Предмет и задачи статистики

Этапы статистического исследования. Формы статистического наблюдения. Программно-методологические вопросы статистического наблюдения. Статистическая сводка и группировка. Показатели вариации признака и способы их расчета. Индивидуальные индексы цен.

Рубрика Экономика и экономическая теория
Вид шпаргалка
Язык русский
Дата добавления 24.06.2013
Размер файла 452,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Предмет и задачи статистики

Статистика изучает количественно определенные качества массовых социально-экономических явлений.

Существует несколько точек зрения на статистику как на науку:

Статистика - это универсальная наука, изучающая массовые явления природы и общества.

Статистика - это методологическая наука, разрабатывающая методы исследования для других наук.

Статистика - это общественная наука.

Задачи статистики

Разработка системы гипотез, характеризующих развитие, динамику, состояние социально-экономических явлений.

Организация статистической деятельности.

Разработка методологии анализа.

Разработка системы показателей для управления хозяйством на макро- и микроуровне.

Популяризовать данные статистического наблюдения

Ученые, внесшие вклад в развитие статистики

Уильям Петти - основатель статистики. Его заслуга в том, что он впервые применил числовой метод для анализа закономерностей общественной жизни. Работа - "Политическая арифметика".

Адольф Кетле - бельгийский статистик. Доказал, что даже кажущиеся случайности общественной жизни обладают внутренней закомерностью и необходимостью.

К.Ф. Герман - русский статистик ("Всеобщая теория статистики").

В.И. Ленин - теория группировок, теория статистического наблюдения.

Целый ряд других ученых.

Общая теория статистики

Демографическая
статистика

Экономическая статистика

Статистика
обр
азования

Медицинская
статистика

Спортивная
статистика

Статистика
труда

Статистика
заработной платы

Статистика
мат.-техн. снабжения

Статистика
транспорта

Статистика
связи

Статистика финансового кредита

Высшие финансовые вычисления

Статистика денежного обращения

Статистика
валютных курсов

Прочие

2. Этапы статистического исследования

Статистическое наблюдение заключается в сборе первичного статистического материала, в научно организованной регистрации всех существенных фактов, относящихся к рассматриваемому объекту. Это первый этап всякого статистического исследования.

Метод группировок дает возможность все собранные в результате массового статистического наблюдения факты подвергать систематизации и классификации. Это второй этап статистического исследования.

Метод обобщающих показателей позволяет характеризовать изучаемые явления и процессы при помощи статистических величин -- абсолютных, относительных и средних. На этом этапе статистического исследования выявляются взаимосвязи и масштабы явлений, определяются закономерности их развития, даются прогнозные оценки.

На первом этапе статистического исследования формируются первичные статистические данные, или исходная статистическая информация, которая является фундаментом будущего статистического здания. Чтобы здание было прочным, добротной и качественной должна быть его основа. Если при сборе первичных статистических данных допущена ошибка или материал оказался недоброкачественным, это повлияет на правильность и достоверность как теоретических, так и практических выводов. Поэтому, статистическое наблюдение от начальной до завершающей стадии -- получения итоговых материалов -- должно быть тщательно продуманным и четко организованным. Статистическое наблюдение дает исходный материал для обобщения, началом которого служит сводка. Если при статистическом наблюдении о каждой его единице получают сведения, характеризующие ее с многих сторон, то данные сводки характеризуют всю статистическую совокупность и отдельные ее части. На этой стадии совокупность делится по признакам различия и объединяется по признакам сходства, подсчитываются суммарные показатели по группам и в целом. С помощью метода группировок изучаемые явления делятся на важнейшие типы, характерные группы и подгруппы по существенным признакам. С помощью группировок ограничивают качественно однородные в существенном отношении совокупности, что является предпосылкой для определения и применения обобщающих показателей.

На заключительном этапе анализа с помощью обобщающих показателей рассчитываются относительные и средние величины, дается сводная оценка вариации признаков, характеризуется динамика явлений, применяются индексы, балансовые построения, рассчитываются показатели, характеризующие тесноту связей в изменении признаков. С целью наиболее рационального и наглядного изложения цифрового материала он представляется в виде таблиц и графиков.

Статистическое наблюдение -- первый этап статистического исследования

Статистическое наблюдение -- это первая стадия всякого статистического исследования, представляющая собой научно организованный по единой программе учет фактов, характеризующих явления и процессы общественной жизни, и сбор полученных на основе этого учета массовых данных.

Однако не всякий сбор сведений является статистическим наблюдением. О статистическом наблюдении можно говорить лишь тогда, когда изучаются статистические закономерности, т.е. такие, которые проявляются только в массовом процессе, в большом числе единиц какой-то совокупности. Поэтому статистическое наблюдение должно быть планомерным, массовым и систематическим.

Планомерность статистического наблюдения заключается в том, что оно готовится и проводится по разработанному плану, который включает вопросы методологии, организации, техники сбора информации, контроля за качеством собранного материала, его достоверности, оформления итоговых результатов. Массовый характер статистического наблюдения предполагает, что оно охватывает большое число случаев проявления данного процесса, достаточное для того, чтобы получить правдивые статистические данные, характеризующие не только отдельные единицы, но и всю совокупность в целом.

Наконец, систематичность статистического наблюдения определяется тем, что оно должно проводиться либо систематически, либо непрерывно, либо регулярно. Изучение тенденций и закономерностей социально-экономических процессов, характеризующихся количественными и качественными изменениями, возможно лишь на этой основе. Из сказанного следует, что к статистическому наблюдению предъявляются следующие требования:

1) полноты статистических данных (полноты охвата единиц изучаемой совокупности, сторон того или иного явления, а также полноты охвата во времени);

2) достоверности и точности данных;

3) их единообразия и сопоставимости.

Программно-методологические и организационные вопросы статистического наблюдения

Любое статистическое исследование необходимо начинать с точной формулировки его цели и конкретных задач, а тем самым и тех сведений, которые могут быть получены в процессе наблюдения. После этого определяются объект и единица наблюдения, разрабатывается программа, выбираются вид и способ наблюдения.

3. Статистическое наблюдение: понятие, основные формы

Понятие статистического наблюдения

Статистическое наблюдение - это сбор необходимых данных по явлениям, процессам общественной жизни. Но это не всякий сбор данных, а лишь планомерный, научно организованный, систематический и направленный на регистрацию признаков, характерных для исследуемых явлений и процессов. От качества данных, полученных на первом этапе, зависят конечные результаты исследования.

Формы статистического наблюдения

Различают две основные формы статистического наблюдения - отчетность и специально организованное наблюдение.

Отчетность - это такая форма наблюдения, при которой предприятия, организации представляют в статистические и вышестоящие органы постоянные сведения, характеризующие их деятельность. Отчетность предоставляется по заранее определенной программе в строго определенные сроки и содержит важнейшие показатели, необходимые в процессе ежедневной работы.

Специально организованное наблюдение - такое наблюдение, которое организуется со специальной целью на определенную дату для получения данных, которые в силу различных причин не собираются статистической отчетности, а также с целью проверки данных статистической отчетности.

Виды статистического наблюдения

По времени регистрации фактов статистическое наблюдение может быть непрерывным, периодическим и единовременным.

Непрерывное (текущее) наблюдение - ведется систематически (т.е. регистрация фактов производится по мере их свершения). Пример - ЗАГС.

Периодическое наблюдение - повторяется через определенные равные промежутки времени. Пример - перепись населения.

Единовременное наблюдение - производится по мере надобности без соблюдения определенной периодичности. Пример - оценка и переоценка основных фондов.

По охвату единиц совокупности выделяют сплошное и несплошное наблюдение.

Сплошным называется наблюдение, при котором исследованию подвергаются все единицы изучаемой совокупности.

Несплошным называется такое наблюдение, при котором исследованию подвергается только часть единиц изучаемой совокупности, отобранная определенным образом.

Виды несплошного наблюдения

Анкетный способ «Исследуются какие-то осредненные показатели и распространяются на всю совокупность».

Метод основного массива «Исследуются наиболее крупные единицы изучаемого явления».

Метод направленного долевого отбора

Выборочный метод. Его основой является случайный отбор. Результат гарантируется с определенной вероятностью р.

Монографический метод. Подвергаются тщательному исследованию отдельные единицы совокупности, обычно представители новых типов, либо самые лучшие (худшие) единицы. Результаты переносятся на всю совокупность. Позволяет выявить тенденции.

Способы статистического наблюдения

Основанием для регистрации фактов могут служить либо документы, либо высказанное мнение, либо хронометражные данные. В связи с этим различают наблюдение:

непосредственное (сами измеряют),

документально (из документов),

опрос (со слов кого-либо).

В статистике применяются следующие способы сбора информации:

корреспондентский (штат добровольных корреспондентов),

экспедиционный (устный, специально подготовленные работники)

анкетный (в виде анкет),

саморегистрация (заполнение формуляров самими респондентами),

явочный (браки, дети, разводы) и т.д.

Программно-методологические вопросы статистического наблюдения

4. Программно-методологические вопросы статистического наблюдения

Программно-методологические вопросы статистического наблюдения

Каждое наблюдение проводится с конкретной целью. При его проведении необходимо установить, что подлежит обследованию. Надо решить следующие вопросы:

Объект наблюдения - совокупность предметов, явлений, у которых должны быть собраны сведения. При определении объекта указываются его основные отличительные черты (признаки). Всякий объект массовых наблюдений состоит их отдельных единиц, поэтому надо решить вопрос о том, каков тот элемент совокупности, который послужит единицей наблюдения.

Единица наблюдения - это составной элемент объекта, который является носителем признаков, подлежащих регистрации и основой счета.

Ценз - это определенные количественные ограничения для объекта наблюдения.

Признак - это свойство, которое характеризует определенные черты и особенности, присущие единицам изучаемой совокупности.

Программа наблюдения - это перечень признаков, подлежащих регистрации. Программа находит отражение в формуляре наблюдения. Выделяются организационные вопросы: перечень мероприятий, обеспечивающих правильность наблюдения, а также оргплан, где учитываются органы наблюдения, время наблюдения, порядок приема и сдачи материала, порядок получения информации.

Период наблюдения - время, в течение которого должна быть осуществлена регистрация.

Критическая дата наблюдения - дата, по состоянию на которую сообщаются сведения.

Критический момент - момент времени, по состоянию на который производится регистрация наблюденных фактов.

Программно-методологические и организационные вопросы статистического наблюдения

Любое статистическое исследование необходимо начинать с точной формулировки его цели и конкретных задач, а тем самым и тех сведений, которые могут быть получены в процессе наблюдения. После этого определяются объект и единица наблюдения, разрабатывается программа, выбираются вид и способ наблюдения.

Объект наблюдения - совокупность социально-правовых явлений и процессов, которые подлежат исследованию, или точные границы, в пределах которых будут регистрироваться статистические сведения. Например, при переписи населения необходимо установить, какое именно население подлежит регистрации - наличное, т. е. фактически находящееся в данной местности в момент переписи, или постоянное, т. е. живущее в данной местности постоянно. При обследовании наркоманов необходимо точно установить, какие наркоманы будут отнесены к виктимным. В ряде случаев для отграничения объекта наблюдения пользуются тем или иным цензом. Ценз - есть ограничительный признак, которому должны удовлетворять все единицы изучаемой совокупности. Так, например, при переписи производственного оборудования нужно строго определить, что отнести к производственному оборудованию, а что к ручному инструменту, какое оборудование подлежит переписи - только действующее или также и находящееся в ремонте, на складе, резервное. По какому рецидиву считать - по общему или специальному....

Определяя объект наблюдения, необходимо точно указать единицу наблюдения. Единицей наблюдения называется составная часть объекта наблюдения, которая служит основой счёта и обладает признаками, подлежащими регистрации при наблюдении.

Так, например, при переписи населения единицей наблюдения является каждый отдельный человек. Однако, если ставится также задача определить численность и состав домохозяйств, то единицей наблюдения наряду с человеком будет являться каждое домохозяйство. Именно эти две единицы наблюдения устанавливаются при проведении микропереписи населения. Наряду с определением единицы наблюдения важную сторону статистического исследования составляет разработка программы статистического наблюдения.

Программа наблюдения - это перечень вопросов, по которым собираются сведения, либо перечень признаков и показателей, подлежащих регистрации. Программа наблюдения оформляется в виде бланка (анкеты, формуляра), в который заносятся первичные сведения. Необходимым дополнением к бланку является инструкция (или указания на самих формулярах), разъясняющая смысл вопроса. Состав и содержание вопросов программы наблюдения зависят от задач исследования и от особенностей изучаемого общественного явления. Укажем основные принципы составления программы.

1. Программа должна содержать только такие вопросы, которые безусловно необходимы для данного статистического исследования. Не следует загромождать программу излишними деталями. Чем обширнее проводимое исследование, тем короче должна быть программа.

2. В программу следует включать лишь те вопросы, на которые можно получить точные ответы. Часто для того, чтобы обеспечить единообразное толкование, пояснить вопрос отвечающему, дают подсказку.

3. Нельзя включать в программу вопросы, способные вызвать подозрение, что ответы на них могут быть использованы во вред опрашиваемым.

4. Программу наблюдения целесообразно строить так, чтобы ответами на одни вопросы можно было контролировать ответы на другие.

5. Организационные вопросы статистического наблюдения

Организационные вопросы статистического наблюдения включают в себя определение субъекта, места, времени, формы и способа наблюдения.

Определение субъекта наблюдения сводится к тому, какой орган будет осуществлять наблюдение. Это могут быть органы статистики со своими кадровыми работниками, но в некоторых случаях для статистического наблюдения могут привлекаться и другие специалисты.

При организации статистического наблюдения должен быть решен вопрос о времени наблюдения. При этом устанавливается период, в течение которого будет проводиться наблюдение, - срок наблюдения - и точно определяется время, к которому относятся регистрируемые сведения, -объективное время наблюдения. Это может быть либо определенный момент, либо тот или иной период (сутки, декада, месяц, квартал, год). Момент времени, к которому приурочены регистрируемые сведения, называют критическим моментом наблюдения. Например, критическим моментом при микропереписи населения 1997 г. был 0 часов в ночь с 13 на 14 февраля. Устанавливая критический момент, можно с фотографической точностью отразить истинное состояние явления в определенный момент времени. Сроком наблюдения в микропереписи населения 1997 г. являлся период с 8 часов утра 14 февраля до 23 февраля включительно, т. е. 10 дней.

Схематически основные формы, виды и способы статистического наблюдения представлены на рис. 2.1.

6. Статистическая сводка и группировка. Виды группировок

Статистическая сводка

Статистическая сводка - это операция по обработке собранных данных, которые выражаются в виде показателей, относящихся к каждой единице объекта статистического наблюдения. В результате сводки эти данные превращаются в систему статистических таблиц и промежуточных итогов. По результатам сводки можно выявить наиболее типичные черты и закономерности изучаемых явлений.

Предварительно составляется программа и план сводки.

В программе определяется подлежащее и сказуемое сводки. Подлежащее составляет вся совокупность группы или части, на которые разбивается совокупность. Сказуемое - это те показатели, которые характеризуют каждую группу, часть или всю совокупность в целом.

План сводки - содержит организационные вопросы.

Статистическая группировка

Статистическая группировка - это метод исследования массовых общественных явлений путем выделения и ограничения однородных групп, через которые раскрываются существенные черты и особенности состояния и развития всей совокупности.

Основные задачи, которые решаются с помощью группировок:

выделение социально-экономических типов,

изучение структуры социально-экономических явлений,

выявление связи между явлениями.

Важнейшие проблемы:

Определение группировочного признака (основания группировки).

Группировочный признак - это признак, по которому происходит определение единиц в группе. Его выбор зависит от цели группировки и существа данного явления.

Выделение числа групп.

Число групп определяется с таким расчетом, чтобы в каждую группу попало достаточно большое число единиц.

Интервалы

Интервалы могут быть равными и неравными. Последние в свою очередь делятся на равномерно возрастающие и равномерно убывающие.

Виды группировок

(1) Типологические группировки

Их задача - выявление социально-экономических типов или однородных в существенном отношении групп.

№ п/п

Социально-экономические
типы

Мужчины

Женщины

1980

1992

1980

1992

1.

Работники

-

-

-

-

2.

Крестьяне

-

-

-

-

3.

Служащие

-

-

-

-

(2) Структурные группировки

Их задача - изучение состава отдельных типических групп при помощи объединения единиц совокупности, близких друг к другу по величине группировочного признака.

№ п/п

Количество посадочных мест

Количество столов

Число занятых

Товарооборот на 1 место

1.

до 25

-

-

-

2.

16 - 50

-

-

-

3.

51 - 70

-

-

-

4.

71 - 100

-

-

-

(3) Аналитические группировки

Их задача - выявления влияния одних признаков на другие ( выявить связь между социально-экономическими явлениями).

№ п/п

Группы магазинов по числу рабочих мест

Число магазинов

Товарооборот

на 1 работника

на 1 раб. место

1.

до 5

100

12,0

13,0

2.

6 - 10

50

14,0

16,0

3.

11 - 15

10

15,0

17,0

4.

16 - 20

4

30,0

39,0

5.

21 - 25

2

31,0

42,0

(4) Комбинационные группировки

В них производится разделение совокупности на группы по двум или более признакам. При этом группы, образованные по одному признаку, разбиваются на подгруппы по другому признаку.

Такие группировки дают возможность изучить структуру совокупности по нескольким признакам одновременно.

№ п/п

Группы предприятий
по объему основных фондов

Оплата труда
в рублях

Пол

Количество единиц

1.

до 200

100 - 120

М

-

Ж

-

120 - 140

М

-

Ж

-

140 - 160

М

-

Ж

-

2.

200 - 400

100 - 120

М

-

Ж

-

120 - 140

М

-

Ж

-

140 - 160

М

-

Ж

-

3.

400 - 600

100 - 120

М

-

Ж

-

120 - 140

М

-

Ж

-

140 - 160

М

-

Ж

-

4.

600 - 800

100 - 120

М

-

Ж

-

120 - 140

М

-

Ж

-

140 - 160

М

-

Ж

-

Система группировок

Социально-экономический анализ предполагает использование системы простых и комбинационных группировок.

Также очень часто прибегают к вторичной группировке - перегруппировка уже сгруппированных данных. Вторичная группировка может быть проведена методом простого укрупнения интервала.

Часто также используется процентная перегруппировка.

Ряды распределения

Рядами распределения называются группировки особого вида, при которых по каждому признаку, группе признаков или классу признаков известны численность единиц в группе либо удельный вес этой численности в общем итоге.

Ряды распределения могут быть построены или по количественному, или по атрибутивному признаку.

Ряды распределения, построенные по количественному признаку, называются вариационными рядами. Ряд распределения может быть построен по непрерывно варьирующему признаку (когда признак может принимать любые значения в рамках какого-либо интервала) и по дискретно варьирующему признаку (принимает строго определенные целочисленные значения).

Непрерывно варьирующий признак изображается графически при помощи гистограммы. Дискретный же ряд распределения графически представляется в виде полигона распределения.

7. Абсолютные статистические величины: понятие, виды

Абсолютные стат. величины показывают объем, размеры, уровни различных социально-экономических явлений и процессов. Отражают уровни в физических мерах объема, веса и т.п. В общем абсолютные стат. величины - это именованные числа. Они всегда имеют определенную размерность и единицы измерения. Последние определяют сущность абсолютной величины.

Типы абсолютных величин

Натуральные - такие единицы, которые отражают величину предметов, вещей в физических мерах.

Денежные (стоимостные) - используются для характеристики многих экономических показателей в стоимостном выражении.

Трудовые - используются для определения затрат труда (человеко-час, человеко-день).

Условно-натуральные - единицы, к-рые используются для сведения воедино нескольких разновидностей потребительных стоимостей.

Виды абсолютных величин

Индивидуальные - отражают размеры количественных признаков у отдельных единиц изучаемой совокупности.

Общие - выражают размеры, величину количественных признаков у всей изучаемой совокупности в целом.

Абсолютные величины отражают наличие тех или иных ресурсов, это основа материального учета. Они наиболее объективно отражают развитие экономики и являются основой для расчета разных относительных стат. показателей.

8. Относительные статистические величины: понятие, виды

Статистика широко применяет относительные величины, потребность в которых возникает на стадии обобщения. Они помогают установить закономерности, в них заключен «молчаливый вывод»; являются самостоятельными статистическими показателями и имеют самостоятельную широкую сферу применения, например, уровень рождаемости, естественного прироста населения, рентабельность и т.д.

Относительная величина - это статический показатель, полученный путем сопоставления двух других величин (абсолютных, средних и других относительных).

При пользовании относительными величинами следует применять достаточное для целей исследования число значащих цифр. Поэтому существуют различные способы выражения относительных величин. Если сравниваемая величина больше базы y1 > y0, то удобно пользоваться коэффициентом К = у1/у0. Если между уровнями у1 и у0 различия абсолютных величин невелики, то удобно применять децили и проценты: Д = 10 (у1/у0); Т = 100 (у1/у0). Если уровень у1 значительно меньше базы, то удобно применять промилле и продецимилле: П = 1000 (у1/у0); Пґ = 10000 (у1/у0).

Например, рост цен может быть измерен и коэффициентом, и процентом (рост в 2,1 раза или 103,15%), рождаемость и естественный прирост определяют на 1000 чел. населения и т.д.

2.2. Виды относительных величин

В зависимости от характера сравниваемых абсолютных величин можно выделить два типа относительных величин. Если сравниваются две абсолютные величины, имеющие одинаковые единицы измерения, то относительная величина показывает «отношение» и является безразмерной. Если сравниваются две абсолютные величины, у которых единицы измерения не совпадают, то относительные величины имеют размерность.

Относительная величина структуры определяется как отношение числа единиц f или значения признака у изучаемой части к общему числу Уf: W = f / Уf;

Относительная величина координации показывает отношение численности единиц одной части совокупности к численности единиц другой.

Изменение уровня изучается во времени относительной величиной динамики. Например, уровень показателя 1999 г. (у1) сравнивается с уровнем того же показателя по тому же объекту 1990 г. (у0): К1 = у1/у0.

Прогнозируемый уровень сравнивается с существующим - относительная величина прогноза: Кпр = упр/у0.

Изменение уровня изучается по сравнению с предварительным прогнозом (нормой, планом) - относительная величина выполнения прогноза: Кв. пр. = у1/упр.

Относительная величина интенсивности представляет собой сравнение двух разных статических показателей, которые имеют размерность. К таким показателям относится плотность населения, автомобильных дорог и т.д.

Относительными величинами также являются индексы: биржевые, социальные, сезонности и т.д.

iр = р1/р0; iq = q1/q0; iz = z1/z0 и т.д.

9. Средние величины: понятие, виды (степенные, структурные)

Средняя величина отражает типичные размеры признака, характеризует качественные особенности явлений в количественном выражении.

Средние характеризуют одной величиной значение изучаемого признака для всех единиц качественно однородной совокупности.

К. Маркс отметил: «Средняя величина - всегда средняя многих различных индивидуальных величин одного и того же вида».

Средняя величина - величина абстрактная, потому что характеризует значение абстрактной единицы, а значит, отвлекается от структуры совокупности.

Понятие степенной средней, формула расчета, виды средних величин и область их применения, правило мажорантности средних

Степенная средняя - это такая величина, которая рассчитана по индивидуальным значениям признака, возведенным в степень К, и приведена к линейным размерам:

В зависимости от показателя степени К средняя может быть гармонической (К = -1), арифметической (К = 1), геометрической (К = 0), квадратической (К = 2), кубической (К = 3), биквадратической (К = 4). Каждая средняя обладает определенными свойствами и имеет свою сферу применения.

Если К = 1, то средняя является арифметической:

где n - число наблюдений.

Массовые по численности совокупности обобщаются в виде ряда распределения. Характер распределения, частота повторения каждого признака оказывает влияние на среднюю, которая называется средней взвешенной:

где f - частота повторения признака (статический вес).

Если К = -1, средняя является гармонической. Это величина, обратная простой средней арифметической:

Средняя гармоническая взвешенная определяется:

где УW - суммарное значение признака.

Если К = 0, то средняя является геометрической. Эта величина, полученная как корень m-й степени из произведения значений признака:

Взвешенная -

Если К = 2, то средняя является квадратичной:

Простая

Взвешенная

и т.д.

Если для одного и того же первичного ряда вычислить различные степенные средние, то чем больше показатель степени К, тем больше абсолютное значение средней:

Правило называется мажорантности степенных средних.

10. Средняя арифметическая и средняя гармоническая величины

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе, как средняя арифметич.

Средняя гармоническая простая

и взвешенная

11. Основные свойства средней арифметической

Средняя величина арифметическая обладает рядом свойств, позволяющих ускорить расчет.

Она не изменяется, если веса всех вариантов умножить или разделить на одно и то же число.

Если все значения признака одинаковые, то средняя равна этой же величине.

Средние суммы или разности равны сумме или разности средней:

Если из всех значений Х вычесть постоянную величину С, то средняя уменьшается на это значение.

Если все значения уменьшить в d раз (Х/d), то средняя уменьшится в d раз.

Сумма отклонений значения признака равна 0.

Сумма квадратов отклонений

12. Показатели вариации признака и способы их расчета

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака.

Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов, которые по-разному сочетаются в каждом отдельном случае.

Средняя величина -- это абстрактная, обобщающая характеристика признака изучаемой совокупности, но она не показывает строения совокупности, которое весьма существенно для ее познания. Средняя величина не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней, сосредоточены ли они вблизи или значительно отклоняются от нее. В некоторых случаях отдельные значения признака близко примыкают к средней арифметической и мало от нее отличаются. В таких случаях средняя хорошо представляет всю совокупность.

В других, наоборот, отдельные значения совокупности далеко отстают от средней, и средняя плохо представляет всю совокупность.

Колеблемость отдельных значений характеризуют показатели вариации.

Термин "вариация" произошел от латинского variatio -“изменение, колеблемость, различие”. Однако не всякие различия принято называть вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую.

Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, изучая силу и характер вариации в выделяемой совокупности, можно оценить, насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно, насколько характерной является исчисленная средняя величина. Степень близости данных отдельных единиц хi к средней измеряется рядом абсолютных, средних и относительных показателей.

Абсолютные и средние показатели вариации и способы их расчета.

Для характеристики совокупностей и исчисленных величин важно знать, какая вариация изучаемого признака скрывается за средним.

Для характеристики колеблемости признака используется ряд показателей. Наиболее простой из них - размах вариации.

Размах вариации - это разность между наибольшим () и наименьшим () значениями вариантов.

Чтобы дать обобщающую характеристику распределению отклонений, исчисляют среднее линейное отклонение d, которое учитывает различие всех единиц изучаемой совокупности.

Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней, без учета знака этих отклонений:

.

Порядок расчета среднего линейного отклонения следующий:

1) по значениям признака исчисляется средняя арифметическая:

;

2) определяются отклонения каждой варианты от средней ;

3) рассчитывается сумма абсолютных величин отклонений: ;

4) сумма абсолютных величин отклонений делится на число значений:

.

Если данные наблюдения представлены в виде дискретного ряда распределения с частотами, среднее линейное отклонение исчисляется по формуле средней арифметической взвешенной:

Порядок расчета среднего линейного отклонения взвешенного следующий:

1) вычисляется средняя арифметическая взвешенная:

;

2) определяются абсолютные отклонения вариант от средней //;

3) полученные отклонения умножаются на частоты ;

4) находится сумма взвешенных отклонений без учета знака:

;

5) сумма взвешенных отклонений делится на сумму частот:

.

Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.

Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.

Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается . В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:

-- дисперсия невзвешенная (простая);

-- дисперсия взвешенная.

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается S:

-- среднее квадратическое отклонение невзвешенное;

-- среднее квадратическое отклонение взвешенное.

Среднее квадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.).

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю представляемую совокупность.

Вычислению среднего квадратического отклонения предшествует расчет дисперсии.

Порядок расчета дисперсии взвешенную:

1) определяют среднюю арифметическую взвешенную

;

2) определяются отклонения вариант от средней ;

3) возводят в квадрат отклонение каждой варианты от средней ;

4) умножают квадраты отклонений на веса (частоты) ;

5) суммируют полученные произведения

;

6) Полученную сумму делят на сумму весов

.

Свойства дисперсии.

Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет.

Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсии не изменяет.

Уменьшение или увеличение каждого значения признака в какое-то число раз к соответственно уменьшает или увеличивает дисперсию в раз, а среднее квадратическое отклонение - в к раз.

Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной: . Если А равна нулю, то приходим к следующему равенству: , т.е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней.

Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.

Порядок расчета дисперсии простой:

1) определяют среднюю арифметическую

;

2) возводят в квадрат среднюю арифметическую

;

3) возводят в квадрат каждую варианту ряда ;

4) находим сумму квадратов вариант ;

5) делят сумму квадратов вариант на их число, т.е. определяют средний квадрат

;

6) определяют разность между средним квадратом признака и квадратом средней .

Рассмотрим расчет дисперсии в интервальном ряду распределения.

Порядок расчета дисперсии взвешенной (по формуле ):

определяют среднюю арифметическую ;

возводят в квадрат полученную среднюю ;

возводят в квадрат каждую варианту ряда ;

умножают квадраты вариант на частоты ;

суммируют полученные произведения ;

делят полученную сумму на сумму весов и получают средний квадрат признака ;

определяют разность между средним значением квадратов и квадратом средней арифметической, т.е. дисперсию .

Показатели относительного рассеивания.

Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней.

(1)

2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины.

(2)

3. Коэффициент вариации.

(3)

Учитывая, что среднеквадратическое отклонение дает обобщающую характеристику колеблемости всех вариантов совокупности, коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин. При этом исходят из того, что если V больше 40 %, то это говорит о большой колеблемости признака в изучаемой совокупности.

13. Экономические индексы: понятие, виды. Индивидуальные индексы цен, физического объема реализации, товарооборота

Понятие индексов

В статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. В связи с этим различают динамические, территориальные индексы, а также индексы выполнения плана.

Многие общественные явления состоят из непосредственно несопоставимых явлений, поэтому основной вопрос - это вопрос сопоставимости сравниваемых явлений.

К какому бы экономическому явлению ни относились индексы, чтобы рассчитать их, необходимо сравнивать различные уровни, которые относятся либо к различным периодам времени, либо к плановому заданию, либо к различным территориям. В связи с этим различают базисный период (период, к которому относится величина, подвергаемая сравнению) и отчетный период (период, к которому относится сравниваемая величина). При исчислении важно правильно выбрать период, принимаемый за базу сравнения.

Индексы могут относиться либо к отдельным элементам сложного экономического явления, либо ко всему явлению в целом.

Индивидуальные индексы

Показатели, характеризующие изменение более или менее однородных объектов, входящих в состав сложного явления, называются индивидуальными индексами - ix.

Индекс получает название по названию индексируемой величины.

В большинстве случаев в числителе стоит текущий уровень, а в знаменателе - базисный уровень. Исключением является индекс покупательной способности рубля.

Индексы измеряются либо в виде процентов (%), либо в виде коэффициентов.

p - цена

q - количество

t - время

T - численность

f - з/п

F - фонд з/п

S - посевная площадь

y - урожайность

z - себестоимость

Сводные индексы

Сложные явления, для которых рассчитывается сводный индекс, отличаются той особенностью, что элементы, их составляющие, неоднородны и, как правило, несоизмеримы друг с другом. Поэтому сопоставление простых сумм этих элементов невозможно. Сопоставимость может быть достигнута различными способами:

сложные явления могут быть разбиты на такие простые элементы, которые в известной степени являются однородными;

сравнение по стоимости, без разбиения на отдельные элементы.

Цель теории индексов - изучение способов получения относительных величин, используемых для расчета общего изменения ряда разнородных явлений.

Индекс стоимости товарооборота

Индекс цены товарооборота

Индекс физического объема товарооборота

Проблема выбора весов

Если индексируемой величиной является качественный признак, то вес принимается на уровне текущего периода.

Если же индексируемой величиной является количественный признак, то вес принимается на уровне базисного периода.

Товар

Базисный

Отчетный

1

2

. . .

n

Сводные индексы в агрегатной форме позволяют нам измерить не только относительное изменение отдельных элементов изучаемого явления и явления в целом в текущем периоде по сравнению с базисным, но и абсолютное изменение.

Цепные и базисные индексы с постоянными и переменными весами

Цепные индексы:

Сумма произведений индивидуальных цепных индексов дает базисный индекс за соответствующий период.

Базисные индексы:

Частное от деления последующего базисного индекса на предыдущий индекс дает нам цепной индекс за соответствующий период.

Преимущество сводных индексов с постоянными весами состоит в том, что их можно сравнивать между собой, а также получать цепные индексы из базисных и наоборот.

Для индексов с переменными весами такое правило не сохраняется.

С постоянными весами рассчитываются индексы физического объема продукции, а с переменными весами - индексы цен, себестоимости, производительности труда.

Индекс дефлятора используется для перевода значений стоимостных показателей за отчетный период в стоимостные измерители базисного периода.

Для построения индекса дефлятора можно использовать индексы с переменными весами.

Индексы постоянного состава, переменного состава и структурных сдвигов

В тех случаях, когда мы анализируем изменение во времени сравниваемой продукции, мы можем поставить вопрос о том, как в различных условиях (на различных участках) меняются составляющие индекса (цена, физический объем, структура производства или реализации отдельных видов продукции). В связи с этим строятся индексы постоянного состава, переменного состава, структурных сдвигов.

Индекс постоянного (фиксированного) состава по своей форме тождественен агрегатному индексу.

Объединение

Базисный

Отчетный

p0

q0

p0

q0

1

15

5000

11

20000

2

18

10000

13

15000

Цена по обоим предприятиям изменилась на 27,2 %.

Этот индекс не учитывает изменение объема продажи продукции на различных рынках в текущем и базисном периодах.

Индекс переменного состава используется для характеристики изменения средней цены в текущем и базисном периодах.

Территориальные индексы

В статистике существует необходимость сопоставления уровней экономических явлений в пространстве. Для расчета значений используются территориальные индексы. Для их исчисления соответствующие показатели по всем видам продукции умножаются на количество продукции, произведенной во всей области.

Индексный метод.

Статистические индексы.

Важное значение в статистических исследованиях коммерческой деятельности имеет индексный метод. Полученные на основе этого метода показатели используются для характеристики развития анализируемых показателей во времени, по территории, изучения структуры и взаимосвязей, выявления роли факторов в изменении сложных явлений.

Индексы широко применяются в экономических разработках государственной и ведомственной статистики.

Статистический индекс -- это относительная величина сравнения сложных совокупностей и отдельных их единиц. При этом под сложной понимается такая статистическая совокупность, отдельные элементы которой непосредственно не подлежат суммированию.

Например, ассортимент продовольственных товаров состоит из товарных разновидностей, первичный учет которых на производстве и в оптовой торговле ведется в натуральных единицах измерения: молоко -- в литрах, мясо -- в центнерах, яйцо -- в штуках, консервы -- в условных банках и т.д. Для определения общего объема производства и реализации продовольственных товаров суммировать данные учета разнородных товарных масс в натуральных измерителях нельзя. Не подлежат непосредственному суммированию и данные о количестве произведенных и реализованных различных видов непродовольственных товаров. Было бы, например, бессмысленно для получения общего объема реализации суммировать данные о продаже тканей (в метрах), костюмов (в штуках), обуви (в парах) и т.д.

В этих сложных статистических совокупностях единицами наблюдения являются товары с различными потребительскими свойствами. Данные о натурально -- вещественной форме реализации отдельных товарных разновидностей непосредственному суммированию не подлежат. Для получения в сложных статистических совокупностях обобщающих (суммарных) величин прибегают к индексному методу.

Основой индексного метода при определении изменений в производстве и обращении товаров является переход от натурально -- вещественной формы выражения товарных масс к стоимостным (денежным) измерителям. Именно посредством денежного выражения стоимости отдельных товаров устраняется их несравнимость как потребительских стоимостей и достигается единство.

Индивидуальные и общие индексы.

В зависимости от степени охвата подвергнутых обобщению единиц изучаемой совокупности индексы подразделяются на индивидуальные (элементарные) и общие.

Индивидуальные индексы характеризуют изменения отдельных единиц статистической совокупности. Так, например, если при изучении оптовой реализации продовольственных товаров определяются изменения в продаже отдельных товарных разновидностей, то получают индивидуальные (однотоварные) индексы.

Общие индексы выражают сводные (обобщающие) результаты совместного изменения всех единиц, образующих статистическую совокупность. Пример, показатель изменения объема реализации товарной массы продуктов питания по отдельным периодам будет общим индексом физического объема товарооборота.

Важной особенностью общих индексов является то, что они обладают синтетическими и аналитическими свойствами.

...

Подобные документы

  • Статистическая практика. Понятие статистического наблюдения. Цель статистического наблюдения. Программа статистического наблюдения. Формы статистического наблюдения. Способы статистического наблюдения.

    реферат [17,2 K], добавлен 23.03.2004

  • Формирование информационной базы статистического исследования. Программно-методологические и организационные вопросы статистического наблюдения. Виды статистического наблюдения и их особенности. Статистический нализ предпочтения газет в г. Череповец.

    курсовая работа [41,2 K], добавлен 15.03.2008

  • Программно-методологические вопросы статистического наблюдения. Этапы создания и классификация статистических сводок. Расчет средней арифметической из внутригрупповых дисперсий. Выравнивание ряда динамики выпуска продукции, анализ ее абсолютного прироста.

    контрольная работа [722,7 K], добавлен 27.03.2012

  • Индексы в статистике, их применение при анализе динамики, выполнении плановых заданий и территориальных сравнений, сравниваемый и базисный уровни. Формирование информационной базы статистического исследования, сводка и группировка результатов наблюдения.

    контрольная работа [86,2 K], добавлен 19.10.2010

  • Информационная база статистического исследования: наблюдение и его этапы, принципы выборки. Программно-методологические задачи, формы, виды и способы проведения статистического исследования. Контроль за полнотой и достоверностью статистических данных.

    курсовая работа [3,9 M], добавлен 07.12.2010

  • Сводка, группировка данных статистического наблюдения, группировка с выделением регионов со значением показателя выше и ниже среднего. Вариационный анализ, структурные характеристики, характеристики и моделирование формы распределения вариационного ряда.

    курсовая работа [145,2 K], добавлен 11.03.2010

  • Формирование информационной базы статистического исследования. Программно-методологические и организационные вопросы плана статистического наблюдения. Объемные показатели статистики автомобильных перевозок. Статистика себестоимости перевозок пассажиров.

    контрольная работа [177,8 K], добавлен 05.12.2010

  • Статистическое наблюдение как первый этап статистического исследования. Формы организации статистического наблюдения. Виды и способы статистического наблюдения. Организация сбора данных, план статистического наблюдения, ошибки и меры борьбы с ними.

    реферат [19,6 K], добавлен 04.06.2010

  • Систематизация материалов статистического наблюдения. Понятие статистической сводки как сводной характеристики объекта исследования. Статистические группировки, их виды. Принципы выбора группированного признака. Статистические таблицы и ряд распределения.

    реферат [196,8 K], добавлен 04.10.2016

  • Основные понятия статистики. Организация статистического наблюдения. Ряды распределения, табличный метод представления данных. Статистическая сводка и группировка. Объекты уголовно-правовой, гражданско-правовой и административно-правовой статистики.

    реферат [24,7 K], добавлен 29.03.2013

  • Статистическая методология и статистические показатели. Принципы организации статистики, его роль в плановой и рыночной экономике. Реформирование казахстанской статистики. Формы статистического наблюдения. Статистические отчетность, сводка и переписи.

    курс лекций [475,4 K], добавлен 11.02.2010

  • Массовость и стабильность статистической информации. Программно-методологическое обеспечение статистического наблюдения. Сущность и особенности непосредственного и документального наблюдения, опроса. Общее понятие про моду, медиану и ранжированный ряд.

    контрольная работа [46,8 K], добавлен 30.03.2012

  • Понятие статистики, пути ее развития, отличительные черты массовых явлений и признаки единиц совокупности. Формы, виды и способы статистического наблюдения. Задачи и виды статистической сводки. Метод группировки, абсолютные и относительные показатели.

    реферат [33,9 K], добавлен 20.01.2010

  • Предмет и метод статистической науки. Методология наблюдения, статистическая сводка, группировка, таблицы и графики, показатели и средние величины. Показатели вариации, выборочное наблюдение. Корреляционно-регрессионный анализ. Экономические индексы.

    лекция [1,2 M], добавлен 02.01.2014

  • Понятие и виды статистического наблюдения, их отличительные признаки и значение. Способы статистического наблюдения в зависимости от источников собираемых сведений: непосредственное, документальное, опрос. Сбор и группировка статистических данных.

    контрольная работа [131,4 K], добавлен 16.12.2010

  • Раскрытие содержания статистического наблюдения как процесса сбора сведений по заранее разработанному плану. Изучение организационных и программно-методологических вопросов статистического наблюдения. Ошибки наблюдения и обработка статистических данных.

    реферат [48,7 K], добавлен 11.10.2011

  • Задачи сводки и её основное содержание. Сведение воедино материалов статистического наблюдения и получение обобщающих статистических показателей как цель сводки. Разновидности группировок, задачи группировок и их значение в статистическом исследовании.

    реферат [15,1 K], добавлен 04.06.2010

  • Проведение статистического наблюдения: принципы, основные этапы и закономерности, теоретическая база. Группировка статистических данных. Расчет характеристик вариационного ряда. Анализ связи между признаками по аналитической группировке, рядов динамики.

    курсовая работа [202,5 K], добавлен 08.03.2011

  • Предмет и метод статистики. Сущность и основные аспекты статистического наблюдения. Ряды распределения. Статистические таблицы. Абсолютные величины. Показатели вариации. Понятие о статистических рядах динамики. Сопоставимость в рядах динамики.

    шпаргалка [31,9 K], добавлен 26.01.2009

  • Виды и основные организационные формы статистического наблюдения. Понятие и главные особенности сплошного и несплошного наблюдения. Применение несплошного наблюдения на практике. Краткая характеристика методов и способов статистического наблюдения.

    реферат [24,0 K], добавлен 17.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.