Сущность и основные требования к хладагентам
Анализ хладагентов и проблем экологии. Изучение защиты озонового слоя и глобального потепления. Физико–химические свойства хладагентов, применяемых в холодильной промышленности. Зависимость давления кипения о температуры кипения для хладагентов.
Рубрика | Экология и охрана природы |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 25.11.2019 |
Размер файла | 217,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
Развитие холодильной техники в настоящее время находится под влиянием трех определяемых экологическими проблемами взаимосвязанных факторов:
- требований Монреальского протокола о прекращении потребления веществ, разрушающих озоновый слой (в первую очередь широко распространенного хладагента R12) и о временном и количественном ограничении применения веществ переходной группы, имеющих малый потенциал разрушения озонового слоя (ОDP)
- требовании Киотского протокола к «Рамочной конвенции ООН об изменении климата» о регулировании эмиссии парниковых газов (веществ, имеющих высокий потенциал глобального потепления - GWP), к которым относятся широко применяемый хладагент R134a и многие другие вещества, используемые в холодильной технике;
- традиционного требования к повышению энергоэффективности всех видов холодильной техники, что обусловлено растущей конкуренцией на отечественном рынке и положениями определенных законов «Об энергоэффективности» и требованиями стандартов об обязательном определении и информировании потребителей о классе энергоэффективности холодильных установок. Анализируя наиболее известные, разработанные в различное время в нашей стране и за рубежом, хладагенты - заменители R12, R 22, R 502 и других, можно убедиться, что у каждого из них имеются уязвимые места с точки зрения выполнения перечисленных требований. Поэтому в перспективе все они могут оказаться объектами разного рода экологического регулирования, которое в конечном итоге сведется к запретам их производства и потребления. Кроме того, для осознанного применения альтернативных веществ в производстве новой техники и сервисе эксплуатируемого парка холодильного оборудования необходимо иметь достаточно большой объем информации о термодинамических свойствах этих веществ, их взаимодействии с другими материалами и веществами в холодильной машине, а также данные о санитарно-гигиенических свойствах и т.д. Эти сведения не всегда имеются для предлагаемых на рынке веществ, в том числе и отечественных. Немаловажными факторами успешного внедрения новых хладагентов являются также наличие отечественного производства как самих веществ, так и компрессоров, предназначенных для работы на них, и возможность экспорта холодильной техники, работающей на таких веществах. Прежде чем рассматривать свойства хладагентов, остановимся на основных требованиях, предъявляемых к ним. Требования к хладагентам подразделяются на следующие группы:
1. экологические - озонобезопасность (ODP), низкий потенциал глобального потепления (GWP), негорючесть и нетоксичность;
2. термодинамические - большая объемная холодопроизводительность; низкая температура кипения при атмосферном давлении; невысокое давление конденсации; хорошая теплопроводность; малые плотность и вязкость хладагента, обеспечивающие сокращение гидравлических потерь на трение и местные сопротивления при его транспортировке; максимальная приближенность к заменяемым хладагентам (для альтернативных озонобезопасных хладагентов) по давлениям, температурам, удельной объемной холодопроизводительности и холодильному коэффициенту;
3. эксплуатационные - термохимическая стабильность, химическая совместимость с материалами и холодильными маслами, достаточная взаимная растворимость с маслом для обеспечения его циркуляции, технологичность применения; негорючесть и невзрывоопасность; способность растворять воду, незначительная текучесть; наличие запаха, цвет и т. д.;
4. экономические - наличие товарного производства, доступные (низкие) цены.
Хладагенты, отвечающие перечисленным требованиям, найти практически невозможно, поэтому в каждом отдельном случае выбирают хладагент с учетом конкретных условий работы холодильной машины, и предпочтение следует отдавать таким, которые удовлетворяют принципиальным и определяющим требованиям. Альтернативными веществами могут быть чистые (простые) вещества и смеси. Предпочтение отдается прежде всего чистым веществам.
Казалось бы, свойства тех или иных холодильных агентов, или, как их называют по привычке, фреонов, должны интересовать только узкий круг специалистов, занимающихся холодильной техникой. С одной стороны, так и есть. Однако поистине гигантский рынок холодильного оборудования, требующий ежегодного производства около 100 тыс. тонн хладонов, приковывает к этой отрасли алчные взгляды крупнейших химических концернов, способных лоббировать свои интересы на уровне национальных правительств даже самых развитых стран. Рядовой потребитель холодильной техники вряд ли будет интересоваться химическим составом начинки своей покупки. Однако если подобная халатность и простительна для частного покупателя бытового холодильника, то для владельца торгового предприятия оборудование с "неправильным" хладоном может оказаться домокловым мечом. Все соглашаются, что холодильные агенты должны обладать высокой надежностью и холодопроизводительностью, низкой ценой, малым энергопотреблением, а также быть безопасными и соответствовать санитарным нормам. Кажется, что оценка перечисленных свойств и должна быть определяющей при выборе хладона, но не тут то было. С 1989 года основным критерием, стоящим выше и медицинских норм, и цены, стало отношение хладона к такой на первой взгляд далекой от холодильной тематики проблемы, как озоновый слой над нашей планетой.
Первым международным документом, ставящим проблему сохранения озонового слоя Земли, была Венская конвенция 1985 года. Этот документ, по своей сути, носил декларативный характер. Подписавшие его государства не брали на себя никаких обязательств; были лишь очерчены контуры общечеловеческой проблемы, которую следовало как можно быстрее решить. Однако прошло чуть более двух лет, и в 1987 году международное сообщество приняло куда более жесткий документ, получивший название Монреальского протокола. Согласно его положениям, основными виновниками разрушения озонового слоя объявлялись атомы хлора или брома, которые отделились от молекул химических соединений, синтезированных человеком. Основная вина отводилась хлорфторуглеродам, использующимся в качестве распылителей в аэрозолях, и хладагентам, в том числе небезызвестному R12, которым в те времена было заправлено подавляющее большинство холодильных машин и кондиционеров. Несмотря на протесты немногочисленных групп авторитетных ученых, указывающих на недостаточную научную обоснованность положений предстоящего договора, Монреальский протокол был принят, а группа химиков, подготовившая научную базу под этот запрет, была удостоена Нобелевской премии.
1. СОВРЕМЕННЫЕ ХЛАДАГЕНТЫ И ПРОБЛЕМЫ ЭКОЛОГИИ
1.1 Защита озонового слоя. Глобальное потепления
Всем нам хорошо известно, что искусственное охлаждение связано с осуществлением термодинамических циклов холодильных машин, которые основаны главным образом на фазовых превращениях тел, называемых рабочими веществами или хладагентами. Хладагенты, являясь неотъемлемой частью холодильной машины, существенно влияют на ее конструкцию. Так, отдельные термодинамические характеристики хладагента (например, давление кипения , давление конденсаций) определяют конструкцию основного элемента машины - компрессора. Разность давлений определяет нагрузку на рабочие элементы компрессора. От свойств хладагента зависит выбор материала для основных элементов, а также для труб, соединяющих их. Вместе с тем, хладагент должен отвечать таким требованиям, как растворимость в масле, не токсичность, не взрывоопасность, низкая цена и т. п. Таким образом, от вида хладагента зависят многие параметры холодильной машины. Выбор хладагента осуществляется в каждом конкретном случае, основываясь на анализе совокупности всех качеств и факторов, характеризующих как работу холодильной машины, так и конструктивные особенности ее отдельных элементов, и по существу является целой проблемой. Однако в конце прошлого столетия появилась новая проблема, связанная с рабочими веществами - проблема экологий. Судьбоносными для холодильной техники стали Монреальский (сентябрь 1987 г.) и Киотские (декабрь 1997 г.) протоколы. Лексикон обогатился новыми понятиями: «озоновые дыры», «глобальное потепление», «парниковые газы». Озоноразрушающими веществами (ОРВ) оказались фреоны, в молекулах которых имелись атомы хлора и брома, так называемые CFC-хладагенты. Парниковые газы - виновники глобального потепления - тоже фреоны, причем не только разрушающие озоновый слой (CFC- и HCFC-хладагенты и бромфреоны), но и озонобезопасные (HFC-хладагенты). К парниковым газам отнесены полностью фторированные углеводороды (PFC-хладагенты) и шестифтористая сера SF6 (R846). В «корзине» парниковых газов - диоксид углерода, метан и закись азота. Эволюция в области хладагентов Эволюцию в области хладагентов можно условно разделить на четыре поколения. Первое поколение хладагентов: «все, что работает». Наиболее распространенными хладагентами в течение первых 100 лет искусственного охлаждения были обычные растворители и другие летучие вещества. Они и составили первое поколение хладагентов, которое включало «все, что работало», среди доступных в то время веществ. Почти все эти ранние хладагенты были токсичными или горючими, или и то, и другое вместе, а некоторые еще и очень химически активными. Обычными были несчастные случаи. В дальнейшем (20-е годы прошлого столетия) многие компании характеризовали пропан (R290) как «безопасный хладагент без запаха» в отличие от аммиака (R717). Второе поколение: «безопасность и долговечность». Второе поколение отличается растущим внедрением галогенсодержащих химических продуктов, мотивируемым их безопасностью и долговечностью. Промышленное производство R12 началось в 1931 г., а R11 - в 1932 г. Хлорфторуглероды (CFC), а позднее, начиная с 50-х годов, в системах кондиционирования и тепловых насосах как бытовых, так и коммерческих гидрохлорфторуглероды (HCFC) доминировали во втором поколении хладагентов. Аммиак был и все еще оставался наиболее распространенным хладагентом в системах промышленного холода, особенно для производства и хранения продуктов и напитков. Третье поколение: «защита озонового слоя». Связь, обнаруженная между выбросами CFC, в том числе CFC-хладагентов, и разрушением озонового слоя, стала катализатором появления третьего поколения хладагентов, нацеленного на защиту озона стратосферы. Венская конвенция и Монреальский протокол обязывают отказаться от озоноразрушающих веществ (ODS). Химические галогенсодержащие вещества, прежде всего, стали объектом ограничения с акцентом на применение HCFC в переходный период и HFC в более далекой перспективе. Эти изменения спровоцировали возобновление интереса к природным хладагентам, в частности к аммиаку, диоксиду углерода, углеводородам и воде, и вместе с тем к более широкому использованию абсорбционной техники и других способов получения холода (без применения парокомпрессионных машин, работающих на галогенсодержащих хладагентах). Производители поставили на рынок первые альтернативные хладагенты в конце 1989 г. В течение 10 последующих лет были выпущены хладагенты для замены большей части озоноразрушающих рабочих веществ. Четвертое поколение: «глобальное потепление». Ситуация, касающаяся изменения климата обусловила переход к четвертому поколению хладагентов. Четвертый оценочный доклад (AR4) межправительственной группы экспертов по изменению климата (IPCC) отражает последнюю согласованную научную точку зрения, в соответствии с которой «потепление климата неоспоримо, как теперь очевидно из наблюдающегося роста средних мировых температур воздуха и океана, повсеместного таяния снежного покрова и льдов и высокого среднего уровня Мирового океана». В докладе сделано заключение, что «рост наблюдавшихся средних мировых температур с середины ХХ в. вызван увеличением концентрации парниковых газов антропогенного происхождения» и что «видимое влияние человечества сейчас расширяется и на другие климатические аспекты, включая потепление океанов, средние континентальные температуры, температурные экстремумы и розу ветров». Таким образом, проблема глобального потепления вследствие эмиссии (выброса) в атмосферу парниковых газов, к которым относятся большинство используемых сейчас хладагентов, является сейчас наиболее актуальной и ждет своего решения. В связи с вышесказанным, предлагаю обсудить вопрос: «современные хладагенты и проблемы экологии», так как считаю что, дальнейшее развитие холодильных машин как отрасли холодильной техники напрямую связано с решением проблемы использования хладагентов. Уже 100 лет как люди научились создавать искусственный холод, используя его в самых различных областях своей деятельности. Но по-настоящему массово холодильные и климатические установки начали применяться с 30-х годов прошлого века. И связано это было в первую очередь с началом промышленного производства хладагентов, относящихся к группе хлорфторуглеродов (ХФУ): R12, R11, R113, R114. Позже появился гидрохлорфторуглерод (ГХФУ) R22, который стал вскоре одним из основных хладагентов в промышленных и торговых средне- и низкотемпературных холодильных установках. Для очень низких температур были созданы хладагенты R13, R503. Казалось, химики решили для человечества вопрос с подбором безопасного и дешевого хладагента. Но в 1974 г. В США ученые Калифорнийского университета сделали открытие, согласно которому ХФУ могут разрушать озоновый слой на высоте 15…50 км над Землей, защищающий ее поверхность от жесткого ультрафиолетового излучения Солнца, губительного для земной жизни. Содержание озона в атмосфере составляет всего 0,001%, но он поглощает 99% вредного излучения, поэтому даже незначительное уменьшение содержания озона в атмосфере может иметь существенные негативные последствия. Принцип воздействия ГХФУ (R22) на озоновый слой такой же, как ХФУ. Разница лишь в том, что благодаря наличию атомов водорода молекулы ГХФУ разлагаются гораздо быстрее и, как правило, в нижних слоях атмосферы. К моменту открытия пагубного воздействия ХФУ на атмосферу Земли производство хладагентов имело уже значительные объемы: в 1976 г. выпуск R12 достиг 340 тыс. т, а в 1986 г., предшествовавшем году подписания Монреальского протокола о запрете озоноразрушающих веществ, суммарное производство фреонов составило более 1,1 млн. т. Приоритет фреонов был нарушен Монреальским протоколом 1987 г. Производство CFC-хладагентов в развитых странах теперь прекращено, а Китай пообещал прекратить выпуск R12 с 2010 г. Но в миллионах бытовых холодильниках, десятках тысяч чиллеров и в тепловых насосах находятся тысячи тонн R11 и R12. R22 еще разрешен в развитых и развивающихся странах. Сегодня проблема защиты озонового слоя по-прежнему актуальна. В 2006 г. над Антарктидой возникла самая большая из всех отмеченных за более чем 30 лет наблюдений «озоновая дыра». Ожидают ее затягивание до уровня хотя бы 1980 г. лишь к 2065 г. Но, несмотря на ежегодные отчеты о рекордном размере «озоновой дыры» над Антарктидой, озоновый слой восстанавливается. Научные оценки во всем мире подтверждают, что как новые выбросы ODS, так и остаточные прежние выбросы имеют тенденцию к снижению. Ученые отмечают, что минимальная концентрация озона и площадь зоны с его минимальной концентрацией уже в течение нескольких лет стабильны и даже начинается восстановление озонового слоя по сравнению с 1998 г., когда его состояние оценивалось как наихудшее (рис.2). Несомненно, это связано с мерами, принимаемыми мировым сообществом для защиты озонового слоя Земли. Так, многие развитые страны прекратили применение CFC-хладагентов в новом холодильном оборудовании, начиная с 1996 г., как того требовал Монреальский протокол. Развивающиеся страны должны сделать это до 2010 г. Исключая случаи, когда это регламентировано национальными нормами, разрешено применение и обслуживание оборудования с CFC до полного износа. Замена HCFC тоже производится. Монреальский протокол предусматривает поэтапное ограничение производства HCFC в 1996, 2004, 2010, 2015 и 2020 гг. с полным его запрещением к 2030 г. для развитых стран и предполагает начало замораживания производства в 2016 г. и прекращение его в 2040 г. для развивающихся стран. Отдельные страны по-разному откликаются на эти требования. Большинство стран Западной и Центральной Европы ускоренными темпами отказываются от применения HCFC, тогда как основная часть других развитых стран ограничивается быстрым прекращением использования вспенивателей и пропеллентов (особенно R141b), требуя замены R22 (наиболее используемого в наши дни) с 2010 г. в новых системах с последующим полным запретом применения всех HCFC в новом оборудовании с 2020 г. По графику начало сокращения HCFC для развивающихся стран - 2016 г., окончательный запрет - 2040 г. И как в случае с CFC, использование HCFC в действующих установках разрешено до полного исчерпания ресурса оборудования, если другое не предусмотрено национальными нормами. В ряде индустриально развитых государств с момента подписания Монреальского протокола начались разработки альтернативных хладагентов, не разрушающих атмосферный озон. В начале 90-х годов были запущены в промышленное производство озонобезопасные хладагенты на основе ГФУ, которые и сейчас в основном применяются в коммерческом холоде и климатическом оборудовании. Наиболее удачной заменой для R12 можно считать ГФУ-134а. Однокомпонентный хладагент, использование которого хотя и несколько снижает удельную холодопроизводительность, но позволяет не задумываться об изменении состава рабочего вещества при дозаправке системы. Таким образом, благодаря Монреальскому протоколу, а также мерам, принимаемым для разработки новых озонобезопасных хладагентов, проблема защиты озонового слоя Земли должна найти свое решение в недалеком будущем. Новое поколение хладагентов - фреоны R134a, R125, R152a, R32, R23, смеси R404A, R407C, R410A, R507, R508 - не разрушают озонового слоя Земли. Тем не менее, в Киото в декабре 1997 г. в числе парниковых газов были названы и озонобезопасные синтетические хладагенты. хладагент озоновый температура холодильный Глобальное потепление Вторым негативным фактором воздействия хладагентов на атмосферу Земли является парниковый эффект. Им обладают абсолютно все синтетические хладагенты без исключения, в том числе и не относящиеся к озоноразрушающим веществам. Этот эффект возникает вследствие того, что определенные газы поглощают инфракрасное излучение, исходящее от поверхности Земли, задерживая его в атмосфере. В результате у поверхности Земли сохраняется температура, пригодная для зарождения и развития жизни. Такой способностью поглощения обладают пары воды, имеющиеся в нижних слоях атмосферы в больших количествах, и диоксид углерода - один из основных составляющих компонентов окружающего нас воздуха. Кроме того, человек синтезировал химические вещества, которые, находясь в атмосфере, поглощают инфракрасное излучение в тысячи раз эффективнее, чем диоксид углерода. К таким веществам относятся ХФУ и ГХФУ. Их эмиссия в атмосферу приводит КУРЬЕРОМ глобальному потеплению климата на Земле. Успешный ответ на проблему разрушения озонового слоя остро контрастирует с ситуацией, касающейся изменения климата (рис. 3). С 1850 г. 11 из 12 самых теплых лет пришлись на период 1995-2006 г. Исключение составляет только 1996 г., а 1998 г. был самым теплым за этот период с аномальным отклонением температуры +0,58 оС. К 2015 г. эмиссии CFC, HCFC, HFC и PFC составят около 18 Гт СО2 в эквиваленте при общей оценке эмиссий парниковых газов в 55 Гт СО2. Только эмиссии R22 и сопутствующего его производству R23 оценивают к 2015 г. в 1 Гт СО2. В 1970 г. эмиссии парниковых газов составляли 28,7 Гт в эквиваленте СО2. Вместе с тем, хотя R22 разрешен до 2030 и даже 2040 гг., эти рамки сдвинуты на 10 лет вперед. Задача - избежать увеличения температуры атмосферы Земли более чем на 2 оС к 2050 г. Рост эмиссии СО2 идет сегодня главным образом в Африке, Китае, Индии и Бразилии. Промышленно развитые страны в такой ситуации пытаются компенсировать этот рост, что фактически означает снижение эмиссии в пересчете на диоксид углерода к 2050 г. на 50% в сравнении с уровнем 1990 г. Китай начал планировать снижение эмиссий парниковых газов к 2010 г. на 20% от уровня 2005 г. Рис. 3. Глобальный рост температуры: анализ изменения годичных колец деревьев, коралловых рифов, ледников и других показательных факторов приводит к заключению, что 1990-е годы были самым теплым десятилетием в последнем тысячелетии, а ХХ в. - самым теплым веком Потребление синтетических хладагентов в 1991 г. оценивалось в полмиллиона тонн, причем одна треть этого количества использовалась для заполнения новых холодильных систем. Евросоюз вводит запрет на применение HCFC- и HFC-хладагентов. Франция, сегодня расходующая 16 тыс. т хладагентов, собирается снизить этот уровень до 2 тыс. т в год. С января 2008 г. вводится ограничение на эмиссию хладагентов из автомобильных кондиционеров. ЕС собирается просто преследовать по закону любые виды эмиссии синтетических хладагентов в атмосферу. Запрещается применение в автомобилях хладагентов с GWP>150. Все эти меры необходимы, но не достаточны для успешного решения проблемы глобального потепления. Для этого, я считаю, нужны кардинальные решения, одним из которых, как мне представляется, является использование природных хладагентов. Использование природных хладагентов В сложившейся ситуации важным фактором становится использование природных хладагентов: воздуха, воды, углеводородов, диоксида углерода и аммиака. Диоксид углерода (R744) стал применяться в тепловых насосах для систем горячего водоснабжения. Япония купила соответствующую технологию у норвежцев и, пользуясь государственной системой субсидий, в 2010 г. эксплуатировала 5 млн. подобных систем. Идея Г. Лоренцена об использовании СО2 в автомобильных кондиционерах уже реально воплощена в Норвегии. У диоксида углерода высокие показатели теплообмена, объемная холодопроизводительность почти на порядок выше, чем у любого синтетического хладагента, и в 5 раз выше, чем у аммиака. Системы на СО2 компактны, проблем с его утечками, рециклированием и тем более с возгоранием нет. R744 используют в нижних ветвях каскадов с аммиаком, R404А, R410А, углеводородами - в верхних. Благодаря усилиям МГУИЭ, МЭИ и НПО «Гелиймаш» в России создается мощный (до 20 МВт) тепловой насос на СО2. Диоксид углерода в цикле, где теплота подводится при переменной температуре (например, при нагреве воды от 50 до 90 оС), оказывается энергетически выгоднее синтетических хладагентов. Диоксид углерода перспективен также для щадящей сушки термолабильных материалов. Системы с СО2 требуют, однако, больших инвестиций, применение определенных масел, тщательной осушки. Создание аммиачных установок малой холодопроизводительности, тем более герметичных установок на аммиаке, находится в стадии проработок. Промышленные аммиачные системы всегда вне конкуренции. Аммиак - лучший хладагент после воды, хотя небезопасен. Проблема, как показывает многолетний опыт знакомства с этим хладагентом, прежде всего, в его количестве. В промышленных холодильниках сегодня содержится более 3000 т аммиака. Аммиак на предприятиях нередко хранится в резерве, в том числе и вблизи жилых массивов. Не удивительно, что на 1 кВт холодопроизводительности может приходиться до 100 кг аммиака. Задача - снизить на несколько порядков этот показатель, имея в перспективе «хрустальную» мечту: на 1 кВт 80-100 г NH3. Пример решения этой задачи - ФГУ «Комбинат Монолит», где после реконструкции с 10 т аммиака перешли, не снижая показателей, на 300 кг. Одним из удачных новых хладагентов можно назвать R723 - азеотроп аммиака (60%) и диметилового эфира (RE170). Диметиловый эфир улучшает поведение аммиака с минеральными маслами, снижает на 10…20°С температуру конца сжатия, повышает плотность пара и в некоторой степени холодильный коэффициент. Как отмечают исследователи, R723 толерантен к цветным металлам, для него можно использовать имеющиеся варианты аммиачных компрессоров. Природные хладагенты R717 и R723 как альтернатива ГХФУ и ХФУ Основная информация о хладагенте R723. Азеотропная смесь R723 содержит 60 % аммиака и 40 % диметилэфира. Такое сочетание обладает лучшей смешиваемостью с маслами, чем аммиак, так как типы масел, ограниченно растворимые в аммиаке, становятся полностью растворимыми в R723. Кроме улучшения смазки в холодильном компрессоре это способствует повышению коэффициента теплопередачи в испарителе. Основная информация об аммиаке. Как известно, правительства некоторых европейских государств планируют ввести налог даже на применение хладагентов, не содержащих молекул хлора в своем составе (таких, как Rl34a, R404A, R407A,B,C, R5O7 и др.). Поэтому аммиак, как хладагент, становится более привлекательным благодаря его низкой стоимости. Конечно, все еще есть заказчики и монтажные организации, которых нужно убеждать в преимуществах аммиака. Это связано с тем, что с точки зрения безопасности аммиак требует к себе большего внимания, чем другие хладагенты. Аммиак - природный хладагент, он безопасен для окружающей среды, легкодоступен, энергетически выгоден и недорог. Аммиак является частью природного круговорота азота биосферы и как таковой имеет нулевой озоноразрушающий потенциал (ODP=0), а также нулевой коэффициент глобального потепления (HGWP=0). По своей природе аммиак токсичен, горюч и в определенном состоянии взрывоопасен, но существует ошибочное понимание реальных и действительных аспектов безопасности при работе с аммиаком. Резкий, всепроникающий запах аммиака является гарантией обнаружения малейших утечек до того, как будет причинен вред здоровью или возникнет угроза жизни человека
1.2 Физико - химические свойства хладагентов, применяемых в холодильной промышленности
Традиционные хладагенты групп ХФУ и ГХФУ
Хладагент R12. Дифтордихлорметан относится к группе ХФУ (CFC). Характеризуется высоким потенциалом разрушения озона (ODP = 1) и большим потенциалом глобального потепления (GWP = 8500). Бесцветный газ со специфическим запахом, в 4,18 раза тяжелее воздуха. Один из наиболее распространенных и безопасных при эксплуатации хладагентов. Обезвоженный R12 нейтрален ко всем металлам. Характеризуется повышенной текучестью, что способствует проникновению его через мельчайшие неплотности и даже через поры обычного чугуна. В то же время благодаря повышенной текучести R12 холодильные масла проникают во все трущиеся детали, снижая их износ. Поскольку R12 хороший растворитель многих органических веществ, при изготовлении прокладок применяют специальную резину - севанит или паронит. В холодильной технике R12 широко применяли для получения средних температур.
Хладагент R11. Фтортрихлорметан, тяжелый газ (в 4,74 раза тяжелее воздуха), относится к группе ХФУ (CFC). Характеризуется высокой озоноразрушающей активностью (ODP = 1). Согласно Монреальскому протоколу с 1 января 1996 г. прекращено производство R11 (Копенгаген, 1992г.). Для организма человека R11 безвреден, он невзрывоопасен, неограниченно растворяется в минеральном масле. В воде R11 нерастворим, допустимая массовая доля влаги не более 0,0025%. Обезвоженный хладагент нейтрален ко всем металлам, за исключением сплавов, содержащих более 20% магния. Нормальная температура кипения 23,8 °С. Объемная холодопроизводительность R11 мала; применяют его в холодильных машинах при температуре кипения до -20 °С. Хладагент R11 широко применяли в промышленных кондиционерах, турбокомпрессорах средних и больших мощностей.
Хладагент R502. Азеотропнаяя смесь хладагентов R22 и R115. Массовая доля R22 составляет 48,8%, a R115 - 51,2%. Относится к группе ХФУ (CFC), имеет следующие экологические характеристики: ODP = 0,33; GWP = 4300. Невзрывоопасен, малотоксичен и химически инертен к металлам. Растворимость R502 в маслах, коэффициент теплоотдачи при кипении и конденсации близки к соответствующим значениям для R22. Характерная особенность: R502 малорастворим в воде.. Объемная холодопроизводительность его выше, а температура нагнетания ниже примерно на 20°С, чем у R22, что положительно сказывается на температуре обмотки электродвигателя при эксплуатации герметичного холодильного компрессора. Хладагент R502 широко применяли в низкотемпературных компрессионных холодильных установках.
Хладагент R22. Дифторхлорметан относится к группе ГХФУ (HCFC). Имеет низкий потенциал разрушения озона (ODP = 0,05), невысокий потенциал парникового эффекта (GWP = 1700), т. е. экологические свойства R22 значительно лучше, чем у R12 и R502. Это бесцветный газ со слабым запахом хлороформа, более ядовит, чем R12, невзрывоопасен и негорюч.. По сравнению с R12 хладагент R22 хуже растворяется в масле, но легко проникает через неплотности и нейтрален к металлам. Для R22 холодильной промышленностью выпускаются холодильные масла хорошего качества. Хладагент R22 слабо растворяется в воде. Коэффициент теплоотдачи при кипении и конденсации на 25...30% выше, чем у R12, однако R22 имеет более высокие давление конденсации и температуру нагнетания (в холодильных машинах).. Этот хладагент широко применяют для получения низких температур в холодильных компрессионных установках, в системах кондиционирования и тепловых насосах. В холодильных установках, работающих на R22, необходимо использовать минеральные или алкилбензольные масла. Нельзя смешивать R22 с R12 - образуется азеотропная смесь.
По энергетической эффективности R502 и R22 достаточно близки. Холодильную установку, использующую в качестве рабочего тела R502, можно адаптировать к применению R22. Однако, как отмечалось ранее, R22 имеет более высокое давление насыщенных паров и, как следствие, более высокую температуру нагнетания.
Хладагент R123. Относится к группе ГХФУ (HCFC). Температура кипения при атмосферных условиях 27,9 °С. Потенциал разрушения озона ODP = 0,02, потенциал глобального потепления GWP = 90. Хладагент предназначен для ретрофита (замена хладагента на озонобезопасный) холодильных установок - водоохладителей, работающих на R11. Теоретическая холодопроизводительность цикла с R123 составляет 0,86 относительно холодопроизводительности цикла с R11, температура и давление конденсации ниже на 10...15% по сравнению с R11. В сочетании с R123 рекомендуется использовать алкилбензольное холодильное масло или смесь минерального и алкилбензольного.
Хладагент R13. Хладон - 13 (ТРИФТОРХЛОРМЕТАН, CF3Cl, CFC - 13, R13) Хладон - 13 Бесцветный газ со слабым запахом тетрахлорметана. Хладон - 13 Хладагент высокого давления в технике средних и низких температур. ODP=1; GWP=11700. При соприкосновении с пламенем разлагается с образованием высокотоксичных продуктов. Негорючий газ.
Температура кипения,єС -81,5
Критическая температура,єС 28,8
Критическое давление, МПа 3,878
Хладон снят с производства . Заменяется хладоном R23
Альтернативные многокомпонентные хладагенты групп ГХФУ
Хладагент R401A(-B,-C). Это зеотропная смесь среднего давления с температурным глайдом Dtgl= 4...5К.
В зависимости от условий эксплуатации холодопроизводительность холодильной системы, в которой ранее был R12, увеличивается на 5...8 %. Хладагент R401 несовместим с минеральными маслами, поэтому во время ретрофита необходимо заправлять холодильный агрегат алкилбензольным маслом. Требуется также замена фильтра-осушителя.
Хладагент рекомендуется применять для ретрофита в высоко- (выше О°С) и среднетемпературных торговых холодильных установках (герметичные, бессальниковые компрессоры и компрессоры с открытым приводом), бытовых холодильниках и стационарных кондиционерах воздуха для замены R12.
Холодопроизводительность холодильной системы, работающей на R401, сопоставима с холодопроизводительностью систем на R12 при температурах кипения выше -25°С.
Хладагент R404а. Это близкозеотропная смесь R125/R143a/R134a с соотношением массовых долей компонентов 44/52/4. Температурный глайд менее 0,5К. В зависимости от условий эксплуатации обеспечиваются повышение холодопроизводительности на 4...5 % и снижение температуры нагнетания в компрессоре до 8 % по сравнению с аналогичными характеристиками R502. После поступления в продажу с конца 1993 г. R404A первоначально использовали в новом оборудовании, рассчитанном на низкие и средние температуры кипения. В настоящее время R404A применяют в качестве заменителя R502 при ретрофите систем. При этом необходима замена минерального масла на полиэфирное и фильтра-осушителя.
Изменение состава смеси, циркулирующей в холодильной системе, может привести к ухудшению ее энергетических характеристик, особенно в схемах с ресивером или при значительной длине коммуникационных линий. Компонентом служит R143a, который в чистом виде становится горючим при давлении 1*105 Па и температуре 177°С, а в смеси с воздухом - при объемной доле 60 %. При низких температурах для возникновения горючести требуются высокие давления. Поэтому R404а также не следует смешивать с воздухом или пользоваться и допускать присутствия высоких концентраций воздуха с давлением выше атмосферного или при высоких температурах.
Температура кипения при атмосферном давлении, °С -46,7
Критическая температура,° С 72,7
Критическое давление, кПа (абс.) 3735
Потенциал разрушения озона ODP 0,0
Потенциал глобального потепления HGWP 0,94
Хладагент R409A. Представляет собой смесь на основе ГХФУ: R22, R124 и R142. Массовые доли компонентов составляют соответственно 60; 25 и 15. Температура кипения при атмосферных условиях -34 oС. Потенциал разрушения озона ODP = 0,05. Хладагент негорюч и неядовит, совместим с минеральными, а также с алкилбензольными маслами. Предназначен для ретрофита холодильных систем мобильного торгового транспортного оборудования, бытовых холодильников, промышленных холодильных установок с поршневыми и винтовыми компрессорами.
Хладагент С10М1. Хладагент С10М1 (ТУ 2412-003-32837395-98), разработанный компанией "АСТОР" и производимый под зарегистрированной маркой АСТРОНТМ 12, - это трехкомпонентная смесь на основе гидрохлорфторуглеродов R22/R21/R142b, имеющих ограниченный срок применения. Предназначена смесь С10М1 для ретрофита холодильных систем, работающих на R12.
Выпускают смеси двух марок (А и Б), различающихся массовыми долями компонентов: в смеси С10М1 марки A - R22, R21 и R142b массовые доли компонентов соответственно 65; 5 и 30%; в смеси С10М1 марки Б - 65; 15 и 20%.
Состав смеси подобран таким образом, чтобы эксплуатационные характеристики оборудования с этими хладагентами минимально отличались от показателей, достигаемых при работе с заменяемым хладагентом R12.
Хладагенты С10М1 нетоксичны, негорючи и по основным физико-химическим, термодинамическим и эксплуатационным свойствам сходны с хладагентом R12.
В качестве заменителя R12 хладагенты прошли трехлетние испытания в отечественном торговом холодильном оборудовании, в том числе в бытовых холодильниках производства заводов "Атлант", ЗИЛ и др.:
С10М1 марки А - в рефрижераторах железнодорожного транспорта (5-вагонные рефрижераторные секции ЦБ-5 производства завода "Дессау" и РС-4, выпускаемые на БМЗ), кондиционерах железнодорожного транспорта (установки типа МАБ-II);
С10М1 марки Б - в торговом холодильном оборудовании (холодильные агрегаты ВСР400, ВС500, ВС3800, ФАК-1,65МЗ, ФАК1,5МЗ, АК-4,5, АКФМ-4М и др.); в бытовых холодильниках (ЗИЛ-64, ЗИЛ-227, МХМ152, КШД270/280 и др.).
Преимущества хладагента С10М1 (АСТРОНТМ 12) по отношению к зарубежным аналогам следующие:
относительная дешевизна - хладагент состоит из компонентов, выпускаемых заводами России, а его производство организовано компанией "АСТОР" также на территории России;
транспортировать хладагент можно в контейнерах и баллонах, предназначенных для перевозки R12;
перевод холодильного оборудования с R12 на смеси С10М1 осуществляют исключительно путем замены самого хладагента без какой-либо модернизации холодильного оборудования, без внесения изменений в конструкцию холодильной машины и без замены компрессорного масла (в холодильном оборудовании, работающем на R12, используют минеральное масло ХФ12-16);
переход на хладагент С10М1 не предусматривает дополнительной подготовки холодильной системы к работе, переобучения персонала, применения специального оборудования или инструмента для сервисного обслуживания холодильной техники - согласно международной классификации, технология перехода на этот хладагент классифицируется как "drop in", т. е. простая замена.
Технология перевода действующей холодильной техники с хладагента R12 на смеси С10М1 отработана и оптимизирована в процессе опытной эксплуатации соответствующего оборудования. Обязательное условие применения смесей - заправка оборудования хладагентом в жидкой фазе. В случае утечки до 30...35 % хладагента С10М1 из системы в процессе эксплуатации проводят дозаправку смесью того же состава.
Хладагент R142b. При нормальной температуре и давлении HCFC-142b - бесцветный газ. Температура кипения при нормальном давлении -9,8°С. Характеризуется невысокими давлениями при высоких температурах конденсации:
60°С |
8,819 |
|
70°С |
11,182 |
|
80°С |
13,999 |
|
90°С |
17,329 |
Используется в кондиционерах и тепловых насосах.
Смесь R22/R142b. Хладагент представляет собой негорючую зеотропную смесь, компоненты которой имеют ограниченный Монреальским протоколом срок применения. Результаты испытаний бытовых холодильников, заправленных смесью R22 и R142b с массовыми долями соответственно 0,6 и 0,4показали, что энергопотребление осталось практически на том же уровне, что и при использовании R12. Применение этой смеси целесообразно при ретрофите действующего холодильного оборудования; при этом не требуется замены масел, фильтров-осушителей, а также внесения изменений в конструкцию холодильного агрегата. Смесь R22 и R142b может служить переходным хладагентом не только в бытовой технике, но и в другом холодильном оборудовании.
Хладагент R408A. Разработан концерном "ElfAtochem" в качестве альтернативы R502 при ретрофите в действующих холодильных системах. Близкоазеотропная смесь, состоит из компонентов R22, R143a и R125. Состав по массе (%) соответственно 44; 4 и 52. Предназначен для применения в мобильных транспортных холодильных системах, а также в промышленных холодильных установках с поршневыми и винтовыми компрессорами. У R408A и R502 при одной и той же температуре давления близки, температура конденсации выше на 10 К. Холодопроизводительность цикла примерно на 1...10 % выше, чем при работе на R502.
Плотность жидкости R408A ниже, чем у хладагента R502, а, следовательно, требуемая масса заправки, т. е. имеющиеся в установке ресиверы, трубопроводы и насосы, предназначенные для R502, можно использовать для R408A.
Кроме того, уменьшение массы заправки важно учитывать в малых установках, чтобы не допустить перезаправки во избежание превышения давления и потребляемой мощности. В малых установках снижение заправки может достигать 25 %, а в больших - 15 %.
R408A более гигроскопичен, чем R502, что связано с необходимостью тщательного соблюдения правил перекачки этого хладагента, заправки систем и т. п. Теплоемкость жидкости при постоянном давлении больше у R408A, что привозит к значительным потерям при дросселировании. Этого можно избежать, увеличив переохлаждение жидкости в конденсаторе. Теплопроводность насыщенной жидкости также больше у R408A. Это повышает эффективность теплообмена, а следовательно, улучшает термодинамические характеристики установки, что и подтвердили испытания.
Потребляемая мощность при отрицательных температурах ниже на 7 %, что важно при ретрофите, так как уменьшает опасность замыкания или сгорания электродвигателя. Поэтому для применения R408A даже в малых герметичных компрессорах нет ограничений.
Из-за высокой полярности молекул одного из компонентов (R143a) хладагент R408A взаимно растворим и с алкилбензольными, и с минеральными маслами. В компактных холодильных системах при стандартных условиях этого достаточно, чтобы обеспечить возврат масла в компрессор. Хладагент R408A можно использовать также в сочетании с полиэфирными маслами.
По отношению к уплотнительным материалам R408A менее агрессивен, чем R502.
В качестве фильтров-осушителей используют молекулярные сита, применяемые для R502 и R22.
Альтернативные многокомпонентные хладагенты на основе углеводородов
Хладагент С1. В результате комплексных исследований в НИИ тепловых процессов им. В. М. Келдыша (Россия) разработан ряд многокомпонентных озонобезопасных хладагентов взамен R134a в качестве альтернативы R12. Наиболее перспективный из них хладагент С1 (азеотропная смесь R152/R600a), представляющий собой смесь углеводородов и фторуглеродов. Результаты исследований свидетельствуют о высоких теплофизических и эксплуатационных свойствах хладагентов и низком энергопотреблении холодильников, где используют эти хладагенты.
Зависимость холодопроизводительности и холодильного коэффициента от температуры кипения для С1, а также для R12 и R134a приведена на рисунке ниже. Эксперименты показали, что холодопроизводительность и холодильный коэффициент компрессоров ХКВ-6 и V1040G, заправленных смесью С1 в диапазоне температур кипения, характерных для бытовых холодильников и морозильников, соответствуют аналогичным параметрам для R12 и тем более для R134a.
Исследования, проведенные в НИИ тепловых процессов им. В. М. Келдыша, позволили сделать следующие выводы:
бытовые холодильники, заправленные хладагентом С1, работают устойчиво, их энергетические характеристики не хуже, чем при работе на R12, даже несколько превосходят их;
совместимость С1 с минеральным маслом ХФ 12-16 и конструкционными материалами позволяет максимально упростить процесс перехода с R12 на многокомпонентные хладагенты;
компоненты, входящие в С1, нетоксичны, их потенциал глобального потепления GWP низок; они освоены промышленностью развитых стран;
хладагент С1 горюч, но, как считают разработчики, необходимая доза для заправки бытовых холодильников и морозильников столь мала (28...56 г), что даже при полной утечке С1 из агрегата его концентрация (например, в кухне объемом 20 м3) будет ниже порога горючести в десятки раз.
Смесь пропан-бутан. По результатам исследований предлагается также использовать в бытовых холодильниках в качестве хладагента смесь пропан-бутан: при этом изменений в конструкцию бытового холодильника не вносят, а в качестве масла используют обычные минеральные масла, работающие с R12.
По энергетическим характеристикам теоретического холодильного цикла смесь пропан-бутан при аналогичных условиях уступает R12. Смесь пропан-бутана зеотропная.
Как было сказано ранее, такие смеси кипят при переменных температурах, но при постоянном давлении, т. е. это свойство может быть реализовано в холодильниках с двумя испарителями, когда кипение зеотропной смеси начинается в низкотемпературном отделении, а выкипание происходит в испарителе холодильной камеры при более высоких температурах.
Предлагаемая смесь пропан-изобутан (43 % R600a) горюча, но масса хладагента, находящегося в бытовом холодильнике, мала (20...40 г). Этой смесью заправляют бытовые холодильники в Германии, широко внедряют ее в Китае и Индии. Вместе с тем американское агентство по охране окружающей среды (ЕРА) ввело правило, запрещающее использование смеси пропан-изобутан (НС-12а) в качестве альтернативы R12.
Хладагент СМ1. Этот хладагент разработан в МЭИ (состав R134a/R218/R600), представляет собой зеотропную, пожаро- и взрывобезопасную смесь, по термодинамическим характеристикам близкую к R12 и растворимую в минеральных маслах. Не требуется изменения конструкций холодильных машин, применения новых смазочных масел и переоснащения производства.
Хладагент СМ1 предлагается также использовать в торговом и промышленном холодильном оборудовании, выпускаемом в настоящее время для работы на R12, а также для ретрофита части действующего парка холодильных машин.
Примерная потребность хладагента СМ1 (в новом производстве и при ретрофите) в 2000г.:
в бытовой холодильной технике 900 т;
в торговых холодильных машинах с воздушным охлаждением конденсаторов 600 т;
в промышленных холодильных машинах с воздушным охлаждением конденсатора 500 т.
Вместе с тем при имеющейся сырьевой базе промышленное производство хладагента СМ1 пока не организовано.
Альтернативные однокомпонентные хладагенты
Хладагент R717. Химическая формула NH3 (аммиак). Относится к группе ГФУ (HFC). Из "натуральных" хладагентов R717 стоит на одном из первых мест в качестве альтернативы R22 и R502. Производство аммиака в мире достигает 120 млн. т, и лишь малая часть его (до 5%) используется в холодильной технике.
Аммиак не разрушает озоновый слой (ODP = 0) и не вносит прямого вклада в увеличение парникового эффекта (GWP = 0). Газ с резким удушливым запахом, вредный для организма человека. Предельно допустимая концентрация в воздухе 0,02 мг/дм3, что соответствует объемной доле его 0,0028%. В соединении с воздухом при объемной доле 16...26,8% и наличии открытого пламени аммиак взрывоопасен.
Пары аммиака легче воздуха, он хорошо растворяется в воде (один объем воды может растворить 700 объемов аммиака, что исключает замерзание влаги в системе). Минеральные масла аммиак почти не растворяет. На черные металлы, алюминий и фосфористую бронзу не действует, однако в присутствии влаги разрушает цветные металлы (цинк, медь и ее сплавы). Массовая доля влаги в аммиаке не должна превышать 0,2%.
По термодинамическим свойствам аммиак - один из лучших хладагентов: по объемной холодопроизводительности он значительно превышает R12, R11, R22 и R502, имеет более высокий коэффициент теплоотдачи, что позволяет применять в теплообменных аппаратах трубы меньшего диаметра при заданной холодопроизводительности. Из-за резкого запаха аммиака появление течи в холодильной системе легко обнаруживается обслуживающим персоналом. Именно по этим причинам R717 нашел широкое применение в крупных холодильных установках. Хладагент R717 имеет низкую стоимость.
Один из недостатков аммиака - более высокое значение показателя адиабаты (1,31) по сравнению с R22 (1,18) и R12 (1,14), что приводит к значительному увеличению температуры нагнетания. В связи с этим предъявляют жесткие требования к термической стабильности холодильных масел, используемых в сочетании с аммиаком в течение длительного времени при эксплуатации установки. Конденсатор должен иметь развитую поверхность теплообмена, в результате чего возрастает его металлоемкость.
Характеристики хладагента R717, относящегося к группе ГФУ, а также некоторых хладагентов групп ХФУ и ГХФУ на линии насыщения приведены в таблице. хладагент озоновый потепление температура
Аммиак имеет чрезвычайно высокое значение теплоты парообразования, вследствие чего сравнительно мал массовый расход циркулирующего хладагента (13... 15% по сравнению с R22). Это благоприятное качество для крупных холодильных установок, но затрудняет регулировку подачи аммиака в испаритель при малых мощностях.
Дополнительные сложности при создании холодильного оборудования вызывает высокая активность аммиака по отношению к меди и медным сплавам, поэтому трубопроводы, теплообменники и арматуру выполняют из стали. Из-за высокой токсичности и горючести аммиака сварные соединения тщательно контролируют. Вследствие высокой электропроводности R717 затруднено создание полугерметичных и герметичных компрессоров. Вместе с тем для промышленных холодильных установок мощностью более 20 кВт аммиак - лучшая альтернатива.
На аммиаке работают многие тепловые насосы. Ожидается применение аммиака в малых холодильных машинах для коммерческих установок.
Используемые в настоящее время масла не растворяются в аммиаке, поэтому в схему холодильной машины приходится включать маслоотделители, что увеличивает ее стоимость. В последние годы ведутся интенсивные исследования по разработке растворимого в аммиаке масла и созданию холодильного оборудования с "сухим" испарителем. Растворимость масла в аммиаке исключает образование пленки масла на теплообменных поверхностях, что повышает коэффициент теплоотдачи с 2700 до 9100 Вт/(м2*К).
Достигнутый в последние годы прогресс в разработке растворимых в аммиаке R717 холодильных масел может кардинально изменить тенденции в развитии холодильного машиностроения.
Хладагент R744. Химическая формула СО2 (диоксид углерода). Относится к группе ГФУ (HFC). Дешевое нетоксичное негорючее и экологически чистое (ODP = 0, GWP= 1) вещество. Стоимость диоксида углерода в 100...120 раз ниже, чем R134a.
Диоксид углерода имеет низкую критическую температуру (31°С), сравнительно высокую температуру тройной точки (-56°С), большие давления в тройной точке (более 0,5 МПа) и критическое (7,39 МПа). Может служить альтернативным хладагентом. Содержится в атмосфере и биосфере Земли, имеет следующие преимущества: низкая цена, простое обслуживание, совместимость с минеральными маслами, электроизоляционными и конструкционными материалами. Вместе с тем при использовании диоксида углерода требуется водяное охлаждение конденсатора холодильной машины, увеличивается металлоемкость холодильной установки (по сравнению с металлоемкостью установок, работающих на галоидопроизводных хладагентах). Высокое критическое давление имеет и положительный аспект, связанный с низкой степенью сжатия, вследствие чего эффективность компрессора становится значительной. Возможны перспективы применения диоксида углерода в низкотемпературных двухкаскадных установках и системах кондиционирования воздуха автомобилей и поездов. Его предлагают использовать также в бытовых холодильниках и тепловых насосах.
Хладагент R728. Химическая формула N2. Относится к группе ГФУ (HFC). Жидкий азот применяют в качестве криогенного охлаждающего средства в некоторых странах (Англия, США и др.). При атмосферном давлении температура кипения азота составляет -196°С. Нетоксичный и экологически чистый (ODP = О, GWP = 0) хладагент. Криогенный метод охлаждения жидким азотом предусматривает одноразовое его использование. Этот метод реализуется в безмашинной проточной системе, в которой рабочее вещество не совершает замкнутого кругового процесса.
В связи с открытием в России значительных запасов (около 340 млрд м3) подземных газов с высоким содержанием азота себестоимость природного азота становится на порядок ниже, чем азота, полученного методом сжижения и разделения воздуха, что позволит применять в промышленных масштабах безмашинный способ охлаждения в аппаратах для быстрого замораживания пищевых продуктов. Для повышения степени использования низкотемпературного потенциала газообразного азота специалистами МГУПБ предложена система мобильного хладоснабжения.
Хладагент R290. Химическая формула С3Н8 (пропан). Относится к группе ГФУ (HFC). Потенциал разрушения озона ODP = 0, потенциал глобального потепления GWP = 3. Характеризуется низкой стоимостью и нетоксичен. При использовании данного хладагента не возникает проблем с выбором конструкционных материалов деталей компрессора, конденсатора и испарителя. Пропан хорошо растворяется в минеральных маслах. Температура кипения при атмосферном давлении -42,1°С. Преимуществом пропана является также низкая температура на выходе из компрессора. Однако пропан как хладагент имеет два принципиальных недостатка. Во-первых, он пожароопасен, во-вторых, размеры компрессора должны быть больше, чем при использовании в холодильной машине R22 заданной холодопроизводительности.
...Подобные документы
Эволюция в области хладагентов. Защита озонового слоя. Термодинамические характеристики хладагента. Воздействие хладагентов на атмосферу Земли. Глобальный рост температуры. Использование природных хладагентов в промышленности. Аммиак и холодильные масла.
реферат [424,7 K], добавлен 16.08.2012Влияние теплового режима поверхности Земли на состояние атмосферы. Защита планеты от ультрафиолетовой радиации озоновым экраном. Загрязнение атмосферы и разрушение озонового слоя как глобальные проблемы. Парниковый эффект, угроза глобального потепления.
реферат [39,3 K], добавлен 13.05.2013Из истории. Местоположение и функции озонового слоя. Причины ослабления озонового щита. Озон и климат в стратосфере. Разрушение озонового слоя земли хлорфторуглеводородами. Что было сделано в области защиты озонового слоя. Факты говорят сами за себя.
реферат [67,2 K], добавлен 14.03.2007Причины возникновения глобального потепления, его воздействие на окружающую среду. Влияние парникового эффекта, как составляющей части глобального потепления, на климат. Феномен изменений глобального потепления. Прогнозы и теории глобального потепления.
контрольная работа [41,4 K], добавлен 03.12.2010Защита климата и озонового слоя атмосферы как одна из наиболее острых глобальных экологических проблем современности. Суть и причины возникновения парникового эффекта. Состояние озонового слоя над Россией, уменьшение содержания озона ("озоновая дыра").
реферат [40,3 K], добавлен 31.10.2013Озоновая дыра как локальное падение озонового слоя. Роль озонового слоя в атмосфере Земли. Фреоны - основные разрушители озона. Методы восстановления озонового слоя. Кислотные дожди: сущность, причины появления и негативное воздействие на природу.
презентация [354,1 K], добавлен 14.03.2011Основные источники загрязнения воздуха. Последствия для природы от парникового эффекта, истощения озонового слоя, вулканических выбросов, глобального потепления. Фикус Бенджамина, герань, аспарагус, елки, сосны и диффенбахия как настоящие биофильтры.
презентация [1,2 M], добавлен 19.12.2011Сущность глобальных экологических проблем. Разрушение природной среды. Загрязнение атмосферы, почвы, воды. Проблема озонового слоя, кислотных осадков. Причины парникового эффекта. Пути решения проблем перенаселения планеты, энергетических вопросов.
презентация [1,1 M], добавлен 05.11.2014Ответные реакции природы (экологический бумеранг). Эффект бумеранга проявляется тем сильнее, чем выше уровень нарушений человеком природных систем. Причины глобального потепления, факторы его ускоряющие и замедляющие. Гипотезы о разрушении озонового слоя.
презентация [2,3 M], добавлен 22.05.2019Причины глобального потепления, постепенного увеличения среднегодовой температуры атмосферы Земли и Мирового океана. Парниковый эффект. Почему глобальное потепление приводит к похолоданию, предотвращение и адаптация. Критика теории глобального потепления.
контрольная работа [2,2 M], добавлен 08.02.2010Энергетика и глобальное потепление. Ископаемая мировая экономика - устаревшая модель. Основные черты политической экологии. Потребление энергии в мире. Глобальное потепление с экономической точки зрения. Способы решения проблем парникового эффекта.
реферат [21,1 K], добавлен 02.06.2004Причины и последствия постепенного роста температуры поверхностного слоя атмосферы Земли и Мирового океана. Отрицательные показатели парникового эффекта. Возможные пути решения проблемы глобального потепления и меры по снижению выбросов парниковых газов.
контрольная работа [20,2 K], добавлен 20.04.2015Изучение химических особенностей, реакций синтеза и распада озона. Характеристика основных соединений, приводящих к изменению текущего состояния озонового слоя. Влияние ультрафиолета на человека. Международные соглашения в области охраны озонового слоя.
реферат [16,8 K], добавлен 24.01.2013Анализ основных причин глобального изменения климата. Понятие и особенности парникового эффекта. Рассмотрение отрицательных и положительных последствий глобального потепления, выводы специалистов. Характеристика проблем нового ледникового периода.
реферат [61,2 K], добавлен 19.10.2012Роль озона и озонового экрана для жизни планеты. Экологические проблемы атмосферы. Озоноразрушающие вещества и механизм их действия. Влияние уменьшения озонового слоя на жизнь на Земле. Меры, принимаемые по его защите. Роль ионизаторов в жизни человека.
реферат [31,1 K], добавлен 04.02.2014Рассмотрение преобразующего влияния человека на природу. Основные черты изменения климата планеты: "парниковый эффект", кислотные дожди, истощение озонового слоя, признаки потепления атмосферы планеты. Экологическое обучение и воспитание в обществе.
реферат [17,8 K], добавлен 05.10.2012Изучение проблемы глобального загрязнения природной среды промышленными и сельскохозяйственными предприятиями. Характеристика нарушения озонового слоя атмосферы, кислотных дождей, парникового эффекта. Описания утилизации отходов лакокрасочных материалов.
реферат [27,6 K], добавлен 11.01.2012Теории образования озоновых дыр. Спектр озонового слоя над Антарктидой. Схема реакции галогенов в стратосфере, включающая их реакции с озоном. Принятие мер по ограничению выбросов хлор- и бромсодержащих фреонов. Последствия разрушения озонового слоя.
презентация [418,6 K], добавлен 14.05.2014Понятие и местоположение озонового слоя, его функциональные особенности и оценка значения для биосферы Земли. Структура и элементы озонового слоя, причины его ослабления в последние десятилетия, негативные последствия данного процесса и его замедление.
презентация [339,3 K], добавлен 24.02.2013Озоновые дыры и причины их возникновения. Источники разрушения озонового слоя. Озоновая дыра над Антарктикой. Мероприятия по защите озонового слоя. Правило оптимальной компонентной дополнительности. Закон Н.Ф. Реймерса о разрушении иерархии экосистем.
контрольная работа [24,7 K], добавлен 19.07.2010