Гидроэкология
Предмет и задачи гидроэкологии. Вода как среда обитания. Общая характеристика гидросферы. Круговороты веществ. Основные экологические законы. Антропогенное воздействие на гидросферу. Охрана и защита водных ресурсов. Мониторинг водных объектов Беларуси.
Рубрика | Экология и охрана природы |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 10.10.2023 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Наиболее значительные горизонтальные миграции во взрослом состоянии совершают крупные ракообразные. На расстояние до 200 км от прибрежья в открытое море перемещается осенью камчатский краб Paralithodes camtschtica, - а весной с мест зимовки он возвращается в прибрежные воды. Массовые миграции лангустов Panularis argus происходят осенью с началом штормов со скоростью 1 км/ч и длятся в течение нескольких дней. Мигрируя, лангусты образуют цепочки из десятков особей, следующих строго друг за другом, касаясь своими антеннами впереди идущего.
Ряд бентосных организмов совершает и вертикальные перемещения в толще грунта, которые носят суточный и сезонный характер и могут быть связаны с защитой от хищников, поисками пищи, обеспечением кислородом.
В нейстали обитают представители нейстона (nein - плавать) - микроскопические или мелкие формы, населяющие приповерхностный слой воды, и плейстона (pleusis - плавать) - организмы крупных или средних размеров, часть тела которых погружена в воду, а часть выступает над ней.
Среди нейстонных организмов также выделяют тех, кто обитает на поверхности водяной пленки - эпинейстон. В пресных водоемах это клопы-водомерки Gerris и Hydrometra, жуки-вертячки Cyrinus, мухи Ephydra; а на поверхности океанов многочисленны клопы-водомерки Halobates.
Совокупность организмов, населяющих верхний слой воды толщиной 5 см, называют гипонейстоном. Условия жизни в этом поверхностном слое достаточно сильно отличаются от остальной массы воды. Здесь поглощается до половины всей солнечной радиации, проникающей в воду, большая часть ультрафиолетовых и инфракрасных лучей. Здесь резко выражен перепад температур воды и атмосферы, здесь вследствие испарения и выпадения осадков варьирует содержание соли. А вот концентрация кислорода из-за контакта с воздухом неизменно высокая.
Для приповерхностного слоя воды характерна также высокая концентрация органических веществ, что создает благоприятные условия для питания нейстонных организмов. С одной стороны, на поверхность воды попадают трупы различных животных, летающих над водой, а также содержащая органику пыль, приносимая с суши. С другой - из глубин к поверхности всплывают остатки отмерших гидробионтов (так называемый антидождь трупов). Существенную роль в повышении концентрации органики играют также газовые пузырьки и пена - возникая в результате волнения воды, фотосинтеза, гниения и других причин, пузырьки газа адсорбируют органические вещества и транспортируют их в приповерхностный горизонт.
В составе гипонейстона преобладают гетеротрофные организмы - бактерии, простейшие, ракообразные, моллюски, насекомые, икра и молодь рыб и других гидробионтов. Интересно, что некоторые из них в качестве опоры используют нижнюю поверхность пленки воды (в пресных водах - моллюски Limnaea, Physa, рачки Scapholeberis и др.; в море - моллюски Hydrobia, Glaucus, Aeolis, личинки высших раков и др.).
Для представителей плейстона характерна двойственность адаптаций, соответствующая тому, что часть их тела находится в воде, а часть - в воздухе. У плейстонных растений устьица, например, образуются только на верхней стороне листовой пластинки, которая изогнута и покрыта восковым налетом, что обеспечивает несмачиваемость и предупреждает заливание устьиц.
Многие плейстонные организмы для своего движения используют ветер. Например, сифонофора физалия (Physalia aretusa) имеет крупный, до 30 см, пневматофор, окрашенный в ярко-голубой или красный цвет. Газ, наполняющий пневматофор, вырабатывается специальными газовыми железами, находящимися внутри пузыря, и по своему составу близок к атмосферному, но отличается повышенным содержанием азота и углекислого газа. Верхняя часть пневматофора имеет вырост в виде гребня (парус), который расположен несколько по диагонали и имеет слегка выгнутую S-образную форму. Благодаря косому расположения паруса физалия ассиметрична, причем у особей, обитающих по разные стороны экватора, асимметрия зеркальная. В северном полушарии, где экваториальное течение отклоняется к северу, ветер сносит физалий к югу, а в южном, где течение отклоняется к югу, - к северу. В результате физалии, все время передвигаясь под действием ветра и течений, не выходят за пределы своего ареала.
Некоторые рыбы, например парусник (Istiophorus platypterus), луна-рыба (Mola mola), переходя временно к плейстонному образу жизни, выставляют над поверхностью воды сильно развитый спинной плавник и медленно дрейфуют, используя для передвижения силу воздушных течений.
Природным водоемам свойствен определенный химический состав. Преобладают карбонаты, сульфаты, хлориды. В пресных водоемах концентрация солей не более 0,5 г/, в морях - от 12 до 35 г/л (промилле - десятые доли процента). При солености более 40 промилле водоем называют гипергалинным или пересоленным.
1) В пресной воде (гипотоническая среда) хорошо выражены процессы осморегуляции. Гидробионты вынуждены постоянно удалять проникающую в них воду, они гомойосмотичны (инфузории каждые 2-3 минуты «прокачивают» через себя количество воды, равное ее весу). В соленой воде (изотоническая среда) концентрация солей в телах и тканях гидробионтов одинакова (изотонична) с концентрацией солей, растворенных в воде - они пойкилоосмотичны. Поэтому у обитателей соленых водоемов осморегуляторные функции не развиты, и они не смогли заселить пресные водоемы.
2) Водные растения способны поглощать воду и питательные вещества из воды - «бульона», всей поверхностью, поэтому у них сильно расчленены листья и слабо развиты проводящие ткани и корни. Корни служат в основном для прикрепления к подводному субстрату. У большинства растений пресных водоемов есть корни.
Типично морские и типично пресноводные виды - стеногалинные, не переносят значительных изменений в солености воды. Эвригалинных видов немного. Они обычны в солоноватых водах (пресноводный судак, щука, лещ, кефаль, приморские лососи).
В воде кислород важнейший экологический фактор. Источник его - атмосфера и фотосинтезирующие растения. При перемешивании воды, особенно в проточных водоемах и при уменьшении температуры содержание кислорода возрастает. Некоторые рыбы очень чувствительны к дефициту кислорода (форель, гольян, хариус) и потому предпочитают холодные горные реки и ручьи. Другие рыбы (карась, сазан, плотва) неприхотливы к содержанию кислорода и могут жить на дне глубоких водоемов. Многие водяные насекомые, личинки комаров, легочные моллюски тоже толерантны к содержанию кислорода в воде, потому что они время от времени поднимаются к поверхности и заглатывают свежий воздух.
Углекислого газа в воде достаточно - почти в 700 раз больше, чем в воздухе. Он используется в фотосинтезе растений и идет на формирование известковых скелетных образований животных (раковины моллюсков, покровы ракообразных, каркасы радиолярий и др.).
В пресноводных водоемах кислотность воды, или концентрация водородных ионов, варьирует гораздо сильнее, чем в морских - от pH=3,7-4,7 (кислые) до pH=7,8 (щелочные). Кислотностью воды определяется во многом видовой состав растений гидробионтов. В кислых водах болот растут сфагновые мхи и живут в обилии раковинные корненожки, но нет моллюсков-беззубок (Unio), редко встречаются другие моллюски. В щелочной среде развиваются многие виды рдестов, элодея. Большинство пресноводных рыб живут в диапазоне pH от 5 до 9 и массово гибнут за пределами этих значений.
Кислотность морской воды убывает с глубиной.
Об экологической пластичности гидробионтов. Пресноводные растения и животные экологически более пластичны (эвритермны, эвригаленны), чем морские, обитатели прибрежных зон более пластичны (эвритермны), чем глубоководные. Есть виды, обладающие узкой экологической пластичностью по отношению к одному фактору (лотос - стенотермный вид, рачок артемия (Artimia solina) - стеногаленный) и широкой - по отношению к другим. Более пластичны организмы в отношении тех факторов, которые более изменчивы. И именно они распространены более широко (элодея, корненожки Cyphoderia ampulla). Зависит пластичность и от возраста и фазы развития.
13.2 Фитопланктон
Альгофлора рек слагается из трех основных компонентов: водорослей автотрофного происхождения (зеленых, синезеленых, диатомовых, эвгленовых и др.), перифитона (водорослей обрастания) и водорослей бентоса, вегетирующих на дне и попавших в планктон.
Развитие водорослей определяют наличие азота и фосфора, света, движение воды, ее температура и мутность. Синезеленые и зеленые водоросли развиваются при температуре от 4 до 23°С (максимальное развитие - от 19 до 23°С), большинство эвгленовых - от 2 до 28°С (максимальное их развитие наблюдается летом и в начале осени). В то же время диатомовые водоросли хорошо развиваются при низких температурах воды. Отмечено два пика их развития - весенний и осенний.
Роль фитопланктона и фитомикробентоса в формировании качества воды двоякая. С одной стороны, они являются активными агентами биологического самоочищения, поскольку выделяют кислород и поглощают биогенные элементы, непосредственно поступающие в водоем или образующиеся при разложении органических веществ. С другой стороны, новообразованное в процессе фотосинтеза органическое вещество при отмирании попадает в воду и представляет собой источник вторичного загрязнения (биологического). Как правило, биомасса фитопланктона в пределах 1 - 4 мг/л не вызывает ухудшения качества воды; при концентрации водорослей 5 -10 мг/л оно существенно ухудшается, а при концентрации 10 - 50 мг/л и более возникает угроза биологического загрязнения и появления токсикантов.
Фитомикробентос, как правило, играет положительную роль в формировании качества воды, поскольку водоросли дна продуцируют незначительную биомассу, которая не может вызвать ощутимого вторичного биологического загрязнения.
Скорость течения как фактор, лимитирующий вегетацию водорослей и обеспечивающий удовлетворительное качество воды, проявляется для фитопланктона при скорости течения 1 м/с, для фитомикробентоса - выше 1 м/с.
Водоросли живут в основном в водной среде, но встречаются они и в почве, на скалах, на стволах деревьев, внутри известнякового субстрата, в воздухе, в горячих источниках, а также во льдах Северного полюса и Антарктиды. Самые первые сведения о водорослях нам известны из книг античного римского ученого Плиния Старшего. Он дал название этим растениям - Algae, что означает «травянистая морская поросль». В России в двадцатых годах XIX века естествоиспытатель И. А. Двигубский для растений, произрастающих в воде, предложил название «водарасли», но в 1927 году ученый М. А. Максимович изменил его на «водоросли». С тех пор мы используем это название и в разговорной речи, и как научный термин.
Определение водорослей, используемое в учебниках по ботанике и научно-популярной литературе, звучит следующим образом: «Водоросли - это низшие, т. е. слоевцовые (лишенные расчленения на стебель и листья), споровые растения, содержащие в своих клетках хлорофилл и живущие преимущественно в воде».
Водоросли играют огромную роль в природе и жизни человека. В водоемах, как создатели органического вещества, они являются первым звеном пищевых цепей. По содержанию белков, жиров и углеводов водоросли не уступают сену и являются калорийной пищей для многочисленных водных животных - корненожек, червей, мелких ракообразных, ручейников и моллюсков. Некоторые пресноводные водоросли являются съедобными и для людей, они употребляются в пищу в Китае, Японии, Канаде, США, Франции, Австралии, Корее. Широко используются водоросли в животноводстве в качестве корма и кормовых добавок, так как белки, витамины и физиологически активные вещества повышают устойчивость животных к различным заболеваниям, ускоряют их рост и размножение.
Водоросли производят и выделяют в окружающую среду различные химические соединения и биологически активные вещества и таким образом оказывают воздействие на формирование качества природных вод и их органолептические свойства (вкус, цвет и запах). Так, например, Anabaena и Microcystis придают воде болотный запах, a Asterionella и Synedra - рыбный. «Цветение» воды сопровождается ухудшением ее физико-химических показателей, происходит повышение цветности, снижение прозрачности, повышение окисляемости, хлорпоглощаемости.
Сине-зеленые водоросли продуцируют токсины, обладающие широким спектром биологического действия. По характеру действия на теплокровных животных их делят на две большие группы: нейротоксины и гепатотоксины. Потребление воды, в которой массово развиваются сине-зеленые водоросли, может привести к возникновению гастроэнтеритов и других желудочно-кишечных заболеваний, сильной мышечной боли, судорог, парезов конечностей. Известны случаи заболевания людей конъюнктивитом после купания в «цветущей» воде, аллергического поражения кожных и слизистых покровов, поражения печени присутствующими в воде гепатотоксинами водорослевого происхождения.
Развившийся в массе фитопланктон вызывает гибель мальков и взрослых рыб. Водоросли принимают активное участие в обмелении водоемов, происходящем из-за осаждения фитопланктона. Кроме того, массовое развитие водорослей оказывает и чисто механическое вредное влияние - засоряет фильтровальные устройства водопроводных станций, конденсаторы гидроэлектростанций.
Так как большинство пресноводных водорослей имеют микроскопические размеры, то увидеть их невооруженным глазом в природе возможно лишь в случае их массового развития - по изменению окраски среды обитания: воды, почвы или другого субстрата.
В стоячих водоемах при массовом развитии сине-зеленых водорослей вода приобретает голубовато-зеленый оттенок, а на поверхности ее появляются голубоватые или бирюзового цвета пенистые скопления. Если на поверхности стоячих водоемов плавают сплошные ватообразные скопления зеленых нитей («тина»), - это, скорее всего, скопления нитчатых зеленых водорослей. Слизистые зеленые пленки на почве в увлажненных местах или у уреза воды водоема также указывают на присутствие водорослей. Иногда водорослями обрастают высшие водные растения, и в таком случае их можно заметить в виде тонких нитей или скользкого налета на листьях растений с нижней стороны листа, погруженной в воду. Бесформенные бурые рыхлые скопления, зеленые слизистые шарики или даже небольшие зеленые разветвленные кустики, состоящие из тонких нитей на поверхности ветки, долгое время пролежавшей в воде, тоже водоросли. Может быть, никаких оформленных обрастаний нет, только какая-то бурая рыхлая грязь у уреза воды стоячего водоема, - это тоже скопления микроскопических водорослей.
Синезеленые. Любые организмы, живущие на Земле, занимают определенное и уникальное место в составе биоценозов, незаменимы и заслуживают тщательного изучения. Однако роль некоторых групп в эволюции и существовании биосферы представляется особенно значительной. Такой группой, по данным современной науки, несомненно, являются цианобактерии.
Еще в 19 веке ученые обращали внимание на несомненное сходство синезеленых водорослей и бактерий.
Синезеленые водоросли по характеру их клеточной организации вполне соответствуют грамотрицательным бактериям и представляют самостоятельную ветвь их эволюции, для цианобактерии характерна высокая морфологическая сложность и способность к осуществлению фотосинтеза с выделением молекулярного кислорода. Таким образом, термин "цианобактерии" вполне оправдан. Хотя цианобактерии с точки зрения формальной систематики не могут рассматриваться в качестве таксона высокого ранга, в эволюции жизни на Земле они сыграли особую роль, большое значение они имеют и в функционировании современной биосферы. Описано более 1500 видов синезеленых водорослей, среди них есть формы одноклеточные, размножающиеся делением, почкованием или дроблением клетки на ряд дочерних клеток, формы колониальные и формы нитчатые. Нити могут быть простые или ветвящиеся. Размеры клеток значительно варьируют: их диаметр у некоторых видов может составлять доли микрометра, тогда как у других - десятки микрометров. Колонии цианобактерий или дерновинки, образованные нитчатыми формами, могут быть макроскопических размеров. Отдельные клетки или нити у некоторых цианобактерий способны ползать по плотному субстрату.
Различные виды цианобактерий обладают разнообразными адаптационными механизмами, определяющими успешное развитие их в тех или иных условиях окружающей среды. Некоторые формы Scytonema, например, образуют пигмент, концентрирующийся на поверхности клетки и эффективно защищающий ее от ультрафиолетовых лучей, что определяет возможность развития этой цианобактерий при прямом солнечном освещении.
Некоторые цианобактерий синтезируют сидерофоры - вещества, связывающие ионы железа и делающие их доступными для бактерии. Другие, развивающиеся в прибрежной зоне водоемов, синтезируют поверхностно-активные соединения. При волнении вода у берега становится мутной за счет взвешенных частиц песка и детрита. В присутствии сурфактанта (ПАВ) частички слипаются и оседают на дно, вода становится прозрачной и цианобактерий получают достаточно света. Многие цианобактерий синтезируют биологически активные вещества. Это могут быть антибиотики с гербицидной активностью, препятствующие росту других цианобактерий, водорослей и высших растений. Значение способности к синтезу таких веществ при конкуренции в природе очевидна. Было бы крайне желательно производство таких гербицидов промышленностью, поскольку они экологически безопасны и не токсичны для человека и животных. Реже цианобактерий образуют антибиотики, активные против грибков и гетеротрофных бактерий. Приспособительное значение таких антибиотиков менее очевидно, но следует отметить, что существуют грибки и бактерии, паразитирующие на цианобактериях.
Диатомовые водоросли. Группа простейших, традиционно рассматриваемая в составе водорослей, отличающаяся наличием у клеток своеобразного «панциря». Панцирь состоит из двух половинок - эпитеки и гипотеки, причём эпитека больше, и её края заходят на края гипотеки. В результате деления клетки дочерние получают по одной половинке панциря и достраивают к ней меньшую. Очевидно, что из-за этого популяция постепенно мельчает и после нескольких делений клетки образуют ауксоспоры, не имеющие панциря. Ауксоспоры растут в объёме и впоследствии дают начало новому крупному поколению.
Панцирь состоит из аморфного кремнезёма. Массовые скопления скелетов диатомовых образуют горную породу диатомит.
Типичны для весеннего и осеннего фитопланктона, во многих водоемах в этот период являются основной группой. Иногда может наблюдаться цветение.
Зеленые водоросли. Зелёные вомдоросли (лат. Chlorophyta) - группа низших растений. В современной систематике эта группа имеет ранг отдела, включающего одноклеточные и колониальные планктонные водоросли, одноклеточные и многоклеточные формы бентосных водорослей. Здесь встречаются все морфологические типы слоевища, кроме ризоподиальных одноклеточных и крупных многоклеточных форм со сложным строением. Многие нитчатые зелёные водоросли крепятся к субстрату только на ранних стадиях развития, затем они становятся свободноживущими, формируя маты или шары.
Самый обширный на данное время отдел водорослей. По приблизительным подсчётам сюда входит от 13 000 до 20 000 видов. Все они отличаются в первую очередь чисто-зелёным цветом своих слоевищ, сходным с окраской высших растений и вызванным преобладанием хлорофилла над другими пигментами.
Роды нитчатых зеленых водорослей можно определить по хроматофору (аналог хлоропластов в клетках растений). Чаще всего эти водоросли развиваются в виде больших скоплений зеленых нитей в небольших стоячих водоемах, заводях рек. Чаще других встречается Spirogyra.
Это то, что в народе называют «тина». Виды Spirogyra чаще всего являются показателями слабо загрязненных вод. Этот род не имеет индекса сапробности. Виды Mougeotia и Zygnema - показатели чистых вод.
Золотистые водоросли. Золотистые водоросли (лат. Chrysophyta) - отдел низших растений, включающий в себя преимущественно микроскопические водоросли различных оттенков жёлтого цвета. Золотистые водоросли бывают одноклеточными, колониальными и многоклеточными. Известно около 800 видов.
Динофлагеллямты. Это тип протистов из группы альвеолят. Большинство представителей - двусторонне-симметричные или асимметричные жгутиконосцы с развитым внутриклеточным панцирем. Значительную часть динофлагеллят характеризует способность к фотосинтезу, в связи с чем группу также называют динофитовыми водорослями. Некоторые представители (например, ночесветки) способны к люминесценции. Всего описано 5-6 тысяч видов.
Высокое хозяйственное значение имеют представители, массовые вспышки численности которых приводят к возникновению «красных приливов».
Эвгленовые водоросли. Отряд простейших. Объединяет около 1000 видов, среди них имеется много бесцветных форм. Эвглениды имеют один или несколько жгутиков, за исключением небольшой группы безжгутиковых форм, а также прикрепленных организмов.
Эвглена также имеет глазок, который реагирует на свет.
Клетки лишены целлюлозных оболочек. Под плазмалеммой расположен плотный, эластичный, белковой природы слой протопласта, называемый пелликулой. От её плотности зависит постоянство формы клеток, Каждый хлоропласт имеет трёхслойную мембрану. Согласно теории эндосимбиоза, третья мембрана хлоропласта - это плазмалемма зеленой водоросли, поглощенной предковой зоофлагеллятой, или эндоцитозная мембрана хозяина.
Красные водоросли. Красные водоросли (лат. Rhodophyta) - отдел растений. Это обитатели прежде всего морских водоемов, пресноводных представителей известно немного. Обычно это довольно крупные растения, но встречаются и микроскопические. Среди красных водорослей имеются одноклеточные (крайне редко), нитчатые и псевдопаренхимные формы, истинно паренхимные формы отсутствуют. Ископаемые остатки свидетельствуют, что это очень древняя группа растений.
13.3 Зоопланктон
Основными факторами, лимитирующими развитие зоопланктона, являются температура воды, а также наличие пищи (бактериопланктон и органические вещества), движение воды и токсических соединений. Зимой при температуре воды до 10°С численность зоопланктона низкая; в весенне-летний период при температуре воды выше 10°С происходит интенсивное его развитие, которое достигает своего максимума при 20°С.
Развивается зоопланктон лишь при скорости течения воды не выше 1м/с. Нормально же развитие происходит при скоростях ниже 0,5 - 0,8м/с. Если скорость превышает 1 м/с, формирование планктонного комплекса как единого биоценотического комплекса невозможно [6.16].
Скорость течения, являясь регулирующим фактором развития жизни в реке, отрицательно воздействует на зоопланктон также посредством увеличения мутности и взвешенных наносов в толще воды. Кроме прямого воздействия взвешенных частиц на фильтрующий аппарат рачков, упомянутые частицы снижают прозрачность воды, ухудшают условия инсоляции, что отрицательно сказывается на развитии фитопланктона, а следовательно, ухудшает трофические условия существования зоопланктона.
В малых реках наблюдаются два основных, перекрывающих и дополняющих друг друга, типа организации зоопланктона. Первый - субституционный тип организации; при таком типе организации близкие виды выступают как экологическая сумма.
Основная биоценотическая функция каждого вида осуществляется прерывисто на основе функциональной субституции одного вида другим, более адаптированным к изменившимся параметрам среды. Например, в условиях влияния источника избыточного поступления органических, минеральных, биогенных веществ зоопланктон постоянно изменяется. Одни группы и виды зоопланктеров, характерные для данного сезона и достигающие максимального развития, сменяются нехарактерными и малочисленными в данный сезон. Так, обычные в меженный период кладоцеры заменяются коловратками, или в летний сезон представители семейств Daphniidae и Bosminidae заменяются представителями сем. Chydoridae, в то время, как "в норме" их массовое развитие приурочено к осеннему сезону. Происходит закономерное чередование определенных фазовых состояний биоценоза, одновременно допускающее возврат к исходному состоянию или более ранней сукцессионной стадии. Именно осуществление принципа субституции одних основных видов-функционеров другими обеспечивает устойчивость системы в изменяющихся в результате влияния различных нарушений в условиях природной среды. Этот механизм создает эффект "настройки" системы к изменяющейся "тональности" ведущего фактора среды не за счет мобилизации индивидуальных адаптационных реакций организмов, а путем поочередного выдвижения разных, наиболее подходящих моменту видов.
Второй тип организации зоопланктона малых рек - флуктуационный, характеризуется обратимыми периодическими сдвигами границ подсистем. Суть его в том, что система реки гетерогенна и включает одновременно несколько подсистем. При разных фазах флуктуации условий подсистемы обнаруживают способность расширять площадь одной за счет другой, изменяя при смене фазы флуктуации направление сезонной сукцессии зоопланктона. Это наблюдается при изменениях, связанных с увеличением или снижением скорости течения, вследствие чего регистрируется распространение загрязнения вниз по течению, либо его локализация, а также различия количественного обилия зоопланктона по продольному профилю бобровых прудов.
Зоопланктон отличается ещё большим разнообразием форм и видов, чем фитопланктон. В нанопланктоне зоопланктон представлен одноклеточными (или простейшими). В микропланктоне, помимо одноклеточных, содержится довольно большой процент многоклеточных организмов, таких как самые мелкие виды ракообразных и их личинки. К ним относятся, например, веслоногие ракообразные или копеподы ("copepode" в переводе с греческого означает "нога, имеющая форму весла"), хорошо известные аквариумистам под названием "циклоп". Веслоногие играют фундаментальную роль в жизни озёр потому, что они многочисленнее всех остальных планктонных многоклеточных организмов, вместе взятых, и потому, что их скопления представляют собой самые большие скопления протеина в озёрах, и наконец потому, что, в основном, именно веслоногие являются основной пищей огромного количества цихлид в озёрах. Размеры веслоногих рачков колеблются от 0,5 до 12 мм, т.е. они входят в состав не только микропланктона, но также мезопланктона и макропланктона. Растительноядные веслоногие питаются, в основном, диатомеями и другими водорослями, а плотоядные рачки поедают личинок и своих более мелких собратьев. Почти все копеподы совершают вертикальные миграции. Одни виды проводят светлое время суток на больших глубинах, а к вечеру поднимаются к поверхности, другие - совершают перемещения в обратном порядке. К копеподам относятся множество видов из отряда "циклопов" (Cyclopoida). Так например, только в Танганьике их насчитывается 34 вида. Помимо циклопа (Cyclops) веслоногие также представлены видами Diaptomus и Heterocop.
Кроме копепод, к мезопланктонным ракообразным относятся ветвистоусые (Cladocera, Leptodora, Bythotrephes) и ракушковые (Ostracoda) рачки. Тело ветвистоусых рачков, за исключением головы, защищено полупрозрачной хитиновой раковинкой (панцирем). В озёрах они представлены дафниями, которых, например, в Танганьике насчитывается 12 видов. Зоопланктон озёр, помимо перечисленных ракообразных, содержит также: коловраток (Keratella cochlearis); щетинкочелюстных - кольчатые черви (полихеты); брюхоногих (похожих на креветок) моллюсков; киленогих (Gastropoda) и крылоногих (Pheropoda) моллюсков; простейших, таких как корненожки, солнечники и ресничковые инфузории. Нередко встречаются личинки насекомых (Corethra) и относящиеся к паукообразным клещи. Здесь можно встретить также медуз, личинок моллюсков и, наконец, похожих на инфузорий церкарий, которые представляют собой одну из личиночных стадий паразитических червей - сосальщиков (или трематод). К зоопланктону (макропланктону) относятся также мизиды (бокоплавы) и креветки.
Наиболее важным компонентом зоопланктона озёр как по численности, так и по той роли, которую они играют в питании цихлид, являются низшие ракообразные: веслоногие (например, циклоп) и ветвистоусые (например, дафния или водяная блоха). Взрослые рачки имеют крупные размеры, поэтому их включают в мезопланктон, куда входят организмы размером 1-5 мм. Низшие ракообразные представляют собой высококалорийную, богатую белками пищу для обитателей озёрных вод. Исследователи подсчитали, что слой планктона в сухой сезон года составляет 3000 организмов на одну тонну воды, а в сезон дождей - 350000 организмов на одну тонну воды.
В озёрах принято различать пелагический планктон, т.е. планктон центральной, открытой части водоёма, и планктон прибрежной части, или литоральный. Зоопланктон отнюдь не просто пассивно переносится течениями. Каждый день зоопланктон совершает вертикальные миграции, во время которых организмы перемещаются на десятки и сотни метров. С рассветом планктон постепенно мигрирует на глубину, при этом скорость движения обычно бывает больше, чем при подъёме. Эти вертикальные миграции играют ведущую роль в питании цихлид и других озёрных рыб. Цихлиды, поднимающиеся ночью к поверхности, находят здесь более обильную пищу, чем на глубине, где они находились в дневное время. Поэтому и создаётся впечатление, что днём поверхностные слои озёр, как будто "вымирают" и, наоборот, ночью "оживают" в полном смысле этого слова. Благодаря вертикальным миграциям, осуществляется "транспорт" органического вещества из поверхностной высокопродуктивной зоны в глубинные слои. Пространственное распределение планктона зависит от температуры воды, освещённости, содержания в воде кислорода, углекислого газа и ряда других веществ. Так, многие виды зоопланктона исчезают, как только содержание кислорода в воде падает ниже 0,2 мг/л, а вот веслоногий рачок циклоп (Cyclops cuspidatus) может жить в воде, содержащей вдвое меньше кислорода.
13.4. Бактериопланктон
Основным деструктором различных загрязнений, поступающих извне или продуцирующихся биоценозом реки, является бактериопланктон - свободно плавающая часть бактерий. Развитие бактериопланктона определяют наличие легкоусвояемой органики и биогенных элементов, особенно азота и фосфора, температура, отсутствие токсических веществ, а для аэробных форм бактерий, которые преобладают в бактериопланктоне чистой реки, - кислород, концентрация которого ниже 0,2 мг/л лимитирует жизнедеятельность аэробных бактерий. В природе существует две формы бактерий: одна из них функционирует при низки температурах,другая - при более высоких. Первые - психрофилы - имеют оптимум развития около 5°С, вторые - мезофилы - 20-25°С. Мезофильные формы бактерий обладают .большой скоростью роста. В теплый период она намного выше, чем в зимний. Наибольшая численность бактериопланктона наблюдается весной и осенью: в первом случае -* з& счёт внесения бактерий во время паводка и повышения температуры воды, во втором - вследствие разложения фитоценоза.
Активности бактериопланктона способствует наличие в водоеме течения воды. Наиболее благоприятная скорость - 0,2 м/с.
Еще в 1892 г. известный бактериолог Роберт Кох сделал открытие - если в миллилитре воды находится не более 100 безвредных бактерий, то она неопасная. Но при увеличении этого числа надо объявлять тревогу. Им предложен критерий оценки качества воды, которым и пользуются до настоящего времени.
О качестве воды в бактериальном отношении судят по количеству кишечных палочек в 1 л воды. Кишечная палочка - это микроб, постоянно обитающий в кишечнике человека и животных, она не является возбудителем какого-либо заболевания и безвредна. Но она свидетельствует о загрязненности воды и возможности заражения ее болезнетворными бактериями. Чем больше их в воде, тем больше вероятность присутствия болезнетворных микробов. Согласно ГОСТу в 1 л питьевой воды допускается не более трех кишечных палочек, т. е. так называемый «коли-индекс» должен быть не более трех. Обратная величина (количество см3, в котором находится одна кишечная палочка) называется коли-титром. Безупречная в бактериальном отношении вода должна иметь коли-титр не менее 300.
По этой же характеристике есть более детальная классификация (табл. 13.1).
Сезонный цикл развития бактериопланктона в период открытой воды характеризуется наличием нескольких сезонных пиков численности. Как правило, в развитии бактериопланктона отмечается ранневесенний пик и один или несколько пиков разной степени выраженности в летне-осенний период.. Весенний пик связан с поступлением аллохтонного органического вещества в процессе наполнения водоемов талыми и паводковыми водами, а также с интенсификацией микробиологических процессов в самих водоемах за счет начинающегося весеннего прогрева воды. Летние и осенние пики численности связаны с периодами максимального развития фитопланктона или периодами прекращения цветения и обусловлены поступлением автохтонного органического вещества в процессе внеклеточной первичной продукции или после отмирания клеток фитопланктона. В "макрофитных" озерах сезонные изменения численности бактериопланктона в большей степени связаны с особенностями развития макрофитов в годовом цикле.
Таблица 13.1
Санитарное состояние природных вод хозяйственно-питьевого водоснабжения
Состояние воды |
Микробное число |
Коли-индекс |
|
Чрезвычайно чистая (очень здоровая) |
0 - 10 |
< 10 |
|
Очень чистая (здоровая) |
10 - 100 |
10-102 |
|
Чистая (удовлетворительная) |
100 -1000 |
102 - 103 |
|
Посредственная (сомнительная) |
1000 -10000 |
103-104 |
|
Нечистая (нездоровая) |
10000-100000 |
104-105 |
|
Грязная (совершенно нездоровая) |
> 100000 |
105-106 |
13.5. Бентос
Бентос, организмы, живущие в толще воды и не связанные с дном, называются пелагическими организмами (нейстон, плейстон, планктон и нектон). Бентос делят на животный (зообентос) и растительный (фитобентос). По способу обитания на дне водоёма в зообентосе различают животных, живущих в грунте и на грунте, подвижных, малоподвижных и неподвижных, внедрившихся частично в грунт или прикрепленных. По способу питания представители зообентоса подразделяются на хищных (плотоядных), растительноядных, детритоядных (питающихся органическими частицами) и т.д. Многих животных, обитающих на дне водоёма, трудно отнести к пелагическим или бентосным и их называют: планктобентос и нектобентос. По размерам бентосные организмы делят на крупные (макробентос), средние (мезобентос) и мелкие (микробентос).
В морях зообентос представлен главным образом фораминиферами, губками, кишечнополостными, немертинами, многощетинковыми червями, сипункулидами, мшанками, плеченогими, моллюсками, ракообразными, иглокожими, асцидиями и рыбами. Основная масса зообентоса приурочена к мелководным районам. На литорали и в верхнем горизонте сублиторали масса животных организмов на площади в 1 м2 может достигать многих десятков килограммов (главным образом моллюски). На глубинах до 100-150 м биомасса Бентос составляет сотни и десятки граммов; на глубине 500-1000 м биомасса Бентос также иногда исчисляется граммами, глубже - долями грамма, на больших глубинах (абиссаль) - миллиграммами. Наблюдается вертикальная зональность и в распределении бентоса: в верхних горизонтах преобладают моллюски и ракообразные, в средних - моллюски, полихеты и иглокожие, в более глубоких - полихеты, ракообразные и иглокожие.
Из растительных организмов основную массу составляют бактерии и водоросли. Наиболее богат и разнообразен фитобентос на скалистых и каменистых участках дна, которые служат прочным субстратом для прикрепления водорослей.
В пресных водоёмах количество зообентоса значительно меньше, чем в морских, и состав его однообразнее; в него входят простейшие, губки, ресничные и малощетинковые черви, пиявки, мшанки, моллюски и личинки насекомых. Иногда он состоит в основном из личинок хирономид и олигохет, дающих на 1 м2 массу в несколько десятков граммов и представляющих очень большую кормовую ценность для рыб. В состав растительного бентоса пресных водоёмов входят бактерии, диатомовые и зелёные (харовые и нитчатки) водоросли.
Развитие бентоса определяется характером грунтов, наличием пищи и скоростью течения. Он играет важную роль в самоочищении реки и является индикатором качества воды, характеризующим большой период времени. Организмы зообентоса незначительно реагируют на кратковременное изменение качества воды.
На чистом песке в состав зообентоса входят многочисленные черви, личинки криптохироном, личинки мошек и др. При заилении песчаного дна развиваются крупные малощетинковые черви, моллюски, а при заилении глинистого дна - биоценоз, состоящий из моллюсков, бокоплавов, ракушковых рачков, многочисленных личинок тендипедид и др. На жизнь зообентоса большое влияние оказывает температура воды - она определяет его рост, развитие, размножение, обмен веществ, биологические циклы. Зимой численность зообентоса незначительная, при установлении температуры воды выше 10°С начинается размножение большинства донных видов беспозвоночных. Распространение и численность зообентоса в значительной мере зависит от скорости течения воды в реке. Оптимальной в реке с мелкозернистым песчаным дном считается скорость течения до 0,2 м/с. Прикрепленные формы могут удерживаться и при скоростях до 2 - 3м/с. В целом развитие зообентоса возможно в тех реках или на отдельных их участках, где скорость течения воды меньше той, которая способна унести покрытие дна реки.
13.6. Высшая водная растительность (макрофиты)
Макрофиты играют как положительную, так и отрицательную роль в формировании качества воды. Они являются мощными агентами очистки воды от солей; в то же время обильное их развитие снижает скорость течения реки, что приводит к заилению, обильному развитию перифитона, зоопланктона и фитопланктона, способствующему эвтрофикации водоема. Кроме того, разлагаясь в осенне-зимний период, макрофиты служат источником дополнительного загрязнения реки.
Воздушно-водные и погруженные растения могут произрастать при больших динамических нагрузках, когда максимальная придонная скорость не в состоянии перемещать грунт. Растения с плавающими листьями способны образовывать фитоценозына участках, где придонные максимальные скорости не превышают 0,2 м/с.
Водная растительность лучше развивается на глинистом, хуже - на песчаном дне. Глубина при этом колеблется от менее чем 0,3 до 2 - 3 м. Скорости течения также изменяются от 0,3 - 0,4 до 0,6 - 0,7 м/с. Скорости выше приведенных лимитируют развитие водной растительности.
Группы макрофитов. Наиболее распространены представители трех экологических групп растений: воздушно-водных - тростник, рогоз, камыш, манник и др; погруженных - рдест, уруть, элодея, роголистник; с плавающими листьями - кувшинки, водокрас, рясковые.
Водные растения плавающие - водные растения, не имеющие органов прикрепления к грунту (к этой группе относятся макрофитные планктонные водоросли, а также некоторые сосудистые растения - Hydrocharis, Lemna, Salvinia natans и др.).
Водные растения прикрепляющиеся - водные растения, органы прикрепления к грунту которых выполняют только функцию фиксации организма и не участвуют в его снабжении элементами минерального питания (к этой группе относятся макрофитные бентосные водоросли, мхи и печёночники, а также некоторые сосудистые растения - ряд таксонов Podostemaceae, Utricularia intermedia).
Водные растения укореняющиеся - водные растения, специальные органы прикрепления к грунту которых помимо фиксации организма выполняют также функцию снабжения его элементами минерального питания (к этой группе относиться большая часть сосудистых водных растений).
Воздушно-водные растения, или гелофиты - укореняющиеся растения, вегетативное тело которых расположено как в воде, так и над её поверхностью. Растения данной группы занимают прибрежные мелководья с глубиной до 1 (2) м. По высоте побегов их делят на высокотравные (Phragmites australis, Scirpus lacustris, Typha angustifolia и др.) и низкотравные (Butomus umbellatus, Sagittaria sagittifolia, Sparganium erectum и др.).
Истинно-водные растения, или гидрофиты - растения, которые для нормального прохождения своего жизненного цикла требуют постоянного контакта своего вегетативного тела с водной средой. Различают растения, плавающие в толще воды (Ceratophyllum demersum, Lemna trisulca), погружённые укореняющиеся или прикрепляющиеся растения (Myriophyllum, большинство Potamogeton, харовые и прочие крупные водоросли), укореняющиеся растения с плавающими на воде листьями (Nuphar, Nymphaea, Persicaria amphibia, некоторые Potamogeton) и растения, плавающие на поверхности воды (Hydrocharis, Lemna, Spirodela).
Растения уреза воды (гигрогелофиты) - растения, типичными местообитаниями которых является низкие уровни береговой зоны затопления, зона контакта берега и водного тела (т.е. уреза воды) и прибрежные отмели с глубиной до 20 (40) см; многие из них типичны для окраин озёрных сплавин (Agrostis stolonifera, Bolboschoenus maritimus, Calla palustris, Caltha palustris, Carex acuta, Catabrosa aquatica, Cicuta virosa, Comarum palustre, Eleocharis acicularis, Glyceria fluitans, Iris pseudacorus, Lythrum salicaria, Oenanthe aquatica, Ranunculus lingua, Rorippa amphibia, Rumex hydrolapathum, Sium latifolium).
Земноводные растения - растения, которые могут пройти весь свой жизненный цикл как по типу истинно-водного, так и по типу наземного растения (Callitriche palustris, Elatine hydropiper, Persicaria amphibia и др.).
Зарастание водоемов. Зарастание - процесс появления и развития растительного покрова на акватории водоёма или водотока, который завершается переходом водной экосистемы в болотную.
Зарастание водоемов происходит в результате выноса в них минеральных и органических веществ с водосбора, а также отложения отмирающих организмов, приводящих к обмелению и эвтрофикации водоемов.
Как правило, зарастание водоемов начинается со дна (от берега к центру). Второй путь зарастания: от центра к берегам, путем нарастания сплавины - мощного травяно-мохового ковра, плавающего на поверхности воды.
Небольшие заросли подводной растительности выполняют положительную роль в водоеме, так как они являются местом нереста фитофильных рыб. Если же водные растения занимают более 25 % площади водоема, то они оказывают отрицательное влияние на ихтиофауну.
В этом случае снижается рыбопродуктивность водоема и ухудшается его гидрохимический режим. В темное время суток растения могут создавать дефицит кислорода в воде и тем самым вызвать замор рыбы в водоеме.
Для предотвращения указанных негативных явлений в водоеме жесткую надводную растительность (камыш, рогоз, тростник) выкашивают при помощи камышекосилок. Мягкую подводную растительность удаляют из водоема при помощи водяной бороны - деревянного треугольника с зубьями из гвоздей с прикрепленными по углам крюками. Биомассу зеленых растений используют как органическое удобрение в озерных хозяйствах и в качестве корма для домашнего скота. Плавающая растительность - ряска - является прекрасным кормом для водоплавающей птицы. Ее удаляют из водоема специально сконструированными небольшими бреднями.
В водоемах с пологими, низкими берегами болотная растительность располагается концентрическими кругами. В местах наибольшей глубины (около 6 м) на дне произрастают водоросли. Эти места называют поясом микрофитов (от греческих слов «микрос» - маленький и «фитой» - растение). На меньших глубинах пояс микрофитов переходит в пояс макрофитов (от «макрос» - большой). Здесь растут под водой более крупные растения: зеленые водоросли - хара, нителла, мхи и некоторые цветковые растения - рдест узколистный, роголистник.
Ближе к берегу, на глубине не меньше 3 м располагается пояс широколистных рдестов. Кроме рдестов здесь растет уруть с сильно рассеченными листьями, распластанными в толще воды. За этим поясом идет пояс кувшинок. Здесь раскрывают свои нежные лепестки белые кувшинки (водяные лилии), рядом скромные кубышки с желтыми цветками, слегка покачивается на прибрежной волне рдест плавающий. У растений пояса кувшинок корневища скрыты в иле на глубине от 2,5 до 4 м, а листья - обычно широкие, с длинными черешками - плавают на поверхности воды.
На меньших глубинах - от 1,5 до 3 м - развивается пояс камышей. Камыши, тростники и хвощи образуют здесь сравнительно плотную травянистую массу. Еще ближе к берегу расположены пояс крупных осок и пояс мелких осок. В этих двух поясах вода сильно прогревается и болотные растения более разнообразны. Кроме осок здесь растут стрелолист, сусак, ежеголовник, частуха, ситняг, лютик, ирис болотный. У некоторых из этих растений листья на различной глубине принимают разные формы - подводную, плавающую и надводную. Пояс мелких осок примыкает к самому берегу. Дальше идет уже наземная растительность.
Ежегодные отложения остатков отмерших растений приводят к обмелению водоема. Растительные пояса сменяют друг друга, передвигаются от берега к центру, сжимая открытую водную поверхность все более тесным кольцом. В конце концов наступает время, когда на месте бывшего водоема остается один пояс мелких осок. Так водоем превращается в осоковое болото. Водоемы, которые у берегов очень глубоки, или водоемы со спокойной, защищенной от ветра поверхностью часто заболачиваются нарастанием сплавины.
13.7. Самоочищение
Об очистительной способности реки известно давно. Этим свойством владеет живое вещество реки. По своей производительности оно может сравниться с огромной очистительной фабрикой. Нам следует полнее ее использовать и, что намного важнее, не мешать ей работать своим вмешательством.
В реке каждый компонент гидробиоценоза выполняет определенную функцию по очистке воды. Моллюски, например, пропускают через себя (одна особь) за сутки до 3 л воды, очищая ее от всех примесей, в том числе и от взвешенных частиц. Особо следует остановиться на значении высших водных растений в процессах самоочищения. Эти растения жестко прикреплены к субстрату и являются основой для образования сложных гидробиоценозов, очистительная способность которых превосходит таковую почти всех гидробионтов, взятых в отдельности. Функция высшей водной растительности в водотоках разнообразна и многочисленна: они поглощают и аккумулируют биогенные элементы и органические соединения, являются хорошими фильтраторами, могут выступать также в качестве детоксикаторов пестицидов и других токсических загрязнителей, попадающих в водоемы и водотоки со сточными водами.
Велика роль высших водных растений в процессах поглощения и накопления минеральных элементов поступающих в водотоки со стоком с сельскохозяйственных угодий и других площадей водосбора. Этим растениям присуща избирательная способность в поглощении азота, фосфора, калия и других элементов. Наибольшая интенсивность поглощения макрофитами минеральных веществ наблюдается в период развития и усиленного роста. В основе процесса самоочищения лежит круговорот биогенных элементов в водотоке (водоеме), в котором роль высших водных растений чрезвычайно велика. Наиболее активно поглощаются и используются растениями азот, фосфор, калий, железо, хлор и марганец. Азот и фосфор аккумулируются почти всеми растениями в одинаковом количестве (табл. 13.2). Остальные биогены поглощаются и аккумулируются в неодинаковых количествах.
Таблица 13.2
Накопление некоторых биогенных элементов высшими водными растениями, % на сухое вещество
Объект исследования |
Элементы |
|||||||
Азот |
Фосфор |
Калий |
Кальций |
Марганец |
Натрий |
Хлор |
||
Тростник обыкновенный |
2,17 |
0,35 |
1,70 |
0,38 |
0,10 |
0,14 |
1,36 |
|
Рогоз узколистый |
2,52 |
0,41 |
1,19 |
1,07 |
0,15 |
0,51 |
1,20 |
|
Камыш озерный |
2,34 |
0,39 |
2,37 |
0,89 |
0,12 |
0,40 |
1,56 |
|
Сусак зонтичный |
2,66 |
0,40 |
4,36 |
1,36 |
0,21 |
0,43 |
1,17 |
|
Частуха подорожниковая |
2,09 |
0,55 |
2,89 |
1,20 |
0,16 |
0,36 |
1,87 |
|
Рдест пронзеннолистный |
2,02 |
0,53 |
2,01 |
0,95 |
0,33 |
0,33 |
1,55 |
Наибольшая интенсивность поглощения и аккумуляции биогенов наблюдается в начале вегетации и в конце лета, обычно в августе. К концу вегетации количество биогенных элементов в надземной части растений резко снижается. Межвидовое различие по содержанию биогенных веществ в течение вегетационного сезона объясняется видовой спецификой обмена веществ и особенностями фенологического развития растений.
Таким образом, заросли высших водных растений являются фактором, непосредственно участвующим в процессе формирования качества воды в реке. При разработке мероприятий по охране вод от загрязнения биогенными элементами с использованием высших водных растений необходимо учитывать пути движения биогенов в растениях. Накопившийся за период вегетации биогенный элемент, например азот, к ее концу аккумулируется в подземных органах - корневищах.
Величина накопления биогенных элементов зависит от биомассы высших водных растений. Количественным показателем поглощения биогенов макрофитами является коэффициент накопления - отношение концентрации биогена в растениях к его содержанию в воде.
Не менее важная водоохранная роль высших водных растений заключается в их способности поглощать и аккумулировать токсические загрязнители водной среды, особенно пестициды. Их поглощение бывает активным и пассивным, Преобладание того или другого типа определяется природой соединения, его концентрацией в среде и видом растения. Поглощение высшей водной растительностью токсических веществ и их аккумуляция, особенно в корневой системе, способствует самоочищению водотока (водоема) от токсических агентов путем исключения их из круговорота веществ.
13.8. Первичная и вторичная продукция
Основная роль в процессах новообразования органического вещества в водоемах принадлежит хлорофилсодержащим организмам - фитопланктону и макрофитам. Первичная продукция - результат жизнедеятельности растительных организмов - характеризует итог процесса фотосинтеза, в ходе которого органическое вещество синтезируется из минеральных компонентов окружающей среды. Таким образом, первичная продукция представляет собой массу новообразованного органического вещества за определенный период времени. Мерой первичной продукции является скорость новообразования органического вещества.
...Подобные документы
Истощение ресурсов гидросферы. Загрязнение воды и нормирование параметров качества воды. Экологические факторы и их составляющие: абиотические, биотические, антропогенные. Рациональное использование водных ресурсов. Защита гидросферы от загрязнений.
контрольная работа [287,8 K], добавлен 17.05.2009Антропогенное воздействие на окружающую среду и основные задачи природопользования. Характеристика крупнейших национальных парков и заповедников Беларуси. Охрана водных ресурсов. Рекомендации по использованию земель с учетом экологических требований.
курсовая работа [310,7 K], добавлен 15.04.2012Экологическое состояние водных ресурсов Архангельской области. Основные мероприятия по использованию и охране водных объектов, направления и особенности их нормативно-правового регулирования согласно современному законодательству российской Федерации.
контрольная работа [26,8 K], добавлен 13.05.2014Химическое, биологическое и физические загрязнения водных ресурсов. Проникновение загрязняющих веществ в круговорот воды. Основные методы и принципы очистки воды, контроль ее качества. Необходимость защиты водных ресурсов от истощения и загрязнения.
курсовая работа [455,3 K], добавлен 18.10.2014Роль гидросферы в природе и жизни человека. Источники загрязнения вод, влияние антропогенной деятельности на гидросферу. Глобальные и региональные экологические последствия в Мировом океане. Дефицит воды, управление водными ресурсами, их очистка и охрана.
курсовая работа [61,1 K], добавлен 24.05.2016Водные объекты. Нормирование в области охраны вод. Охрана водных ресурсов. Дефицит водных ресурсов. Поверхностные водные объекты. Внутренние морские воды и территориальное море Российской Федерации. Статистика водных ресурсов.
доклад [13,6 K], добавлен 20.04.2007Основные источники загрязнения водных ресурсов: нефть и нефтепродукты, пестициды, синтетические поверхностно-активные вещества, соединения с канцерогенами. Загрязнения водного бассейна в городах. Деятельность по защите и сохранению водных ресурсов.
автореферат [34,1 K], добавлен 18.02.2008Водные ресурсы и их роль в жизни общества. Использование водных ресурсов в народном хозяйстве. Охрана вод от загрязнения. Проблемы рационального использования водных ресурсов и пути их решения. Качество природных вод в России.
реферат [113,8 K], добавлен 05.03.2003Меры по очистке и охране вод, характеристика водных объектов Челябинской области и источников их загрязнения. Регулирование, использование и охрана водных ресурсов, санитарное состояние систем централизованного хозяйственного и питьевого водоснабжения.
реферат [39,2 K], добавлен 20.07.2010Использование и загрязнение водных ресурсов. Географические особенности размещения водных ресурсов. Использование пресных вод. Качественное истощение ресурсов пресных вод. Основные источники загрязнения гидросферы.
реферат [23,6 K], добавлен 13.10.2006Характеристика водных ресурсов России. Последствия их перерасхода. Гидросфера и источники ее загрязнения. Эвтрофикация водоёмов. Круговорот воды в природе, антропогенное воздействие на него. Расчёт платы за сброс загрязняющих веществ в водные объекты.
реферат [42,7 K], добавлен 16.12.2012Исследование классификации, видов и источников загрязнения водных объектов РФ. Факторы воздействия на водные объекты. Изучение общих положений организации и функционирования государственного мониторинга водных объектов. Пункты контроля качества воды.
реферат [34,4 K], добавлен 23.05.2013Использование водных ресурсов и последствия пользования. Ситуация в Тульской области. Главный загрязнитель поверхностных вод. Химические и физико-химические методы очистки вод. Государственный контроль за использованием и охраной водных объектов.
контрольная работа [31,6 K], добавлен 19.09.2013Свойства воды и ее роль в качестве экологического фактора. Аридные и гумидные условия. Водный баланс организмов. Вода как среда их обитания. Экология водных организмов. Характеристика редких водных животных, занесенных в Красную книгу Краснодарского края.
курсовая работа [1,7 M], добавлен 18.07.2014Водные ресурсы и их использование, общая характеристика существующих экологических проблем. Меры по борьбе с загрязнением водных ресурсов: естественная очистка водоемов, принципы мониторинга их состояния. Федеральная программа "Чистая вода", ее значение.
курсовая работа [35,4 K], добавлен 20.11.2013Антропогенное воздействие на биосферу. Государственная политика России в области охраны окружающей среды и рационального использования природных ресурсов. Влияние горного производства на природный ландшафт. Рациональное использование водных ресурсов.
курс лекций [2,5 M], добавлен 22.12.2010Водные ресурсы и их использование. Водные ресурсы России. Источники загрязнения. Меры по борьбе с загрязнением водных ресурсов. Естественная очистка водоемов. Методы очистки сточных вод. Бессточные производства. Мониторинг водных объектов.
реферат [36,9 K], добавлен 03.12.2002Круговорот воды в природе, поверхностные и грунтовые воды. Проблемы водоснабжения, загрязнение водных ресурсов. Методические разработки: "Водные ресурсы планеты", "Исследование качества воды", "Определение качества воды методами химического анализа".
дипломная работа [105,2 K], добавлен 06.10.2009Характеристика водных ресурсов Беларуси. Правовой механизм использования, охраны вод. Характеристика права водопользования. Ответственность за нарушение водного законодательства. Анализ использования водных ресурсов на ОАО "Промсвязь" г. Минска.
дипломная работа [165,5 K], добавлен 25.04.2012Оценка современного геоэкологического состояния водных объектов Гомельского района, а также их рациональное использование и охрана. Основные источники загрязнения водных объектов. Проблемы загрязнения поверхностных и подземных вод Гомельского региона.
курсовая работа [3,1 M], добавлен 13.02.2016