Основы общей и ветеринарной экологии

Оценка загрязнения атмосферного воздуха в городах Республики Беларусь. Основные приемы, позволяющие уменьшить миграцию загрязнений в водоемы с поверхностным и внутрипочвенным стоком. Исследование экологии почвы и экологических проблем растениеводства.

Рубрика Экология и охрана природы
Вид курс лекций
Язык русский
Дата добавления 13.12.2018
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Неблагоприятные изменения в популяциях сельскохозяйственных животных могут возникать при родственном разведении.

Нарушения в структуре популяций сельскохозяйственных животных могут быть причиной различных патологий.

1) Одной из важных характеристик популяций является пространственное распределение особей. Оно может быть:

1. Равномерное - в природе встречается редко, связано с острой конкуренцией особей и территориальным инстинктом (хищные рыбы);

2. Случайное - имеет место только в однородной среде у видов, не имеющих склонности к скоплению (мучной хрущак в муке);

3. Групповое - самое распространенное в природе, существование в группе обеспечивает определенные преимущества организмам, повышает их устойчивость к неблагоприятным условиям.

2) Численность популяции - общее количество особей на данной территории или в данном объеме. Никогда не бывает постоянной и зависит от соотношения интенсивности размножения и смертности.

3) Плотность популяции - количество особей (или биомасса) на единицу площади или объема, занимаемого популяцией.

Переуплотнение популяции сельскохозяйственных животных может стать причиной стресса, приводящего к заболеваниям и даже гибели. Большая скученность животных приводит к перенапряжению защитно-приспособительных механизмов животных. Стрессовые реакции проявляются эозинофилией, лимфопенией, повышением уровня кортикальных гормонов в крови, увеличением надпочечников. Стресс лежит в основе язвенной болезни желудка и двенадцатиперстной кишки свиней. «Классической» болезнью переуплотнения популяций домашних птиц и свиней является каннибализм, а именно, его психическая разновидность (в отличие от алиментарной). При переуплотнении популяций часто наблюдается снижение воспроизводительной функции, упитанности, устойчивости к заболеваниям, увеличиваются затраты корма на единицу животноводческой продукции. В условиях скученного содержания животных особую остроту приобретает проблема энзоотий.

Причиной заболеваемости и смертности может быть не только превышение плотности, но и снижение, изоляция особей. Невроз у телят и коров отмечается после отъема телят-сосунов. У пушных зверей из-за дефицита внутрипопуляционной информации регистрируется самопогрызание.

4) Рождаемость - число новых особей, появившихся в популяции в единицу времени в результате размножения.

5) Смертность - количество особей популяции, погибших за единицу времени. Различают 3 типа смертности:

- одинаковая во всех возрастах;

- повышенная гибель особей на ранних стадиях развития;

- повышенная гибель взрослых (старых) особей.

6) Прирост популяции - разница между рождаемостью и смертностью. Может быть как положительным, так и отрицательным. Прирост является важнейшим показателей, дающим представление о динамике численности популяции.

7) Темп роста - средний прирост за единицу времени.

Если обозначить через Rо среднее число потомков, произведенное одной особью данного вида за всю жизнь (чистая скорость размножения), то при Rо>1 популяция является растущей, при Rо=1 - стабильной, при Rо<1 - сокращающейся.

8) Половая структура популяции отражает соотношение полов в популяции. Этот показатель особенно важен для видов с половым размножением. Возраст и условия наступления половой зрелости самцов и самок оказывают существенное влияние на поддержание численности популяции. Половую структуру популяции важно знать, так как самки и самцы часто по-разному проявляют себя в сообществе через своеобразие питания, поведения, образа жизни вообще.

9) Возрастная структура популяции отражает соотношение различных возрастных групп в популяции. Количественное соотношение возрастных групп может служить индикатором состояния популяции и ее будущего в биогеоценозе.

Если в популяции преобладают старческие особи, это однозначно свидетельствует о наличии отрицательных факторов в ее существовании, и нарушении воспроизводительной функции. Это вымирающие или регрессивные популяции. Требуются срочные меры по выявлению причин такого состояния и их устранению.

Популяция, представленная в основном молодыми особями, рассматривается как внедряющаяся. Жизненность таких популяций опасений не вызывает, но велика вероятность вспышек чрезмерно высокой численности особей, т.к. в популяции не сформировались трофические и др. связи. Особенно опасно, если такая популяция представлена видами, которые ранее отсутствовали на данной территории.

Если популяция находится в нормальном состоянии, человек может изымать из нее то количество особей, или биомассу, которая прирастает за определенный промежуток времени между изъятиями. Изыматься должны преимущественно особи, закончившие размножение (пострепродуктивный возраст).

Чем сложнее поло-возрастная структура популяции, тем выше приспособительные способности популяции. В популяциях сельскохозяйственных животных из-за нарушения половой структуры может наблюдаться бесплодие самок и самцов.

Общая численность популяции подвержена сезонным, многолетним периодическим и непериодическим колебаниям численности. К числу важнейших свойств популяции относится динамика свойственной им численности особей и механизмы ее регулирующие. Всякое значительное отклонение численности особей в популяции от оптимального связано с отрицательными последствиями для ее существования. В связи с этим популяции обычно имеют адаптационные механизмы, способствующие как снижению численности, если она значительно превышает оптимальную, так и ее восстановлению, если она уменьшается ниже оптимального значения. Согласно принципу Олли, для каждого вида животных существует оптимальный размер группы и оптимальная плотность популяции.

Теоретически популяция способна к неограниченному росту численности, каждой популяции свойственен биотический потенциал.

Биотический потенциал - потенциальная способность живых организмов увеличивать численность в геометрической прогрессии (потенциал размножения). Иначе - это теоретически возможное потомство от одной пары особей при реализации способности организмов увеличивать численность в геометрической прогрессии.

Обычно биотический потенциал тем выше, чем ниже уровень организации организмов. Дрожжевые клетки, размножающиеся простым делением, при наличии условий для реализации биотического потенциала, могли бы освоить пространство земного шара за несколько часов. Один одуванчик способен заселить своими потомками земной шар за 10 лет, если все семена прорастут.

В действительности такая громадная плодовитость никогда не реализуется. Биотический потенциал реализуется организмами со значительной степенью полноты только в отдельных случаях в течение короткого промежутка времени. Например, если быстроразмножающиеся организмы осваивают какой-либо субстрат или среду, где нет конкурентов (насекомые, микроорганизмы, осваивающие экскременты крупных животных, колорадские жуки на картофельном поле). Увеличение численности идет в этом случае по j-образной экспоненциальной кривой. Наблюдается реализация биотического потенциала в условиях беспрепятственного размножения. Такой тип роста носит название экспоненциального. Экспоненциальный рост численности характерен в настоящее время для человеческой популяции. Он обусловлен резким снижением смертности в детском возрасте. В природе он наблюдается в периоды резких вспышек численности.

Факторы окружающей среды ограничивают рост численности популяций, их действие называют сопротивлением среды. Динамика численности для большинства популяций и видов характеризуется другой кривой - s-образной, логистической. В данном случае наблюдается повышенная смертность молодых особей (яиц, икринок, личинок, семян, молоди…).

Под действием факторов среды происходит стабилизация численности популяции на среднем (оптимальном) уровне. Но и в этом случае наблюдаются значительные колебания численности сезонного (насекомые), взрывного (грызуны) или постепенного характера (крупные млекопитающие). Численность может изменяться в тысячи и даже миллионы раз. Периоды резкого изменения численности носят название «популяционных волн», «волн жизни» или «волн численности». Причинами резких колебаний численности могут быть пищевые факторы, погодные условия, солнечная активность, либо целый комплекс факторов. На протяжении длительного периода времени (около 100 лет) численность популяции зайца-беляка изменяется многократно и описывается зигзагообразной кривой. Аналогично изменяется и численность популяции рыси, которая охотится на зайца.

Колебания численности обычно носят регулярный правильный характер и отражают реакцию популяции на конкретные условия среды.

Резкие изменения численности относительно средних значений имеют обычно отрицательные последствия для жизни популяций: при высокой численности - из-за ослабления всех особей в результате недостатка пищи, самоотравления среды, возможных массовых заболеваний и т.д.; при низкой численности - из-за превышения порога ее минимальных значений, снижения вероятности встречи для скрещиваний.

В природе популяции обладают способностью поддерживать устойчивое динамическое равновесие - колебания численности происходят в пределах какой-либо определенной величины. Эта способность называется экологическим гомеостазом. (Свойство присущее всем живым системам от организма до биосферы в целом).

Существует 2 группы факторов или механизмов, влияющих на динамику популяций.

1) Модифицирующие факторы (изменяющие). Это в основном абиотические факторы (погодные условия, наличие пищи, катастрофы…). Характер их действия не зависит от плотности популяции. Они могут обеспечить как неограниченный, хотя и кратковременный рост популяции (по экспоненциальному типу), так и снижение их численности до нулевой.

2) Регулирующие факторы. Это биотические факторы. Их действие зависит от плотности популяции. Они «работают» по принципу обратной отрицательной связи: чем выше численность, тем сильнее срабатывают механизмы, обусловливающие ее снижение. При низкой численности сила этих механизмов ослабевает и создаются условия для более полной реализации биотического потенциала. Именно эти факторы лежат в основе популяционного гомеостаза, обеспечивая поддержание численности в определенных границах значений.

Рассмотрим важнейшие механизмы регуляции численности популяций. Они могут быть как межвидовыми, так и внутривидовыми.

К межвидовым факторам относятся отношения «хищник-жертва». Высокая численность жертвы создает благоприятные в пищевом отношении условия для размножения хищника. Он, увеличивая свою численность, снижает количество жертв. Динамика численности обоих видов в результате носит синхронно-колебательный характер.

Таким же образом действуют и взаимоотношения «паразит-хозяин». При высокой численности хозяев создаются условия для увеличения численности паразитов и, соответственно, заболеваний хозяев из-за скученности и ослабления паразитами.

Также к межвидовым механизмам, регулирующим численность популяции, относится конкуренция, острота которой находится в прямой зависимости от численности организмов.

Внутривидовые регулирующие факторы отличаются значительным разнообразием.

1) Внутривидовая конкуренция. Она может проявляться в жесткой и смягченной форме.

Жесткая конкуренция заканчивается гибелью части особей. В растительном мире это самоизреживание фитоценозов. На площади 1 га может быть до нескольких сотен тысяч всходов и молодых деревьев, к возрасту спелости (100-120 лет для хвойных, 50-70 - для лиственных деревьев) число их не превышает 1000 деревьев на гектар, а чаще - до нескольких сотен. Остальные погибают в результате острой конкурентной борьбы.

В животном мире жесткая внутривидовая конкуренция проявляется в форме каннибализма (поедание себе подобных). Чаще всего каннибализм встречается у хищников; наблюдается у рыб, грызунов, бывает у домашних животных.

Смягченные формы конкуренции проявляются через ослабление части особей, выключение их из процесса размножения. Случаи гибели при таких формах борьбы менее вероятны. К таким механизмам внутрипопуляционного гомеостаза относятся:

1) угнетающие (ингибирующие) выделения во внешнюю среду. Наблюдаются в растительном и животном мире. У растений молодое поколение леса под пологом материнских деревьев угнетается, либо не появляется вообще не только из-за недостатка света или элементов питания. Опытным путем установлено, что листья и корни взрослых деревьев выделяют ингибирующие вещества. Наличие ингибирующих выделений установлено экспериментальным путем также у животных. Воздух, подаваемый из помещения, где содержались лабораторные животные (мыши) в условиях перенаселенности, в помещение, где животные содержались нормально, приводит к угнетению и замедлению роста последних.

2) территориальность также является проявлением внутривидовой конкуренции в смягченной форме. Особенно четко она выражена в животном мире. Это различные способы охраны занимаемой территории. Пение птиц - сигнал о занятости территории в период размножения и выкармливания потомства. Кошачьи и собачьи метят территорию выделениями желез, мочой или механическими отметинами.

3) стрессовые явления являются регулирующим механизмом численности при высокой скученности организмов в популяции. Наиболее характерны стрессовые явления для млекопитающих. Стресс - неспецифическая реакция живого организма на любое сильное воздействие. Это состояние напряжения, общее усилие организма приспособиться к изменяющимся условиям среды. Стресс явление обратимое. При стрессах часть особей теряет репродуктивные функции, исключается из процесса размножения. Более сильные особи подвержены стрессу в меньшей степени. Различают несколько видов стресса: шумовой, тепловой, нервно-психический, антропогенный и т.д.

4) миграции (эмиграции) являются еще одним регулирующим фактором гомеостаза популяций. Наблюдается выселение, переселение части особей популяции в менее предпочитаемые места обитания в пределах ареала. Миграция является следствием переуплотнения популяции, ухудшения условий обитания. Миграции могут быть периодическими и непериодическими. Периодические миграции не являются регулирующими численности популяции, это адаптации, характерные для всей популяции. Непериодические миграции возникают вследствие: 1) недостатка пищи, 2) генетической предрасположенности, 3) перенасыщенности территории. Молодые особи, находящиеся в состоянии острой конкуренции со старыми, вынуждены уходить из популяции, чтобы реализовать свой биотический потенциал. Особи, покинувшие популяцию, уже не возвращаются в нее, многие погибают. Миграции могут проявляются как постепенный уход части особей в другие популяции с менее высокой плотностью, а могут проявляться в виде массового исхода особей из популяции при явлении перенаселенности - нашествия. Они характерны для видов с взрывным типом динамики численности (саранча, лемминги, белки…).

Гомеостаз в популяции осуществляется в полной мере, когда срабатывают все механизмы регуляции. Нарушение этих механизмов вызывается в большинстве случаев антропогенными факторами. Это может быть нарушенное резко соотношение численности хищника или жертвы, нарушение или загрязнение местообитаний и т.д.

Задача человека заключается в том, чтобы снижать и исключать действие подобных факторов. Необходимо определение допустимых пределов вариации численности популяции, не угрожающих ее благополучию.

Нормальное развитие многих видов возможно лишь при объединении их в различные по размеру группы. Эффект группы - это улучшение физиологических процессов, ведущее к повышению устойчивости и жизнеспособности при совместном существовании организмов. Таким образом, речь идет не только об оптимальной численности (плотности) популяции, но и об оптимальном размере группы организмов в популяции. В группе за счет применения сигнализации улучшается обмен информацией, повышается эффективность функционирования группы. В итоге удовлетворяются важные жизненные потребности всех участников группы. Эффект группы сопровождается ускорением роста организмов, повышением плодовитости, увеличением средней продолжительности жизни. Многие организмы вне группы не могут реализовать плодовитость. Так, например, голубка в лабораторных условиях откладывает яйца только после того, как перед ней поставят зеркало. Вне группы (стада) у овцы учащается пульс и дыхание , при возвращении в стадо эти процессы нормализуются. Размеры группы у разных видов очень различны. Например, у африканских слонов группа составляет 25 особей, у северных оленей 300-400. Бакланы существуют в колониях, насчитывающих 10 000 особей (3 гнезда на 1 м2). Жизнь в группе облегчает поиск и добывание корма, защиту от врагов.

Положительный эффект группы проявляется не безгранично, а до некоторого оптимального уровня плотности популяции. Слишком интенсивное увеличение численности особей может привести к истощению кормовой базы, и тогда начинают действовать другие механизмы, направленные на снижение численности особей в группе путем ее деления, рассредоточения или падения рождаемости. В этом случае проявляется эффект массы.Эффект массы - это изменение в среде обитания, происходящее при чрезмерном увеличении численности особей и плотности популяции. Эффект массы отрицательно сказывается на плодовитости, скорости роста, продолжительности жизни животных. Так, мучной хрущак в благоприятных условиях быстро размножается, но при этом ухудшаются условия существования - накапливаются экскременты, личиночные шкурки, идет самоотравление. В результате снижается плодовитость, увеличивается смертность. В перенаселенных группах домовых мышей падает плодовитость, размножение может даже прекращаться.

В природе оба эффекта чаще всего проявляются одновременно. Эти эффекты играют важную роль в динамике численности популяций, выступая как регулирующие факторы, «работая» по принципу обратной отрицательной связи.

1.4 Экология сообществ (синэкология)

Ни один организм в природе не существует вне связей с условиями внешней среды, представленными абиотическими факторами и другими организмами, то есть в составе экосистем. Эти связи - основное условие жизни организмов и их сообществ. Через них осуществляется образование цепей питания, регулирование численности организмов и их популяций, реализация механизмов устойчивости систем и другие явления. В процессе взаимосвязей происходит поглощение и рассеивание энергии и, в конечном счете осуществляется круговорот веществ, а также важнейшие, особенно для современного периода, средообразующие, средоохранные и средостабилизирующие функции живого вещества, организованного в системы.

Подобные экосистемные связи обусловлены всем ходом эволюционного процесса. По этой причине и любое их нарушение не остается бесследным, требует длительного времени для восстановления. В связи с этим экологически обусловленное поведение человека в природе невозможно без знакомства с этими связями и последствиями их нарушения. Целесообразно выделять взаимосвязи и взаимоотношения организмов в природе (экосистемах) как различные понятия.

Взаимосвязи организмов. Взаимосвязи обычно классифицируются по «интересам», на базе которых организмы строят свои отношения.

Самый распространенный тип связей базируется на интересах питания. Такие связи носят название пищевых, или трофических (греч. «трофо» - питание). В данный вид связей выделяется питание одного организма другим или продуктами его жизнедеятельности (например, экскрементами), либо мертвым органическим веществом. Этим типом связей объединяются растения и насекомые, опыляющие их цветки. На базе трофических связей возникают цепи питания, включающие группы организмов, одни из которых питаются другими.

Связи, основанные на использовании местообитаний, носят название топических (греч. «топос» - место). Например, топические связи возникают между животными и растениями, которые предоставляют им убежище или местообитание (насекомые, прячущиеся в расщелинах коры деревьев или живущие в гнездах птиц, растения, поселяющиеся на стволах деревьев (но не паразиты)). Не только трофическими, но и топическими отношениями связаны паразиты с организмами, на которых они паразитируют.

Следующий тип связей, которые носят название форических (лат. «форас» - наружу, вон), возникает в том случае, если одни организмы участвуют в распространении других или их зачатков (семян, спор, плодов). Животными это распространение может осуществляться как на наружных покровах, так и в пищеварительном тракте.

Выделяют также тип связей, которые носят название фабрических (лат. «фабрикатио» - изготовление). Для него характерно использование одними организмами других или продуктов их жизнедеятельности, частей (например, растений, перьевого покрова, пуха, шерсти) для постройки гнезд, убежищ и т.д.

Взаимоотношения организмов. Данная классификация строится по принципу влияния, которое оказывают одни организмы на другие в процессе их контактов. Эти взаимоотношения можно обозначить математическими значками «+», «-» и «0» (положительно, отрицательно, нейтрально).

Если взаимоотношения обоим партнерам выгодны, они обозначаются значками (+,+) и носят название симбиоза или мутуализма. Степень этих связей различна. В ряде случаев организмы настолько тесно связаны, что функционируют как единый организм. Например, лишайники, представляющие симбиоз гриба и водоросли. Водоросль поставляет грибу продукты фотосинтеза, а гриб для водоросли является поставщиком минеральных веществ и, кроме того, субстратом, на котором она живет. В то же время, сожительство грибов с корнями растений (микориза) носит хотя и взаимовыгодные, но не в такой степени тесные взаимоотношения. Тип взаимовыгодных отношений широко распространен среди организмов. Сюда относятся и микроорганизмы, населяющие пищеварительный тракт животных, способствуя усвоению пищи; и, в ряде случаев, травоядные животные. Установлено, что исключение поедания травы животными может иметь следствием оскудение растительных сообществ, снижения ими продуктивности и устойчивости. Даже умеренное объедание листьев древесных растений насекомыми или их гусеницами может быть положительным для растений и животных.

Взаимоотношения, которые положительны для одного вида и отрицательны для другого (+, -), характеризуются, как хищничество и паразитизм. Хищник и паразит обычно вырабатывают адаптации к использованию других организмов (их жертв и хозяев), а последние, в свою очередь, - приспособления, которые сохраняли бы им жизнь. Эти типы взаимоотношений обычно играют большую роль в регулировании численности организмов. Интенсивное размножение организмов хищников и паразитов обычно имеет следствием уменьшение численности тех организмов, которыми они питаются (жертв и хозяев).

В свою очередь уменьшение численности жертв и хозяев подрывает кормовую базу хищников и паразитов, что ведет к сокращению их численности и т.д. В конечном счете, имеет место пульсирующая численность организмов, вступающих в такие типы отношений.

Хотя взаимоотношения типа хищничества и паразитизма сходны по результатам влияния на численность особей, они резко различаются по образу жизни и адаптациям. Во взаимоотношениях хищник-жертва оба организма постоянно совершенствуются: первый в плане успешности охоты, второй - в отношении самосохранения. И в том и в другом случае требуется быстрая реакция, высокая скорость передвижения, хорошее зрение, обоняние и т.д.

Во втором типе взаимоотношений у паразита адаптации идут по пути специализации структур на использование хозяина как источник пищи и «благоустроенное» местообитание. Результатом этого является упрощение многих органов (пищеварительный тракт, накожные покровы, органы передвижения, чувств и т.д.). Вместе с тем, поскольку жизнь паразита очень тесно связана с хозяином, он адаптирован на сохранение последнего, а также на выживание во внешней среде после смерти хозяина. Достигается это за счет большого количества зачатков (семян, спор, цист и т.д.), обычно долго сохраняющихся в среде.

Адаптации хозяина направлены обычно на уменьшение вреда от паразита. Это проявляется в выработке активного иммунитета, заключении внутренних паразитов в различного вида капсулы (галлы, цецидии и т.д.).

В ряде случаев адаптации паразитов и хозяев приводят к их взаимовыгодным отношениям типа симбиоза. Есть основание полагать, что в большинстве случаев симбиоз (мутуализм) вырос из паразитизма.

Взаимоотношения, невыгодные обоим партнерам (-,-), носят название конкуренции. Последняя тем сильнее, чем ближе потребности организмов к фактору или условию, за которые они конкурируют. В этом отношении наиболее близки интересы одного вида, и, следовательно, внутривидовая конкуренция рассматривается как более острая по сравнению с межвидовой. Однако данное положение противоречит тому факту, что практически все механизмы существования вида направлены на его выживание. Такое противоречие решается тем, что на внутривидовом уровне есть механизмы, которые позволяют снять остроту конкурентной борьбы, в том числе жертвуя частью особей.

Менее распространенным типом взаимоотношений является комменсализм (франц. «комменсал» - сотрапезник) - отношения положительные для одного и безразличные для другого партнера (+,0), его иногда делят на нахлебничество (один организм поедает остатки пищи со «стола» другого (крупного) организма ) и квартиранство (одни организмы используют другие как «квартиру», убежище.

Нечасто встречается также аменсализм (лат. «аменс» - безрассудный, безумный) - отрицательный для одного и безразличный для другого (-,0). Например, светолюбивое растение, попавшее под полог леса. Отношения, при которых организмы, занимая сходные местообитания, практически не оказывают влияние друг на друга, носят название нейтрализма (0,0). Например, белки и лоси в лесу.

Для понимания различного вида существующих связей в экосистемах и обусловленности механизмов их функционирования важно познакомиться с одним из основополагающих понятий экологии - экологической нишей. Каждый вид или его части (популяции, группировки различного ранга) занимают определенное место в окружающей их среде. Например, определенный вид животного не может произвольно менять пищевой рацион или время питания, место размножения, убежища и т.д. Растения в фитоценозах занимают определенные ярусы, они могут быть светолюбивыми и тенелюбивыми, различаться по времени наиболее активной вегетации (весенние эфемеры и т.д.).

Приведенные примеры иллюстрируют экологическую нишу или отдельные ее элементы.

Под экологической нишей понимают обычно место организма в природе и весь образ его жизнедеятельности или, как говорят, жизненный статус, включающий отношение к факторам среды, видам пищи, времени и способам питания, местам размножения, укрытий и т.д.

Это понятие значительно объемнее и содержательнее понятия «местообитание». Американский эколог Одум образно местообитание назвал «адресом» организма, а экологическую нишу - его «профессией». На одном местообитании живет, как правило, большое количество организмов разных видов. Так, сходное местообитание занимают лось и белка, но ниши их совершенно разные: белка живет в основном в кронах деревьев, питается семенами и плодами, там же размножается. Весь жизненный цикл лося связан с подпологовым пространством: питание зелеными растениями или их частями, размножение и укрытие в зарослях и т.п.

Если организмы занимают разные экологические ниши, они не вступают в конкурентные отношения, сферы их деятельности и влияния разделены. В таком случае отношения рассматриваются как нейтральные.

Вместе с тем в каждой экосистеме имеются виды, которые претендуют на одну и ту же нишу или ее элементы (пищу, укрытия и т.д.). В таком случае неизбежна конкуренция, борьба за обладание нишей. Эволюционно взаимоотношения сложились так, что виды со сходными требованиями к среде не могут длительно существовать совместно. Эта закономерность не без исключений, но она настолько объективна, что сформулирована в виде положения, которое получило название «правило конкурентного исключения». Автор этого правила эколог Г.Ф.Гаузе. Звучит оно так: если два вида со сходными требованиями к среде (питанию, поведению, местам размножения и т.п.) вступают в конкурентные отношения, то один из них должен либо погибнуть, либо изменить свой образ жизни и занять новую экологическую нишу. Иногда для того, чтобы снять острые конкурентные отношения, одному организму (животному) достаточно изменить время питания или найти новое местообитание и т.д.

На протяжении жизненного цикла организм может менять экологические ниши. Наиболее яркий пример в этом отношении - насекомые. Так, майский жук питается листьями зеленых растений, его личинки живут в земле и питаются корнями растений.

Сообщества формируются по принципу заполнения экологических ниш. В природном сформировавшемся сообществе обычно все ниши заняты. Именно в такие сообщества, например, в коренные леса, очень мала вероятность внедрения новых видов. В то же время следует иметь в виду, что занятость экологических ниш в определенной мере понятие относительное. Все ниши обычно освоены теми организмами, которые характерны для данного региона. Но, если организм приходит извне (например, заносятся семена или зачатки) случайно или преднамеренно, например, в результате внедрения человеком новых видов (интродукция, акклиматизация), то он может найти для себя свободную экологическую нишу в связи с тем, что на нее не было претендентов из набора существующих видов. В таком случае неизбежно быстрое увеличение численности вида-пришельца, поскольку он находит крайне благоприятные условия (свободную нишу) и, в частности, не имеет врагов (хищников, паразитов или др.). Такие явления не единичны. Например, размножение кроликов, завезенных в Австралию; перемещение ондатры из Азии в Европейскую часть; интенсивное продвижение колорадского жука в новые районы.

С экологическими нишами связаны в значительной мере жизненные формы организмов. Примером могут служить далеко стоящие в систематическом отношении виды, но выработавшие одинаковые морфологические адаптации в результате существования в сходных условиях (дельфины и хищные рыбы, тушканчики и кенгуру, травянистые растения одного и того же яруса).

Рассмотренные выше взаимосвязи организмов и другие вопросы организации живого вещества позволяют дать более полное определение экосистемы.

Это единый природный комплекс, который выступает как функциональное целое и образован живыми организмами и средой обитания.

Основными свойствами экосистемы являются:

1. Способность производить органическую продукцию, при этом связывая и высвобождая энергию.

2. Способность осуществлять круговорот веществ.

3. Способность противостоять внешним воздействиям.

Блоковая модель экосистемы. Любая экосистема состоит из двух блоков. Один из них представлен комплексом взаимосвязанных живых организмов - биоценозом, а второй - факторами среды - биотопом (экотопом). Т.о., в экосистему (биогеоценоз) входит две составляющие: биоценоз и биотоп. В.Н.Сукачев блоковую модель биогеоценоза представлял следующей схемой.

Схема биогеоценоза (экосистемы) по В.Н.Сукачеву

Трофическая структура экосистем. Цепи питания. Любая экосистема включает несколько трофических уровней. Первый уровень представлен растениями. Их называют продуцентами из-за способности продуцировать органическое вещество в процессе фотосинтеза. Второй уровень представлен животными организмами. Они являются гетеротрофами по способу питания и их пищей служат растения. Этот уровень называют консументами первого порядка. Третий уровень (также как и четвертый, пятый) представлен хищниками или консументами второго (или соответствующего) порядка. Один и тот же организм может в различных цепях питания занимать разные трофические уровни, являясь в одном случае консументом 1-го, а в другом - 2-го или 3-го порядка. Это связано с тем, что большинство животных являются эврифагами, т.е. их рацион может быть достаточно разнообразным. Последний уровень представлен организмами, питающимися мертвым органическим веществом: микроорганизами, грибами, мелкими животными. Их называют редуцентами.

Взаимосвязанный ряд трофических уровней представляет цепь питания или трофическую цепь. Главное свойство цепи питания - осуществление биологического круговорота веществ и высвобождение запасенной в органическом веществе энергии.

Цепи питания не всегда могут быть полными. В них могут отсутствовать растения. Такая цепь питания характерна для сообществ, формирующихся на базе разложения трупов животных или растительных остатков и называют ее детритной или цепью разложения. Схематично можно представить ее следующим образом:

Детрит > детритофаги > хищники детритофагов (редуценты) (консументы 2,3...пор.)

Цепи питания, которые начинаются с растений, называют пастбищными или цепями выедания:

Растения > травоядные > хищники (продуценты) (консументы 1пор.) (консументы 2 пор.)

Цепи питания являются тесно взаимосвязанными. Так, например, детрит образуется из продуктов жизнедеятельности всех организмов экосистемы, а также их останков. Кроме того, один и тот же организм может быть участником и детритной и пастбищной цепи. Совокупность всех переплетающихся пищевых цепей экосистемы образует трофическую сеть. Таким образом, цепи питания выделяют искусственно при изучении трофической структуры экосистем.

Исходя из положения: разнообразие - синоним устойчивости, можно заключить, что чем длиннее цепи питания и чем сложнее трофическая структура экосистемы, тем она устойчивее.

Живые организмы, входящие в экосистемы, для своего существования должны постоянно пополнять и расходовать энергию. Растения запасают энергию в процессе фотосинтеза, превращая энергию Солнца в энергию химических связей. При фотосинтезе связывается энергия только с определенной длиной волны - 380-710 нм. Эту энергию называют фотосинтетически активной радиацией (ФАР). Она по длинам волн близка к видимой части спектра. На эту радиацию приходится обычно около 40% общей солнечной радиации, достигающей земной поверхности.

Растения в процессе фотосинтеза связывают лишь небольшую часть солнечной радиации. Даже по отношению к фотосинтетически активной - это в среднем для Земного шара около 1 %. Только наиболее продуктивные экосистемы, такие как плантации сахарного тростника, посевы кукурузы, тропические леса в оптимальных условиях могут связывать до 3-5 % ФАР.

Растения являются первичными поставщиками энергии для всех других организмов в цепях питания. Существуют определенные закономерности перехода энергии с одного трофического уровня на другой вместе с потребляемой пищей. Основная часть энергии, усвоенной консументами с пищей, расходуется на его жизнеобеспечение (движение, поддержание температуры тела и т.п.). Эту часть энергии рассматривают как траты на дыхание, с которым, в конечном счете, связаны все возможности ее высвобождения из химических связей органического вещества. Часть энергии переходит в тело потребителя, увеличивая его биомассу. Некоторая доля пищи не усваивается организмом, а следовательно, из нее не высвобождается и энергия. В последующем она высвобождается из экскрементов, но другими организмами, которые потребляют их в пищу. Особенно велики потери энергии с экскрементами у травоядных животных (у некоторых - до 70 %).

Переход энергии с одного трофического уровня на другой в среднем принимается близким к 10 % от энергии, потребленной с пищей. Эта закономерность рассматривается обычно как «правило 10 %». Из него следует, что цепь питания имеет ограниченное количество уровней, обычно не более 4-5. Пройдя через них, практически вся энергия оказывается рассеянной. Из данной закономерности вытекают важные в практическом отношении практические выводы.

1. С энергетической точки зрения крайне нецелесообразно потребление животной продукции, особенно с высоких уровней цепей питания.

2. Для решения продовольственной проблемы в условиях демографического взрыва надо, чтобы в рационе людей больший удельный вес составляла растительная пища. Энергетически идеально - вегетарианство.

3. Для увеличения КПД использования кормов при получении животноводческой продукции очень важно уменьшить основную статью нерационального расходования энергии - ее траты на дыхание. Это возможно за счет поддержания оптимального температурного режима в животноводческих помещениях, ограничения подвижности животных, сбалансированности кормового рациона по различным элементам питания, а также применения различных добавок (для стимуляции роста, улучшения аппетита и т.д.).

Одно из важнейших свойств организмов, их популяций и экосистем в целом - способность создавать органическое вещество, которое называют продукцией. Образование продукции в единицу времени на единице площади или объема, выраженное в единицах массы, характеризует продуктивность экосистем.

Продукцию растений называют первичной, а животных - вторичной.

Наряду с продукцией различают биомассу организма или экосистемы в целом. Под ней понимают все живое вещество, которое содержится в экосистеме или ее элементах вне зависимости от того, за какой период времени она образовалась.

Величина биомассы экосистем зависит не столько от их продуктивности, сколько от продолжительности жизни организмов и экосистем. Например, большая биомасса характерна для лесных экосистем: в тропических лесах она достигает 800-1000 т/га, в лесах умеренной зоны - 300-400 т/га. Для экосистем, представленных однолетними организмами, их годичная продуктивность и биомасса практически совпадают.

Если количество энергии, продукции, биомассу или численность организмов на каждом трофическом уровне изображать в виде прямоугольников в одном и том же масштабе, то их распределение будет иметь вид пирамид. Эта закономерность носит название правило пирамид. В отношении энергии можно сказать, что количество энергии, содержащейся в организмах на любом последующем трофическом уровне цепи питания, меньше ее значений на предыдущем уровне.

Пирамиды продукции, энергии (биомасс для экосистем суши) - 1 и биомасс для экосистем океана - 2.

Количество продукции, образующейся в единицу времени на разных трофических уровнях, подчиняется тому же правилу, которое характерно для энергии: на каждом последующем уровне количество продукции меньше, чем на предыдущем.

Пирамиды биомассы сходны с таковыми для энергии и продукции только для сухопутных экосистем. Для водных экосистем пирамида биомасс как бы перевернута. Это означает, что биомасса животных, потребляющих растительную продукцию, больше биомассы растительных организмов. Причина этого - резкие различия в продолжительности жизни организмов сравниваемых уровней. Первый уровень представлен в основном фитопланктоном с крайне короткой продолжительностью жизни (несколько дней или даже часов), второй и более высокие - более долгоживущими организмами - зоопланктоном, рыбами, моллюсками и т.д. Они накапливают биомассу годами и десятилетиями.

Пирамида чисел свидетельствует, что количество организмов, как правило, уменьшается от основания к вершине. Это правило не абсолютно и применимо в основном к цепям питания, не включающим редуцентов.

Любая экосистема, приспосабливаясь к изменениям внешней среды, находится в состоянии динамики. Эта динамика может касаться как отдельных ее звеньев, так всей экосистемы в целом.

Динамика может быть периодической - суточной, сезонной, а может быть непериодической, направленной, которая называется развитием или сукцессией.

Сукцессия - процесс последовательной смены одной экосистемы другой, преемственно возникающей на том же месте под действием внешних или внутренних факторов. При этом в экосистему могут внедряться новые виды, либо одни виды могут сменяться другими.

Если сукцессия обусловливается внешними факторами, то ее называют экзогенетической, если внутренними - эндогенетической. Примером экзогенетической сукцессии могут служить изменения экосистем под влиянием потепления климата, иссушения почв, понижения уровня грунтовых вод и др. Их называют вековыми сукцессиями, т.к. длиться они могут столетиями и тысячелетиями. В качестве эндогенетической сукцессии рассмотрим изменения заброшенного пахотного участка. В качестве общих закономерностей будет иметь место заселение живыми организмами, увеличение их видового разнообразия, постепенное обогащение почвы органическим веществом, усиление связей между различными видами, уменьшение числа свободных экологических ниш, постепенное формирование все более сложных биоценозов и экосистем, повышение их продуктивности. При этом всегда можно выделить последовательные стадии сукцессий (сукцессионные ряды), которые заканчиваются относительно мало изменяющимися экосистемами, которые называются коренными, узловыми или климаксными. Видовой состав климаксных экосистем может существенно различаться, общим является лишь то, что в каждой из них имеются виды-эдификаторы, которые в наибольшей мере создают среду обитания. Например, для степных экосистем эдификаторами являются плотнокустовые злаки; для тропических лесов это древесные виды, создающие сильное затенение для других видов.

Различают следующие виды сукцессий:

1. первичные - они начинаются с исходно безжизненного субстрата, примером которого могут служить песчаные обнажения, горные отвалы, застывшая после извержения вулкана лава;

2. вторичные - они возникают на месте нарушенных или разрушенных экосистем, например, после вырубки леса, лесных пожаров, при зарастании площадей, находившихся ранее под сельскохозяйственными угодьями.

Вторичные сукцессии протекают несравненно быстрее первичных, т.к. начинаются с промежуточных стадий и на фоне более богатых почв.

Различают также автотрофные и гетеротрофные сукцессии. Автотрофные протекают в экосистемах, где центральным звеном является растительный покров. Такие сукцессии потенциально бессмертны, поскольку все время пополняются энергией и веществом в процессе фотосинтеза. К гетеротрофным относятся те сукцессии, которые протекают в субстратах, где отсутствуют живые растения, а участвуют только животные или мертвые растения. Этот вид сукцессий имеет место только до тех пор, пока присутствует запас готового органического вещества. Эта сукцессия по своей природе деструктивна. Примером такой сукцессии может служить разложение мертвого дерева или трупа животного.

Общие закономерности сукцессионного процесса.

1. На начальных стадиях видовое разнообразие, продуктивность и биомасса малы. По мере развития сукцессии эти показатели возрастают.

2. С развитием сукцессионного ряда увеличиваются взаимосвязи между организмами. Полнее осваивается среда обитания, усложняются цепи и сети питания.

3. Уменьшается количество свободных экологических ниш и в климаксном сообществе они либо отсутствуют, либо находятся в минимуме.

4. Интенсифицируются процессы круговорота веществ, потока энергии и дыхания экосистем.

5. Неизменяемость климаксных стадий сукцессий относительна. Динамические процессы при этом не приостанавливаются, а лишь замедляются.

6. В зрелой стадии климаксного сообщества биомасса обычно достигает максимальных или близких к максимальным значений.

Стабильность - способность экосистемы сохранять свою структуру и функциональные свойства при воздействии внешних факторов.

Устойчивость - способность экосистемы возвращаться в исходное или близкое к нему состояние после действия факторов, выводящих ее из равновесия.

Данные термины в экологии обычно рассматриваются как синонимы. Эти качества тем значительнее, чем разнообразнее экосистемы.

Для экосистем с низкой устойчивостью характерны вспышки отдельных видов. Низкоустойчивыми и нестабильными являются, например, тундровые экосистемы, которые легко разрушаются под действием перевыпаса, технических нагрузок. К таким уязвимым экосистемам относятся также агроэкосистемы, созданные человеком и представленные обычно одним преобладающим видом растений, интересующим человека. Агроценозы сельскохозяйственных культур, особенно однолетних, существуют только при условии постоянного вмешательства человека. После прекращения такого вмешательства вторичная сукцессия обычно начинается с той стадии, которую называют сорняками. Но эта стадия уже не имеет прямого отношения к агроценозу. Агроценозы, создаваемые из долгоживущих растений (искусственно созданные лесопосадки, сады), отличаются значительной устойчивостью. Здесь вмешательство человека требуется только на начальных этапах, когда молодые деревца настолько слабы, что не могут выдержать конкуренции с травами.

1.5 Биосферная экология

В 1875 г. Австрийский ученый-геолог Э.Зюсс ввел в научную литературу термин «биосфера».ю понимая под ним все то пространство атмосферы, гидросферы и литосферы, где встречаются живые организмы.

Владимир Иванович Вернадский (1863-1945) использовал этот термин и создал науку с аналогичным названием. Если с понятием «биосфера» по Зюссу связывалось только наличие в трех сферах земной оболочки живых организмов, то по В.И.Вернадскому им отводится роль главнейшей преобразующей силы. В таком случае под биофсерой понимается все пространство, где существует или когда-либо существовала жизнь, то есть где встречаются живые организмы или продукты их жизнедеятельности. В.И.Вернадский всесторонне раскрыл роль живых организмов в процессах планетарного масштаба. Он показал, что в природе нет более мощной геологической силы, чем живые организмы и продукты их жизнедеятельности.

Ту часть биосферы, где встречаются живые организмы в настоящее время, обычно называют необиосферой, то есть современной биосферой, а древние биосферы относят к палеобиосферам. В качестве примеров последних можно назвать безжизненные скопления органических веществ (залежи полезных ископаемых).

Границы биосферы. Целесообразно различать границы нео- и палеобиосферы. Первая в атмосфере простирается примерно на высоту 25-30 км, фактически до озонового экрана, за пределами которого жизнь невозможна вследствие наличия губительных космических ультрафиолетовых лучей. По современным представлениям вся толща Мирового океана, в том числе и самая глубокая Марианская впадина (11022 м), занята жизнью. К необиосфере следует относить также и донные отложения, где возможно существование живых организмов. В литосферу жизнь проникает на несколько метров, ограничиваясь в основном почвенным слоем, однако, простейшие формы жизни можно встретить и на более значительных глубинах - до 4000 м. Границы палеобиосферы в атмосфере примерно совпадают с необиосферой, под водами к палеобиосфере следует отнести и осадочные породы, которые по В.И.Вернадскому практически все претерпели переработку живыми организмами. Это толща от сотен метров до десятков километров. Сказанное относительно осадочных пород применимо и к литосфере, пережившей водную стадию функционирования.

Живое вещество. Этот термин введен в литературу В.И.Вернадским. Под ним он понимал совокупность всех живых организмов, выраженную через массу, энергию и химический состав.

Вещества неживой природы относятся к косным (например, минералы). В природе, кроме этого, довольно широко представлены также биокосные вещества, образование и сложение которых обусловливается живыми и косными составляющими (почва, воздух, природная вода). Биогенными В.И.Вернадский назвал вещества, происходящие от живых организмов, такие как каменный уголь, нефть, мел и др.

Основой биосферы является живое вещество, хотя оно составляет крайне незначительную ее часть. Если его выделить и распределить равномерно по поверхности Земли, то это будет слой около 2 см или 0,01 % от массы всей биосферы. В чем же причина столь высокой химической и геологической активности живого вещества ?

Свойства живого вещества.

1. Способность занимать все свободное жизненное пространство («всюдность» жизни по В.И.Вернадскому). Данная способность связана как с интенсивным размножением (некоторые формы простейших организмов при наличии благоприятных условий могли бы освоить весь земной шар за несколько часов или дней), так и со способностью организмов быстро увеличивать поверхность своего тела. Например, площадь листьев растений, произрастающих на 1 га, составляет 8-10 га и более. То же относится и к корневым системам.

2. Движение не только пассивное, но и активное. Например, против течения, против силы тяжести и т.п.

3. Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты), сохраняя при этом высокую физико-химическую активность.

4. Высокая приспособительная способность к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной и организменной), но и крайне неблагоприятнях по физико-химическим параметрам условий. Например, некоторые организмы переносят температуры, близкие к значениям абсолютного нуля, микроорганизмы встречаются в термальных источниках с температурами до 140о С, в водах атомных реакторов, в бескислородной среде, в ледовых панцирях и т.д.

5. Феноменально высокая скорость протекания химических реакций. Она на несколько порядков значительнее, чем в неживом веществе. Об этом свойстве можно судить по скорости переработки вещества организмами в процессе жизнедеятельности. Например, гусеницы некоторых насекомых за день потребляют количество пищи, которое в 100-200 раз больше веса их тела. Особенно активны организмы-грунтоеды. Дождевые черви (биомасса их тела в 10 раз больше биомассы всего человечества) за 150-200 лет пропускают через свои организмы весь однометровый слой почвы. Такие же явления имеют место в донных отложениях океана.

6. Высокая скорость обновления живого вещества. Подсчитано, что в среднем для биосферы она составляет 8 лет, при этом для суши - 14 лет, а для океана, где преобладают организмы с коротким периодом жизни (например, планктон) - 33 дня.

Все перечисленные и другие свойства живого вещества обусловливаются концентрацией в нем больших запасов энергии. По В.И.Вернадскому, по энергетической насыщенности с живым веществом может соперничать только лава, образующаяся при извержении вулканов.

Функции живого вещества.

1. Энергетическая. Связана с запасанием энергии в процессе фотосинтеза, передачей ее по цепям питания, рассеиванием.

2. Газовая - способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. В частности, включение углекислого газа в прочесы фотосинтеза, а затем в цепи питания обусловливало его аккумуляцию в биогенном веществе. В результате этого шло уменьшение концентрации углерода и его соединений (СО2) в атмосфере с десятков процентов до современных 0,03 %. Это же относится к накоплению в атмосфере кислорода, синтезу озона и другим процессам

3. Окислительно-восстановительная. Связана с интенсификацией под влиянием живого вещества как окисления, благодаря обогащению среды кислородом, так и восстановления, прежде всего в тех случаях, когда идет разложение органического вещества при дефиците кислорода. Восстановительные процессы обычно сопровождаются образованием сероводорода и метана.

...

Подобные документы

  • Организация статистического учета состояния атмосферного воздуха на территории Республики Беларусь. Оценка показателей природоохранной деятельности, направленной на снижение уровня загрязнения атмосферного воздуха в областях Республики Беларусь.

    дипломная работа [1,8 M], добавлен 16.05.2017

  • Структура современной экологии, основные экологические понятия и термины. Учение В.И. Вернадского о биосфере, биогеохимические циклы. Антропогенный фактор в биосфере и основы социоэкологии. Последствия загрязнения атмосферного воздуха и водных ресурсов.

    курс лекций [60,7 K], добавлен 15.02.2012

  • Исследование экологического состояния атмосферного воздуха и почвы в городе и его пригородах, используя в качестве биоиндикаторов хвою сосны обыкновенной и пыльцу одуванчика лекарственного. Основные источники загрязнения и возможные пути их устранения.

    научная работа [3,1 M], добавлен 06.04.2008

  • Характеристика задач и методов экологии, как науки изучающей условия существования живых организмов и взаимосвязи между организмами и средой, в которой они обитают. Особенности современных экологических проблем, обзор видов загрязнения окружающей среды.

    реферат [210,0 K], добавлен 21.02.2010

  • Экологические и гигиенические проблемы загрязнения атмосферного воздуха в промышленных городах. Создание экологически безопасных энергетических систем. Предотвращение, снижение вредных химических, физических, биологических и иных воздействий на атмосферу.

    презентация [80,0 K], добавлен 29.05.2014

  • Сущность и структура общей экологии. Уровни организации живой материи, аутэкология и синэкология. Положение общей экологии в системе наук. Экологические постулаты Б. Компонера. Виды и методы экологических исследований. Основные экологические проблемы.

    реферат [1,4 M], добавлен 25.01.2010

  • Медицинское климатическое районирование Республики Беларусь. Оценка состояния здоровья населения в условиях реально меняющегося загрязнения атмосферного воздуха. Гигиенические стандарты (ПДК, ПДУ, ПДВ) атмосферных загрязнений в странах СНГ и Беларуси.

    реферат [267,1 K], добавлен 15.09.2011

  • Оценка качества воздуха по содержанию отдельных загрязнителей. Комплексная оценка степени загрязнения воздушного бассейна с помощью суммарный санитарно-гигиенического критерия – индекса загрязнения атмосферы. Оценка степени загрязнения воздуха в городах.

    контрольная работа [43,2 K], добавлен 12.03.2015

  • Загрязнения атмосферного воздуха промышленными выбросами. Основные источники искусственных аэрозольных загрязнений воздуха. Влияние атмосферных загрязнений на окружающую среду и здоровье населения. Мониторинг атмосферного аэрозоля промышленного города.

    реферат [1,1 M], добавлен 07.12.2010

  • Характеристики состояния экологии республики, уровень загрязнения атмосферного воздуха, поверхностных водных объектов, земель, на которых производилось размещение отходов производства и потребления. Регулирование экономики и охрана окружающей среды.

    реферат [18,5 K], добавлен 07.03.2010

  • Загрязнение, охрана и методы определения загрязнений воздуха. Характеристика предприятия и источников загрязнения атмосферного воздуха. Методика определения выбросов вредных веществ в атмосферу. Расчет платежей за загрязнение атмосферного воздуха.

    курсовая работа [422,1 K], добавлен 02.07.2015

  • Экологические проблемы большого города. Проблемы экологии Красноярского края, для которого характерна высокая концентрация производства. Обзор основных экологических проблем, связанных с урбанизацией. Уровень загрязнения атмосферного воздуха городов края.

    курсовая работа [182,0 K], добавлен 22.06.2012

  • Характеристика и история возникновения основных проблем экологии. Пути решения задач по утилизации отходов. Потери лесных массивов, их гибель и вырубка, процессы опустынивания и эрозии. Особенности и причины загрязнения водоемов, атмосферы и почвы.

    презентация [3,8 M], добавлен 27.02.2012

  • Метеорологические условия, влияющие на формирование загрязнения атмосферного воздуха в городской среде. Оценка и сравнительный анализ состояния воздушной среды городов Вологда и Череповец. Организация контроля и мониторинга уровней загрязнения.

    дипломная работа [1,6 M], добавлен 16.09.2017

  • История развития экологии. Видовая и пространственная структура биоценоза. Природные ресурсы земли. Виды загрязнения гидросферы и биосферы отходами производства и потребления. Роль биотехнологий и государственных органов в охране окружающей среды.

    контрольная работа [34,8 K], добавлен 02.06.2010

  • Общая характеристика города Раменки. Анализ источников поступления загрязняющих веществ в атмосферу. Оценка состояния атмосферного воздуха, организация системы экологического мониторинга. Прогноз перспективы формирования экологии Москвы и области.

    реферат [881,3 K], добавлен 01.12.2014

  • Взаимосвязь экологии и экономического развития. Анализ эколого-экономического состояния регионов Республики Казахстан. Исследование основных проблем промышленного природопользования в РК. Основные направления борьбы с экологическим загрязнением.

    курсовая работа [45,0 K], добавлен 31.01.2012

  • Глобальные проблемы окружающей среды. Междисциплинарный подход в исследовании экологических проблем. Содержание экологии как фундаментального подразделения биологии. Уровни организации живого как объекты изучения биологии, экологии, физической географии.

    реферат [16,3 K], добавлен 10.05.2010

  • Теоретический анализ взаимосвязи экологии и культуры. Актуальные проблемы экологии. Пути преодоления кризисных явлений в культуре. Исторический экскурс по культуре экологии. Исследование экологических представлений жителей индустриальных центров.

    курсовая работа [61,7 K], добавлен 06.10.2008

  • Экологические проблемы загрязнения воздуха в мире в целом, а также в Казахстане в частности. Состояние воздушного бассейна. Транспорт как источник загрязнения атмосферы. Экология Семея. Способы и перспективы улучшения состояния экологии атмосферы.

    курсовая работа [295,0 K], добавлен 17.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.