Генетически модифицированные организмы и их воздействие на окружающую среду

Определение понятия генетически модифицированных организмов, как организмов, чей генетический материал (ДНК) был изменен, что невозможно в природе в результате размножения или естественной рекомбинации. Цели и методы создания, риски для окружающей среды.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 08.12.2019
Размер файла 23,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

ФГБОУ ВО Новосибирский ГАУ

Биолого-технологический факультет

Кафедра ветеринарной генетики и биотехнологии

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Экологическая генетика»

на тему: «Генетически модифицированные организмы и их воздействие на окружающую среду»

Выполнил: студент 2404 гр.

Якимчук Е.А.

Проверил: к.б.н., доцент

Себежко О.И.

НОВОСИБИРСК 2019

Введение

Генетически модифицированные организмы используются в прикладной медицине с 1982 года. Генетически модифицированные организмы (ГМО) -- это организмы (т.е. растения, животные или микроорганизмы), чей генетический материал (ДНК) был изменен, причем такие изменения были бы невозможны в природе в результате размножения или естественной рекомбинации. Соответствующие технологии известны как современная биотехнология, генная технология, а также технология рекомбинантных ДНК и генетическая инженерия. Они позволяют передавать отдельные гены от одного организма другому, а также между неродственными видами. Продукты питания, произведенные из или с использованием ГМ организмов, часто называют ГМО-продуктами[1].В настоящее время фармацевтическая промышленность выпускает большое количество лекарственных средств на основе рекомбинантных белков человека: такие белки производят генетически модифицированные микроорганизмы, либо генетически модифицированные клеточные линии животных. Генетическая модификация в данном случае заключается в том, что в клетку интродуцируется ген белка человека (например, ген инсулина, ген интерферона, ген бета-фоллитропина). Эта технология позволяет выделять белки не из донорской крови, а из ГМ-организмов, что снижает риск инфицирования препаратов и повышает чистоту выделенных белков. Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы, ВИЧ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифицированного сафлора. Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз[2].В 2015 году генетически модифицированные культуры составили 99% собранного в США урожая сахарной свеклы, 94% соевых бобов, 94% хлопка и 92% кормовой кукурузы.В мире 12% всех пахотных земель занято ГМ-культурами[3].

Бурно развивается новая отрасль медицины -- генотерапия. В её основе лежат принципы сходные с использующимися при создании ГМО, но в качестве объекта модификации выступает геном соматических клеток человека. В настоящее время генотерапия -- один из главных методов лечения некоторых заболеваний. Так, уже в 1999 году каждый четвёртый ребёнок, страдающий SCID, лечился с помощью генной терапии. Генотерапию, кроме использования в лечении, предлагают также использовать для замедления процессов старения[1].

Актуальность данной работы заключается в том, что генной инженерии не более 20 лет и оценить, как влияют генно-модифицированные организмы (ГМО) на окружающую среду за столь короткий промежуток времени очень сложно. Поведение новых генов в открытых экосистемах, их реакция на паразитов, болезни совершенно непредсказуемы.Большинство ученых считают, что ГМО могут быть опасны для окружающей среды.

Цель - изучить генетически модифицированные организмы и их воздействие на окружающую среду через следующие задачи: рассмотрение целей и методов создания ГМО, их применение в различных областях (в медицине и фармацевтической промышленности, в сельском хозяйстве и в животноводстве) и влияние на окружающую среду.

генетический модифицированный организм

1. Цели и методы создания

Продовольственная и сельскохозяйственная организация ООН (FAO) рассматривает использование методов генетической инженерии для создания трансгенных сортов растений либо других организмов как неотъемлемую часть сельскохозяйственной биотехнологии. Прямой перенос генов, отвечающих за полезные признаки, является естественным развитием работ по селекции животных и растений, расширивших возможности селекционеров в части управляемости процесса создания новых сортов и расширения его возможностей, в частности, передачи полезных признаков между нескрещивающимися видами.Использование как отдельных генов различных видов, так и их комбинаций в создании новых трансгенных сортов и линий является частью стратегии FAO по характеризации, сохранению и использованию генетических ресурсов в сельском хозяйстве и пищевой промышленности[6].ГМО-продукты разрабатываются и поступают на рынок, потому что существуют некоторые ощутимые выгоды либо для производителя, либо для потребителя этих пищевых продуктов. Это означает получение продукта с более низкой ценой или большими преимуществами (в плане увеличения срока хранения или питательной ценности) или с обоими качествами. Изначально ГМО-селекционеры хотели, чтобы их продукция была положительно воспринята производителями и поэтому сделали упор на инновации, которые приносят ощутимую пользу фермерам (и пищевой отрасли в целом)[4].

Одна из целей разработки растений на основе ГМО заключается в улучшении защиты сельскохозяйственных культур. В настоящее время ГМО-культуры на рынке главным образом направлены на повышение уровня защиты сельскохозяйственных культур посредством введения резистентности в отношении болезней растений, вызываемых насекомыми или вирусами, или посредством повышения устойчивости в отношении гербицидов.Резистентность к насекомым достигается посредством введения в пищевое растение гена для производства токсина из бактерии Bacillusthuringiensis (ВТ)[5]. Этот токсин в настоящее время используется в качестве обычного инсектицида в сельском хозяйстве, и он безопасен для потребления человеком. Оказалось, что ГМО сельскохозяйственные культуры, которые постоянно производят этот токсин, требуют меньшего количества инсектицидов в конкретных ситуациях, например, где наблюдается высокая распространенность сельскохозяйственных вредителей. Резистентность к вирусам достигается посредством введения гена от некоторых вирусов, которые вызывают болезнь в растениях. Вирусная резистентность делает растения менее уязвимыми в отношении болезней, вызываемых такими вирусами, что ведет к повышению урожайности сельскохозяйственных культур.Устойчивость к гербицидам достигается посредством введения гена от бактерии, передающего резистентность к некоторым гербицидам. В ситуациях с высокой распространенностью сорняков использование таких сельскохозяйственных культур привело к сокращению количества используемых гербицидов[4].

Исследование 2012 года (основанное в том числе на отчётах компаний-производителей семян) использования трансгенных сои, кукурузы, хлопка и канолы в 1996--2011 годах показало, что устойчивые к гербицидам культуры оказываются более дешёвыми в выращивании и в ряде случаев более урожайными. Культуры содержащие инсектицид давали больший урожай, особенно в развивающихся странах, где использовавшиеся до этого пестициды были малоэффективными. Также устойчивые к насекомым культуры оказывались более дешёвыми в выращивании в развитых странах. По данным метаанализа, проведённого в 2014 году, урожайность ГМО-сельхозкультур за счёт снижения потерь от вредителей на 21,6 % выше, чем у немодифицированных, при этом расход пестицидов ниже на 36,9 %, затраты на пестициды снижаются на 39,2 %, а доходы сельхозпроизводителей повышаются на 68,2 %[5].

Основные этапы создания ГМО[3]:

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Методы осуществления каждого из этих этапов составляют в совокупности методы генетической инженерии.Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100--120 азотистых оснований (олигонуклеотиды).Чтобы встроить ген в вектор, используют ферменты -- рестриктазы и лигазы. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор.Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Популярными методами введения вектора в клетку растений является использование почвенной бактерии Agrobacteriumtumefaciens или генной пушки. Для генетической инженерии животных используют трансфекцию, вектора, на основе ретровирусов и другие методы.Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детёныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения[6].

2. Риски для окружающей среды

Оценки риска для окружающей среды охватывают как соответствующие ГМО, так и их потенциальное влияние на окружающую среду. Процесс оценки включает оценку характеристик ГМО, а также его воздействие и устойчивость в окружающей среде наряду с экологическими характеристиками окружающей среды, в которую будет осуществлено его введение. Эта оценка также включает непредусмотренное воздействие, которое может возникнуть в результате введения нового гена[7].

Проблемы, вызывающие обеспокоенность, включают способность ГМО к утечке и потенциальному введению произведенных генов популяциям, существующим в естественных условиях; персистенция гена после того, как были собраны ГМО; подверженность нецелевых организмов (например, насекомых, которые не являются сельскохозяйственными вредителями) генному продукту; устойчивость гена; сокращение спектра других растений, включая потерю биоразновидности; и возрастающее использование химических веществ в сельском хозяйстве. Аспекты безопасности окружающей среды, касающиеся генетически модифицированных сельскохозяйственных культур, в значительной степени варьируются в зависимости от местных условий[8].

В процессе оценки безопасности ГМО-продуктов обычно исследуются[3]:

1. прямое воздействие на здоровье (токсичность);

2. тенденции вызывать аллергическую реакцию (аллергенность);

3. конкретные компоненты, предположительно обладающие питательными или токсичными свойствами;

4. устойчивость введенного гена;

5. воздействие на питание, связанное с генетической модификацией; илюбое непредусмотренное воздействие, которое может возникнуть в результате введения гена.

Различные генетически модифицированные организмы включают различные гены, вводимые различными путями. Это означает, что оценку отдельных ГМО-продуктов и их безопасности следует проводить на индивидуальной основе, и что нельзя делать общие заявления о безопасности всех ГМО-продуктов.ГМО-продукты, в настоящее время поступающие на международный рынок, подверглись оценкам безопасности и вряд ли представляют угрозу для здоровья человека. Кроме того, не было обнаружено никакого воздействия на здоровье человека в результате потребления таких пищевых продуктов широкими слоями населения в странах, где они одобрены. Постоянное проведение оценок безопасности на основе принципов Кодекса Алиментариус, и, по возможности, адекватного пострыночного мониторинга должно создать основу для проведения оценки безопасности генетически модифицированных пищевых продуктов[5].

Распространение трансгенов угрожает, как минимум, сохранению естественного биоразнообразия в природе, а также здоровью человека.Снижение сортового разнообразия: особо опасно выращивание ГМО в центрах происхождения сельскохозяйственных культур. К примеру, если выращивать ГМО рис в Китае, где зародилась эта культура, из-за перекрестного опыления могут исчезнуть дикие сорта риса. Образующиеся в результате скрещивания культуры постепенно вытесняют природные разновидности. Малочисленные популяции и редкие виды могут быть потеряны навсегда[9].

Сокращение видового разнообразия: производство ГМО приводит к сокращению видового разнообразия растений, животных, грибов и микроорганизмов обитающих на полях, где они выращиваются и вокруг них. Например, ГМ-бактерия, созданная как переработчик растительных отходов, уменьшила популяцию полезных грибов. Быстрорастущие виды трансгенных организмов могут вытеснить обычные виды из естественных экосистем[9].

Возникновение «суперсорняков»: если трансгенная пыльца попадает в дикие виды близкородственных растений, то не исключена опасность передачи генов устойчивости к гербицидам диким видам, что сделает их «суперсорняками», бороться с которыми будет крайне сложно[10].

Нарушение естественного контроля вспышек численности вредителей: в природе у каждого вида есть естественные враги и паразиты, не позволяющие ему виду чрезмерно размножаться. Воздействие токсинов ГМ растений на хищных и паразитических насекомых может привести к серьезным нарушениям в экосистемах, в том числе к неконтролируемым вспышкам численности одних видов и вымиранию других. Например, медоносные пчелы очень чувствительны к высоким дозам многих токсинов. Известны случаи нарушения процессов роста и жизнедеятельности представителей одного вида божьих коровок, основной пищей которых являлись личинки, выращенные на трансгенном картофеле[9].

Появление устойчивых разновидностей насекомых: в результате производства сортов, устойчивых к вредителям, появляются насекомые, на которых смертоносные токсины просто не действуют. Так появились колорадские жуки, устойчивые к Bt картофелю. В других случаях вредители просто перестраиваются на другие растения - томаты, перцы, баклажаны[10].

Нарушение естественного плодородия почвы: растения со встроенными генами, ускоряющими рост и развитие, в большей степени, чем обычные истощают почву и нарушают ее структуру. Токсины ГМ растений подавляют жизнедеятельность почвенных беспозвоночных, микрофлоры и микрофауны. Происходит нарушение естественного плодородия.В будущем внедрение чужеродных природе ГМ-растений может поставить под угрозу все сельское хозяйство, поскольку селекция и создание новых сортов зависит от разнообразия естественных генетических ресурсов[9].

Хотя теоретические дискуссии охватили широкий круг аспектов, 3 основные проблемы -- это тенденция вызывать аллергическую реакцию (аллергенность), перенос гена и ауткроссинг[3]:

1. Аллергенность - в целом перенос генов из известных аллергенных организмов в неаллергенные не приветствуется, если не доказано, что белок переносимого гена неаллергенен. Продукты питания, полученные на основе традиционных методов селекции, обычно не проверяются на аллергенность. При этом Продовольственная и сельскохозяйственная организация Объединенных Наций (ФАО) и ВОЗ рассмотрели протоколы тестирования ГМО- продуктов. У присутствующих сегодня на рынке таких продуктов не было обнаружено аллергических эффектов.

2. Передача генов- передача генов от ГМО-продуктов клеткам организма или бактериям в желудочно-кишечном тракте могла бы вызывать озабоченность, если бы передаваемый генетический материал негативно воздействовал на здоровье человека. Это особенно актуально для возможной передачи устойчивых к антибиотикам генов, используемых как маркеры при разработке ГМО. Хотя риск такой передачи невелик, рекомендуется использовать гены, неимеющие устойчивости к антибиотикам.

3. Ауткроссинг - миграция генов из ГМО-культур в традиционные культуры или родственные виды в природной среде (известная как ауткроссинг), а также перемешивание традиционных культур с ГМО-культурами могут иметь косвенные последствия для продовольственной безопасности. Известны случаи, когда ГМО-культуры, одобренные для использования в качестве корма для животных или в промышленных целях, обнаруживались в небольших количествах в продуктах, предназначенных для употребления в пищу человеком. Несколько стран внедрили стратегии, нацеленные на борьбу со смешением культур, которые включают такие меры, как четкое разделение полей, на которых высеваются традиционные и генетически модифицированные культуры.

Существуют различные способы регулирования ГМО-продуктов правительствами. В некоторых странах ГМО-продукты еще не регулируются. Страны, которые приняли законодательство, уделяют основное внимание вопросам оценки риска для здоровья потребителей. Страны, в которых существуют регулятивные положения в отношении генетически модифицированных пищевых продуктов, обычно также регулируют ГМО в целом с учетом риска для здоровья и окружающей среды, а также вопросы контроля и торговли (такие, как возможные режимы тестирования и маркировки). В связи с динамикой дискуссии по ГМО-продуктам, по всей видимости, будет продолжаться доработка данного законодательства.ГМО-культуры, которые сегодня предлагаются на международном рынке, модифицированы так, чтобы приобрести одну из 3 полезных характеристик: устойчивость к вредоносным насекомым; устойчивость к вирусным болезням растений; толерантность к действию некоторых гербицидов. В последнее время изучается возможность увеличения содержания в ГМО-культурах питательных веществ (например, олеиновой кислоты в соевых бобах)[11].

Заключение

Уверенность потребителей в безопасности поставок пищевых продуктов в Европу в значительной степени уменьшилась в результате ряда случаев, вызвавших опасения в отношении пищевых продуктов, которые произошли во второй половине 1990-х годов и не имели никакого отношения к ГМО-продуктам[12]. Было оказано также воздействие на ход дискуссий по вопросам приемлемости ГМО-продуктов. Потребители также ставили под сомнение обоснованность оценок риска как в отношении здоровья, так и в отношении окружающей среды, уделяя особое внимание, в частности, долгосрочному воздействию. В число других тем дискуссий, проводимых организациями потребителей, входили аллергенность и антимикробная резистентность. Обеспокоенность потребителей особенно возросла в связи с проведением дискуссии о желательности маркировки ГМО-продуктов, позволяющей производить информированный выбор[1].

Выброс ГМО в окружающую среду и сбыт ГМО-продуктов привели к возникновению общественных дискуссий во многих частях мира. Эти дискуссии, по всей вероятности, будут продолжаться, возможно, в более широком контексте других возможностей использования биотехнологии (например, в отношении медицинских препаратов для человека) и их последствий для человеческого общества. Хотя обсуждаемые вопросы обычно очень похожи (стоимость и выгоды, вопросы безопасности), результаты дискуссий являются различными в различных странах. К настоящему времени не достигнут консенсус в отношении таких вопросов, как маркировка и отслеживаемость ГМО-продуктов в качестве способа устранения обеспокоенности потребителя. Несмотря на отсутствие консенсуса по этим вопросам, был достигнут значительный прогресс в отношении согласования точек зрения, касающихся оценок риска. Комиссия Кодекс Алиментариус находится на грани принятия принципов оценки дорыночного риска, а положения Картагенского протокола по биобезопасности также демонстрируют растущее понимание на международном уровне. Несмотря на отсутствие консенсуса по этим вопросам, Комиссия Кодекс Алиментариус добилась существенного прогресса и в 2011 году разработала документы по маркировке продуктов питания, полученных с применением современных биотехнологий с целью обеспечить последовательность любых подходов к маркировке, применяемых членами Комиссии, которые уже приняли руководящие положения Кодекса[3].

Будущие ГМО, по всей видимости, будут включать растения с улучшенной сопротивляемостью к болезням или засухе, сельскохозяйственные культуры с увеличенным уровнем питательной ценности, разновидности рыб с лучшими характеристиками роста и растений или животных, производящих в фармацевтическом отношении важные белки, такие как вакцины.ВОЗ будет игарть активную роль в отношении генетически модифицированных пищевых продуктов, главным образом по двум причинам[3]:

- общественное здравоохранение может извлечь значительные выгоды из потенциальных возможностей биотехнологии, например, в результате увеличения питательности пищевых продуктов, уменьшения аллергенности и более эффективного производства пищевых продуктов;

- потребности в изучении потенциального негативного воздействия на здоровье человека потребления пищевых продуктов, произведенных посредством генетической модификации, для защиты общественного здравоохранения. Если современные технологии действительно улучшают способы производства пищевых продуктов, необходимо провести тщательные оценки таких технологий.

Таким образом, в данной работе были рассмотрены цели и метоы создания ГМО, их применение в различных областях и влияние на окружающую среду, которое требует дальнейшего изучения.

Список источников литературы

1. Генетически модифицированные организмы и проблемы биобезопасности: учеб.-метод. пособие / С. Е. Дромашко [и др.]. - Минск : Ин-т подгот. науч. кадров Нац. акад. наук Беларуси, 2011. - 70 с.

2. Яблоков А.В., Баранов А.С. ГМО и продукты из них опасны // ГМО - скрытая угроза России. - М.: Общенациональная ассоциация генетической безопасности, 2004. - С. 6-19.

3. ВОЗ | Часто задаваемые вопросы по генетически модифицированным продуктам питания. URL: www.who.int. (дата обращения: 09.11.2019).

4. Комарова Александра Викторовна Польза и вред генетически модифицированных организмов // Вестник ТГУ. 2010. №7. URL: https://cyberleninka.ru/article/n/polza-i-vred-geneticheski-modifitsirovannyh-organizmov (дата обращения: 09.11.2019).

5. Тышко Н.В. Контроль за генно-инженерно-модифицированными организмами растительного происхождения в пищевой продукции: научное обоснование и методическое обеспечение // Вопросы питания. 2017. №5. URL: https://cyberleninka.ru/article/n/kontrol-za-genno-inzhenerno-modifitsirovannymi-organizmami-rastitelnogo-proishozhdeniya-v-pischevoy-produktsii-nauchnoe-obosnovanie-i (дата обращения: 09.11.2019).

6. Кузнецов В.В., Куликов А.М. Генетически модифицированные риски и полученные из них продукты: реальные и потенциальные риски // Российский химический журнал.- 2005, № 69 (4). - С. 70-83.

7.Ермакова Ирина Владимировна Биологические и этологические процессы взаимодействия искусственно измененных организмов с окружающей средой // Общество. Среда. Развитие (TerraHumana). 2009. №3. URL: https://cyberleninka.ru/article/n/biologicheskie-i-etologicheskie-protsessy-vzaimodeystviya-iskusstvenno-izmenennyh-organizmov-s-okruzhayuschey-sredoy (дата обращения: 09.11.2019).

8. Кузнецов В.В., Куликов А.М., Митрохин И.А., Цыдендамбаев В.Д. Генетически модифицированные организмы и биологическая безопасность // Экоинформ. - 2004, № 10.

9.Пыжикова А. В., Ефремов А. А. Дикоросы или генетически модифицированные организмы // Вестник КрасГАУ. 2007. №1. URL: https://cyberleninka.ru/article/n/dikorosy-ili-geneticheski-modifitsirovannye-organizmy (дата обращения: 09.11.2019).

10. Клименко Александр Иванович, Максимов Геннадий Васильевич, Василенко Вячеслав Николаевич Проблемы использования генетически модифицированных организмов в сельском хозяйстве // Вестник аграрной науки Дона. 2014. №26. URL: https://cyberleninka.ru/article/n/problemy-ispolzovaniya-geneticheski-modifitsirovannyh-organizmov-v-selskom-hozyaystve (дата обращения: 09.11.2019).

11. Тутельян В.А. Генетически модифицированные источники пищи: 14. оценка безопасности и контроль. М. : Изд-во РАМН, 2007. 444 с.

12. Чирков Ю.Г. Время химер. Большие генные игры. - М.: Академкнига, 2002. - 397 с.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.