначащую по сравнению с количеством избыточного ила (60 - 90 г/м3).

Избыточный ил образуется в результате одновременно протекающих процессов прироста и самоокисления биомассы бактерий. Преобладание того или иного процесса приводит к увеличению или снижению избытка ила.

По данным наблюдений, зависимость от температуры может быть представлена в виде (1,015 - 1,018)T-15, т.е. так:

(8)

При расчете биоблока подбор параметров обычно начинают с назначения величины основного параметра, вычисляя значения остальных на основе нескольких приближений (способ итераций). Согласование параметров предложено осуществлять по соотношениям

(9)

В качестве главного назначаемого параметра применяется нагрузка на ил Hi, так как нерегулярность удаления избыточного ила делает иногда неопределенным возраст ила, в то время как нагрузка всегда является конкретным параметром, независимо от частоты удаления избытка ила.

Назначение величины нагрузки на ил должно обеспечить необходимый эффект очистки по азоту, поскольку нитрификация является самым длительным процессом, т.к. объем анаэробно - аноксидных зон не превышает 30 - 40% от общего объема сооружения. Степень очистки сточных вод по азоту можно представить как .

Следовательно, уравнение для допустимой нагрузки

(10)

Для условий Санкт - Петербурга и Москвы, на основе формулы, уточненной автором в ранних работах, по БПК5 формула принимает вид:

(11)

Рис.5. Зависимость допустимой нагрузки на ил по БПК5 от отношения азота аммонийного в очищенной воде к азоту общему в осветленной воде (Т=15о С) для НЛСА2; ЦСА; ПСА; ССА, ЮЗОС, КронСА, СКС (2005-2008 гг.)

График зависимости для ряда очистных станций показан на рис. 5. При срыве нитрификации составляет 10-12 мг/л, =200-220 мг/г·сут (T=15є), при умеренном значении =4-5 мг/л величина =140-150 мг/г·сут, а в случае глубокой нитрификации - до 0,5 мг/л по аммонийному азоту =50-60 мг/г·сут, что соответствует практике очистки сточных вод.

Приведенные выше формулы дают возможность провести ряд ориентировочных расчетов, на основе которых далее будут определены объемы зон. Для практического применения предлагается такой порядок расчета. По требуемому качеству очищенной воды назначается остаточное содержание азота аммонийного , далее по концентрации азота общего в осветленной воде и температуре Т єС вычисляются по (11) допустимая нагрузка на ил , обеспечивающая прохождение нитрификации.

Допустимая нагрузка позволяет определить массу ила Mi в объеме биоблока

Назначая рациональную для конкретных условий дозу ила , можем определить объем биоблока. Зная примерный прирост ила, вычисляем возраст ила в биоблоке

(12)

Оценим вынос азота и фосфора с избыточным илом

=• Pi, =• Pi, (13)

где JN - содержание азота в иле, 0,06-0,08 г/г,

JP - содержание фосфора в иле 0,02-0,03 г/г в схемах Денифо.

Таким образом, до начала детальных расчетов определяются общие параметры работы биоблока - примерный объем и продолжительность очистки, прирост и возраст ила, вынос биогенных элементов в составе избыточного ила. На основании предварительных расчетов ведется более детальный расчет емкостей блоков и кратности рециркуляции.

Математическое описание процессов биологической очистки составляются на основе одностадийных либо многостадийных ферментативных биохимических реакций.

Расчет объема анаэробной части биоблока производится по продолжительности пребывания в ней сточных вод tана.

В ходе экспериментальной проверки было установлено, что между вытеснением фосфора из тела клеток и последующим его поглощением имеется прямая связь. Интенсивность вытеснения фосфора зависит от количества органических веществ (в том числе ацетата), поглощенных из раствора клеткой. Перенос водорода в системе дыхания клеток осуществляется при помощи ненасыщенных кислот жирного ряда, образуемых в процессе кислого брожения субстрата. Накапливаемые в теле клетки полифосфаты образуют подвижную часть в пределах 3 - 10% от общего количества фосфора в иле.

Рис.6 Содержание фосфора в иле в зависимости от продолжительности анаэробной обработки для КОС г. Сестрорецка.

В целом содержание фосфора в активном иле Jp, предопределяющее вынос этого вещества в составе избыточного активного ила, зависит от количества и качества подаваемых органических веществ (представим этот фактор как БПК5 ), концентрации ила ai, содержания общего фосфора в сточных водах и фосфора фосфатов , продолжительности анаэробной обработки tана и температуры T. Следовательно

JP = f (; ai; ; ; tана; KT) (14)

Сформулируем уравнение для расчета объема зоны на основе часто и просто контролируемых параметров. Зависимость процесса от и ai представим в виде нагрузки , обеспеченность органическим субстратом как отношение БПК5 к количеству минерального фосфора , поскольку общий фосфор определяется редко, а содержание фосфатов почти ежедневно.

tана = f(, Lуд, JP, KT) (15)

Вид формулы по кинетике простых химических реакций

(16)

Для разграничения количества фосфора между общим содержанием и накопленной частью фосфатов вычтем органический фосфор в количестве 1-1,5% от веса клеток (с зольностью ила), в частности в количестве 1%.

В численном виде

(17)

JP - в долях единицы, в кг/кг·сут, Lуд в г/г.

Полученная автором формула была проверена на практике и определены границы ее применимости Jp =0,015-0,04; Hi= 0,05-0,2 кг/кгЧсут; Lуд=15-35 г/г.

Начальными условиями для вывода формулы принято: жесткое деление блока на замкнутые блоки, отсутствие заметного влияния нитратов в циркулирующем иле вследствие предварительной денитрификации ила, полное отсутствие растворенного кислорода в иловой смеси (менее 0,1 мг/л), использование имеющихся в сточных водах загрязнений без добавки субстрата из внешних источников.

Расчетная формула по кинетике многостадийных ферментативных реакций составлена автором согласно рис. 6,

где (18)

В численном виде

(19)

Jp в г/г; Hi в кг/кгЧсут; Lуд в г/г.

При расчете скорости денитрификации главные влияющие параметры расположены автором в следующей последовательности: обеспеченность процесса восстановления легкоокисляемым субстратом с высокой энергетической отдачей; начальная концентрация нитратов в аноксидной зоне; эффект восстановления нитратов.

Концентрация растворенного кислорода, ингибирующая развитие денитрификации, выведена из состава основных факторов по следующим причинам: в рациональных схемах Денифо количество возвращаемого кислорода невелико: в циркулирующем иле кислород отсутствует, в нитратосодержащем потоке растворенный кислород менее 4 мг/л, и циркуляция RN с кратностью 0,5 - 1,0 добавляет 2 - 2,5 мг/л кислорода, который немедленно поглощается гетеротрофными бактериями.

В начальной стадии денитрификации наблюдается прямая пропорция между количеством биодеградабельного субстрата и скоростью процесса. В конечной стадии скорость денитрификации более слабо зависит от наличия субстрата главным образом из-за обеднения его высокопитательными веществами. Поэтому порядок реакции по относительному запасу питательных веществ Lуд, выраженных в виде БПК5 поступающей жидкости по отношению к количеству денитрифицированного азота (), будет меньше 0,9 - 1,0 и больше 0,3 - 0,4.

...

Подобные документы

  • Характеристика современной очистки сточных вод для удаления загрязнений, примесей и вредных веществ. Методы очистки сточных вод: механические, химические, физико-химические и биологические. Анализ процессов флотации, сорбции. Знакомство с цеолитами.

    реферат [308,8 K], добавлен 21.11.2011

  • Загрязнения, содержащиеся в бытовых сточных водах. Биоразлагаемость как одно из ключевых свойств сточных вод. Факторы и процессы, оказывающие влияние на очистку сточных вод. Основная технологическая схема очистки для сооружений средней производительности.

    реферат [17,8 K], добавлен 12.03.2011

  • Физико-химическая характеристика сточных вод. Механические и физико-химические методы очистки сточных вод. Сущность биохимической очистки сточных вод коксохимических производств. Обзор технологических схем биохимических установок для очистки сточных вод.

    курсовая работа [1,0 M], добавлен 30.05.2014

  • Определение концентрации загрязнений сточных вод. Оценка степени загрязнения сточных вод, поступающих от населенного пункта. Разработка схемы очистки сточных вод с последующим их сбросом в водоем. Расчет необходимых сооружений для очистки сточных вод.

    курсовая работа [2,3 M], добавлен 09.01.2012

  • Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа [3,0 M], добавлен 04.10.2009

  • Анализ методов очистки сточных вод при производстве сплавов. Оценка перспективных электрохимических методов очистки. Результаты исследований электрокоагуляторов по обезвреживанию шестивалентного хрома в сточных водах, содержащих другие тяжелые металлы.

    реферат [11,8 K], добавлен 11.03.2012

  • Обследование и экспертная оценка эффективности очистки сточных вод. Обезвоживание осадка с первичных отстойников на иловых площадках. Использование существующей схемы очистки с учетом реконструкции биофильтров, устройства погружных мембранных модулей.

    дипломная работа [11,4 M], добавлен 15.02.2022

  • Экологические проблемы Балтийского моря. Общая характеристика предприятия, социально-экологических аспектов функционирования. Деятельность терминала. Природоохранные технологии. Проблемы очистки сточных вод от соединений марганца и железа, пути решения.

    дипломная работа [429,9 K], добавлен 02.05.2016

  • Повторное использование сточных вод как гигиеническая проблема. Биологическое и химическое загрязнение сточных вод. Методы обезвреживания сточных вод и проблемы безопасности использования восстановленной воды. Экологическая оценка применения осадка.

    курсовая работа [92,6 K], добавлен 27.12.2009

  • Очистка промышленных сточных вод с использованием электрохимических процессов и мембранных методов (ультрафильтрация, нанофильтрация, обратный осмос). Новые изобретения для очистки и обеззараживания коммунально-бытовых и сельскохозяйственных сточных вод.

    курсовая работа [1,3 M], добавлен 09.12.2013

  • Определение расходов сточных вод от жилой застройки. Характеристика загрязнений производственных сточных вод и места их сброса. Выбор технологической схемы очистки и обработки осадка. Расчет сооружений механической очистки. Аэрируемая песколовка.

    курсовая работа [236,6 K], добавлен 24.02.2014

  • Очистка сточных вод как комплекс мероприятий по удалению загрязнений, содержащихся в бытовых и промышленных водах. Особенности механического, биологического и физико-химического способа. Сущность термической утилизации. Бактерии, водоросли, коловратки.

    презентация [580,0 K], добавлен 24.04.2014

  • Состав сточных вод и основные методы их очистки. Выпуск сточных вод в водоемы. Основные методы очистки сточных вод. Повышение эффективности мер по охране окружающей среды. Внедрение малоотходных и безотходных технологических процессов.

    реферат [13,1 K], добавлен 18.10.2006

  • Состояние сточных вод, сбрасываемых в реку предприятием (источники сбросов, способы и степень их очистки). Особенности проекта "Стэп" по очистке сточных вод. Замена аэраторов с целью улучшения состояния воды. Расчет платежей за загрязнение реки Вычегда.

    дипломная работа [3,3 M], добавлен 24.11.2010

  • Состав сточных вод. Характеристика сточных вод различного происхождения. Основные методы очистки сточных вод. Технологическая схема и компоновка оборудования. Механический расчет первичного и вторичного отстойников. Техническая характеристика фильтра.

    дипломная работа [2,6 M], добавлен 16.09.2015

  • Анализ технологического процесса и условий образования опасных факторов. Действие вредных факторов на рабочем месте. Изучение особенностей применения методов флотации, сорбции и коагуляции для очистки сточных вод. Расчет интегральной оценки тяжести труда.

    курсовая работа [902,2 K], добавлен 06.07.2015

  • Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Выбор технологической схемы очистки сточных вод. Физико-химические методы очистки сточных вод с применением коагулянтов. Отделение взвешенных частиц от воды.

    реферат [29,9 K], добавлен 05.12.2003

  • Теоретические основы и методы очистки сточных вод. Виды и устройство отстойников. Описание технологической схемы узла механической очистки сточных вод. Материальный баланс, оценка эффективности и контроль решетки, песколовки, отстойника и осветлителя.

    курсовая работа [409,0 K], добавлен 29.06.2010

  • Санитарно-гигиеническое значение воды. Характеристика технологических процессов очистки сточных вод. Загрязнение поверхностных вод. Сточные воды и санитарные условия их спуска. Виды их очистки. Органолептические и гидрохимические показатели речной воды.

    дипломная работа [88,8 K], добавлен 10.06.2010

  • Применение механической очистки бытовых и производственных сточных вод для удаления взвешенных веществ: решеток, песколовок и отстойников. Сооружения биологической очистки и расчет аэротенков, биофильтров, полей фильтрации и вторичных отстойников.

    курсовая работа [1,5 M], добавлен 25.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.