Предмет и задачи статистики

Этапы статистического исследования. Формы статистического наблюдения. Программно-методологические вопросы статистического наблюдения. Статистическая сводка и группировка. Показатели вариации признака и способы их расчета. Индивидуальные индексы цен.

Рубрика Экономика и экономическая теория
Вид шпаргалка
Язык русский
Дата добавления 24.06.2013
Размер файла 452,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Синтетические свойства индексов состоят в том, что посредством индексного метода производится соединение (агрегирование) в целом разнородных единиц статистической совокупности.

Аналитические свойства индексов состоят в том, что посредством индексного метода определяется влияние факторов на изменение изучаемого показателя.

Для определения индекса надо произвести сопоставление не менее двух величин. При изучении динамики социально-экономических явлений сравниваемая величина (числитель индексного отношения) принимается за текущий (или отчетный) период, а величина, с которой производится сравнение -- за базисный период.

Основным элементом индексного отношения является индексируемая величина. Под индексируемой величиной понимается значение признака статистической совокупности, изменение которой является объектом изучения. Так, при изучении изменения цен индексируемой величиной является цена единицы товара p. При изучении изменения физического объема товарной массы в качестве индексируемой величины выступают данные о количестве товаров в натуральных измерителях q. Стоимость продукции обозначается через s.

Индивидуальные индексы принято обозначать i, а общие индексы -- I.

Знак внизу справа означает период:

-- базисный,

-- отчетный.

Индекс, характеризующий динамику оптового товарооборота. При этом используется система индексов товарооборота (см. Индекс физического объема розничного товарооборота). Для отражения динамики объема поставленных товаров строится индекс поставки в сопоставимых ценах (физического объема поставки). Поскольку поставка продовольственных товаров учитывается в натуральных ед., их И.п.т. в сопоставимых ценах строится по агрегатной форме. Поставка непродовольственных товаров учитывается в стоимостных ед., поэтому И.п.т. в сопоставимых ценах строится по ф-ле индекса физического объема товарооборота с использованием индивидуальных (или групповых) индексов цен.

Сводный индекс товарооборота (общий индекс товарооборота):

Сводный индекс цен (общий индекс цен):

Сводный индекс физического объема реализации (общий индекс физического объема реализации):

14. Агрегатные индексы цен, физического объема, товарооборота, их взаимосвязь

Понятие индексов

В статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. В связи с этим различают динамические, территориальные индексы, а также индексы выполнения плана.

Основной формой общих индексов являются агрегатные индексы.

Достижение в сложных статистических совокупностях сопоставимости разнородных единиц осуществляется введением в индексные отношения специальных сомножителей индексируемых величин. Такие сомножители называются соизмерителями. Они необходимы для перехода от натуральных измерителей разнородных единиц статистической совокупности к однородным показателям. При этом в числителе и знаменателе общего индекса изменяется лишь значение индексируемой величины, а их соизмерители являются постоянными величинами.

В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цены, количество и др.

Произведение каждой индексируемой величины на соизмеритель образует в индексном отношении определённые экономические категории.

Пример.

Товар

Ед.

изм.

I

период

II

период

Индивидуальные индексы

цена за единицу

товара, руб.

кол-во

цена за единицу товара, руб.

кол-во,

цен

физич-го объёма

А

т

20

7 500

25

9500

1,25

1,27

Б

м

30

2 000

30

2500

1,0

1,25

В

шт.

15

1 000

10

1500

0,67

1,5

При определении по данным таблицы статистических индексов первый период принимается за базисный, в котором цена единицы товара принимается , а количество -- .

Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается , а количество -- .

Индивидуальные индексы показывают, что в текущем периоде по сравнению с базисным цена на товар А повысилась на 25%, на товар Б осталась без изменения, а на товар В снизилась на 33%. Количество реализации товара А возросло на 27%, товара Б -- на 25%, а товара В -- на 50%.

При определении общего индекса цен в агрегатной форме в качестве соизмерителя индексируемых величин и могут приниматься данные о количестве реализации товаров в текущем периоде . При умножении на индексируемые величины в числителе индексного отношения образуется значение ,

сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода.

Агрегатная формула такого общего индекса цен имеет следующий вид:

= (1)

Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше.

Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:

числитель индексного отношения

=25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб.

знаменатель индексного отношения

= 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб.

Полученные значения подставляем в формулу 1:

= или 113,9%

Применение формулы 1 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 13,9%.

При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин и могут применяться данные о количестве реализации товаров в базисном периоде . При этом умножение на индексируемые величины в числителе индексного отношения образует значение , т.е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода.

В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода.

Агрегатная формула такого общего индекса имеет вид:

= (2)

Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса.

Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:

числитель индексного отношения

= 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб.

знаменатель индексного отношения

= 20 * 7 500 + 30 * 2 000 + 15 * 1 000 = 225 000 руб.

Полученные значения подставляем в формулу 2:

=или 114,4%

Применение формулы 2 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%.

Таким образом, выполненные по формулам 1 и 2 расчёты имеют разные показания индексов цен. Это объясняется тем, что индексы Пааше и Ласпейреса характеризуют различные качественные особенности изменения цен.

Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде.

Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы.

При определении агрегатного индекса физического объёма товарной массы в качестве соизмерителей индексируемых величин и могут применяться неизменные цены базисного периода . При умножении на индексируемые величины в числителе индексного отношения образуются значение , т.е. сумма стоимости товарной массы текущего периода в базисных ценах. В знаменателе -- , т.е. сумма стоимости товарной массы базисного периода в ценах того же базисного периода.

Агрегатная форма общего индекса имеет следующий вид:

= (3)

Поскольку, в числителе формулы 3 содержится сумма стоимости реализации товаров в текущем периоде по неизменным (базисным) ценам, а в знаменателе -- сумма фактической стоимости товаров, реализованных в базисном периоде в тех же неизменных (базисных) ценах, то данный индекс является агрегатным индексом товарооборота в сопоставимых (базисных) ценах.

Используем формулу 3 для расчёта агрегатного индекса физического объёма реализации товаров по данным табл.1:

числитель индексного отношения

= 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб.

знаменатель индексного отношения

= 7 500 * 20 + 2 000 * 30 + 1 000 * 15 = 225 000 руб.

Полученные значения подставляем в формулу 3:

= или 127,8%

Применение формулы 3 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%.

Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин и цен текущего периода .

Агрегатная формула общего индекса будет иметь вид:

= (4)

числитель индексного отношения

= 9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб.

знаменатель индексного отношения

= 7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб.

Полученные значения подставляем в формулу 4:

= или 127,2%

Применение формулы 4 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,2%.

Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде (-- числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода (-- знаменатель).

Индексы с постоянными и переменными весами.

При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода.

Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом.

Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются цепные индексы. Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала c I, III -- cо II и IV -- с III кварталом.

В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие.

Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами -- соизмерителями.

Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т.е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный.

Средние индексы.

Всякий агрегатный индекс может быть преобразован в средний арифметический из индивидуальных индексов. Для этого индексируемая величина отчётного периода, стоящая в числителе агрегатного индекса, заменяется произведением индивидуального индекса на индексируемую величину базисного периода.

Так, индивидуальный индекс цен равен , откуда .

Следовательно, преобразование агрегатного индекса цен в средний арифметический имеет вид:

==

Аналогично индекс себестоимости равен , откуда , следовательно,

==,

Аналогично индекс физического объёма продукции (товарооборота) равен , откуда , следовательно,

==

Расчеты недостающих индексов с помощью индексных систем.

Многие экономические индексы тесно связаны между собой и образуют индексные системы. Так, индекс цен связан с индексом физического объема товарооборота или физического объема продукции, образуя следующую индексную систему:

или

Произведение индекса цен на индекс физического объема товарооборота или продукции дает индекс физического объема товарооборота в фактических ценах, или индекс стоимости продукции.

Индекс себестоимости промышленной продукции связан с индексом физического объема продукции по себестоимости, образуя следующую индексную систему:

или

Произведение индекса себестоимости продукции на индекс физического объема дает индекс затрат в производстве.

Используя индексы системы, можно по двум известным индексам найти третий, неизвестный.

15. Средний арифметический и средний гармонический индексы физического объема продукции

Понятие индексов

В статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. В связи с этим различают динамические, территориальные индексы, а также индексы выполнения плана.

Индексы, характеризующие изменение отдельных элементов

сложного явления, называются индивидуальными, например индексы

производства картофеля, молока, шерсти, индексы, характеризующие

изменение цены определенного вида продукции и т. п. Допустим, надо

определить, как изменилось в отчетном году по сравнению с базисным

производство отдельных видов продукции

16. Выборочное наблюдение, виды выборки (повторная, бесповторная)

Основы выборочного метода

Выборочное наблюдение - одно из наиболее современных видов статистического наблюдения. Выборочное наблюдение - это такое наблюдение, при котором обследованию подвергается часть единиц изучаемой совокупности, отобранных на основе научно разработанных принципов, обеспечивающих получение достаточного количества достоверных данных, для того чтобы охарактеризовать всю совокупность в целом.

Средние и относительные показатели, полученные на основе выборочных данных, должны достаточно полно воспроизводить или репрезентатировать соответствующие показатели совокупности в целом.

Логика выборочного наблюдения

определение объекта и целей выборочного наблюдения;

выбор схема отбора единиц для наблюдения;

расчет объема выборки;

проведение случайного отбора установленного числа единиц из генеральной совокупности;

наблюдение отобранных единиц по установленной программе;

расчет выборочных характеристик в соответствии с программой выборочного наблюдения;

определение ошибки, ее размера;

распространение выборочных данных на генеральную совокупность;

анализ полученных данных.

Основные преимущества

Выборочное наблюдение можно осуществить по более широкой программе.

Выборочное наблюдение более дешевое с точки зрения затрат на его проведение.

Выборочное наблюдение можно организовать тогда и в тех случаях, когда отчетностью мы воспользоваться не можем.

Основные недостатки

Полученные данные всегда содержат в себе ошибку, о результатах наблюдения можно судить лишь с определенной степенью достоверности. Но по сравнению с другими видами наблюдения это достоинство выборочного метода.

Для его проведения требуются квалифицированные кадры.

Вся совокупность единиц, из которых производится отбор, называется генеральной. Совокупность единиц отобранных называется выборочной.

Ошибки выборки

Чтобы оценить степень точности выборочного наблюдения, необходимо оценить величину ошибок, которые могут возникнуть в процессе проведения выборочного наблюдения.

Основное внимание уделяется случайным ошибкам репрезентативности.

Выборочное наблюдение.

Статистическое исследование может осуществляться по данным несплошного наблюдения, основная цель которого состоит в получении характеристик изучаемой совокупности по обследованной ее части. Одним из наиболее распространенных в статистике методов, применяющих несплошное наблюдение, является выборочный метод.

Под выборочным понимается метод статистического исследования, при котором обобщающие показатели изучаемой совокупности устанавливаются по некоторой ее части на основе положений случайного отбора. При выборочном методе обследованию подвергается сравнительно небольшая часть всей изучаемой совокупности (обычно до 5 -- 10%, реже до 15 -- 25%). При этом подлежащая изучению статистическая совокупность, из которой производится отбор части единиц, называется генеральной совокупностью. Отобранная из генеральной совокупности некоторая часть единиц, подвергающаяся обследованию, называется выборочной совокупностью или просто выборкой.

Значение выборочного метода состоит в том, что при минимальной численности обследуемых единиц проведение исследования осуществляется в более короткие сроки и с минимальными затратами труда и средств. Это повышает оперативность статистической информации, уменьшает ошибки регистрации.

В проведении ряда исследований выборочный метод является единственно возможным, например, при контроле качества продукции (товара), если проверка сопровождается уничтожением или разложением на составные части обследуемых образцов (определение сахаристости фруктов, клейковины печеного хлеба, установление носкости обуви, прочности тканей на разрыв и т.д.).

Проведение исследования социально -- экономических явлений выборочным методом складывается из ряда последовательных этапов:

1) обоснование (в соответствии с задачами исследования) целесообразности применения выборочного метода;

2) составление программы проведения статистического исследования выборочным методом;

3) решение организационных вопросов сбора и обработки исходной информации;

4) установление доли выборки, т.е. части подлежащих обследованию единиц генеральной совокупности;

5) обоснование способов формирования выборочной совокупности;

6) осуществление отбора единиц из генеральной совокупности для их обследования;

7) фиксация в отобранных единицах (пробах) изучаемых признаков;

8) статистическая обработка полученной в выборке информации с определением обобщающих характеристик изучаемых признаков;

9) определение количественной оценки ошибки выборки;

10) распространение обобщающих выборочных характеристик на генеральную совокупность.

В генеральной совокупности доля единиц, обладающих изучаемым признаком, называется генеральной долей (обозначается р), а средняя величина изучаемого варьирующего признака -- генеральной средней (обозначается ).

В выборочной совокупности долю изучаемого признака называют выборочной долей, или частостью (обозначается ), а среднюю величину в выборке -- выборочной средней (обозначается ).

Пример.

При контрольной проверке качества хлебобулочных изделий проведено 5%-ное выборочное обследование партии нарезных батонов из муки высшего сорта. При этом из 100 отобранных в выборку батонов 90 шт. соответствовали требованиям стандарта. Средний вес одного батона в выборке составлял 500,5 г при среднем квадратическом отклонении г.

На основе полученных в выборке данных нужно установить возможные значения доли стандартных изделий и среднего веса одного изделия во всей партии.

Прежде всего устанавливаются характеристики выборочной совокупности. Выборочная доля, или частость, определяется из отношения единиц, обладающих изучаемым признаком m, к общей численности единиц выборочной совокупности n:

Поскольку из 100 изделий, попавших в выборку n, 90 ед. оказались стандартными m, то показатель частости равен: = 90:100=0,9.

Средний вес изделия в выборке х = 500,5 г определен взвешиванием. Но полученные показатели частости (0,9) и средней величины (500,5 г) характеризуют долю стандартной продукции и средний вес одного изделия лишь в выборке. Дляопределения соответствующих показателей для всей партии товара надо установить возможные при этом значения ошибки выборки.

Ошибка выборки -- это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности. Она зависит от ряда факторов: степени вариации изучаемого признака, численности выборки, методом отбора единиц в выборочную совокупность, принятого уровня достоверности результата исследования.

Определение ошибки выборочной средней.

При случайном повторном отборе средняя ошибка выборочной средней рассчитывается по формуле:

,

где -- средняя ошибка выборочной средней;

-- дисперсия выборочной совокупности;

n -- численность выборки.

При бесповторном отборе она рассчитывается по формуле:

,

где N -- численность генеральной совокупности.

Определение ошибки выборочной доли.

При повторном отборе средняя ошибка выборочной доли рассчитывается по формуле:

,

где -- выборочная доля единиц, обладающих изучаемым признаком;

-- число единиц, обладающих изучаемым признаком;

-- численность выборки.

При бесповторном способе отбора средняя ошибка выборочной доли определяется по формулам:

Предельная ошибка выборки связана со средней ошибкой выборки отношением:

.

При этом t как коэффициент кратности средней ошибки выборки зависит от значения вероятности Р, с которой гарантируется величина предельной ошибки выборки.

Предельная ошибка выборки при бесповторном отборе определяется по следующим формулам:

,

.

Предельная ошибка выборки при повторном отборе определяется по формуле:

,

.

Малая выборка.

При контроле качества товаров в экономических исследованиях эксперимент может проводиться на основе малой выборки.

Под малой выборкой понимается несплошное статистическое обследование, при котором выборочная совокупность образуется из сравнительно небольшого числа единиц генеральной совокупности. Объем малой выборки обычно не превышает 30 единиц и может доходить до 4 -- 5 единиц.

Средняя ошибка малой выборки вычисляется по формуле:

,

где -- дисперсия малой выборки.

При определении дисперсии число степеней свободы равно n-1:

.

Предельная ошибка малой выборки определяется по формуле

При этом значение коэффициента доверия t зависит не только от заданной доверительной вероятности, но и от численности единиц выборки n. Для отдельных значений t и n доверительная вероятность малой выборки определяется по специальным таблицам Стьюдента (Табл. 9.1.), в которых даны распределения стандартизированных отклонений:

.

Поскольку при проведении малой выборки в качестве доверительной вероятности практически принимается значение 0,59 или 0,99, то для определения предельной ошибки малой выборки используются следующие показания распределения Стьюдента:

n

0,95

0,99

4

3,183

5,841

5

2,777

4,604

6

2,571

4,032

7

2,447

3,707

8

2,364

3,500

9

2,307

3,356

10

2,263

3,250

15

2,119

2,921

20

2,078

2,832

Способы распространения характеристик выборки на генеральную совокупность.

Выборочный метод чаще всего применяется для получения характеристик генеральной совокупности по соответствующим показателям выборки. В зависимости от целей исследований это осуществляется или прямым пересчётом показателей выборки для генеральной совокупности, или посредством расчёта поправочных коэффициентов.

Способ прямого пересчёта. Он состоит в том, что показатели выборочной доли или средней распространяется на генеральную совокупность с учётом ошибки выборки.

Так, в торговле определяется количество поступивших в партии товара нестандартных изделий. Для этого (с учётом принятой степени вероятности) показатели доли нестандартных изделий в выборке умножаются на численность изделий во всей партии товара.

Способ поправочных коэффициентов. Применяется в случаях, когда целью выборочного метода является уточнение результатов сплошного учета.

В статистической практике этот способ используется при уточнении данных ежегодных переписей скота, находящегося у населения. Для этого после обобщения данных сплошного учета практикуется 10%-ное выборочное обследование с определением так называемого “процента недоучета”.

Способы отбора единиц из генеральной совокупности.

В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.

Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.

Существуют следующие способы отбора единиц из генеральной совокупности:

1) индивидуальный отбор -- в выборку отбираются отдельные единицы;

2) групповой отбор -- в выборку попадают качественно однородные группы или серии изучаемых единиц;

3) комбинированный отбор -- это комбинация индивидуального и группового отбора.

Способы отбора определяются правилами формирования выборочной совокупности.

Выборка может быть:

-- собственно-случайная;

-- механическая;

-- типическая;

-- серийная;

-- комбинированная.

Собственно-случайная выборка состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е.

статистический группировка вариация индекс

.

Так, при 5%-ной выборке из партии товара в 2 000 ед. численность выборки n составляет 100 ед. (5*2000:100), а при 20%-ной выборке она составит 400 ед. (20*2000:100) и т.д.

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки.

Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке -- каждая 20-я единица (1:0,05) и т.д.

Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.

Важной особенностью механической выборки является то, что формирование выборочной совокупности можно осуществить, не прибегая к составлению списков. На практике часто используют тот порядок, в котором фактически размещаются единицы генеральной совокупности. Например, последовательность выхода готовых изделий с конвейера или поточной линии, порядок размещения единиц партии товара при хранении, транспортировке, реализации и т.д.

Типическая выборка. При типической выборке генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении сложных статистических совокупностей. Например, при выборочном обследовании производительности труда работников торговли, состоящих из отдельных групп по квалификации.

Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность.

Для определения средней ошибки типической выборки используются формулы:

повторный отбор

,

бесповторный отбор

,

Дисперсия определяется по следующим формулам:

,

При одноступенчатой выборке каждая отобранная единица сразу же подвергается изучению по заданному признаку. Так обстоит дело при собственно-случайной и серийной выборке.

При многоступенчатой выборке производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы. Так производится типическая выборка с механическим способом отбора единиц в выборочную совокупность.

Комбинированная выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

17. Средняя и предельная ошибки выборки. Расчет доверительного интервала

ОПРЕДЕЛЕНИЕ ОШИБКИ ВЫБОРКИ

Ошибка выборки -- это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности. Она зависит от ряда факторов: степени вариации изучаемого признака, численности выборки, методом отбора единиц в выборочную совокупность, принятого уровня достоверности результата исследования.

Определение ошибки выборочной средней.

При случайном повторном отборе средняя ошибка выборочной средней рассчитывается по формуле:

где -- средняя ошибка выборочной средней;

-- дисперсия выборочной совокупности;

n -- численность выборки.

При бесповторном отборе она рассчитывается по формуле:

где N -- численность генеральной совокупности.

Определение ошибки выборочной доли.

При повторном отборе средняя ошибка выборочной доли рассчитывается по формуле:

где -- выборочная доля единиц, обладающих изучаемым признаком; -- число единиц, обладающих изучаемым признаком; -- численность выборки.

При бесповторном способе отбора средняя ошибка выборочной доли определяется по формулам:

Предельная ошибка выборки связана со средней ошибкой выборки отношением:

При этом t как коэффициент кратности средней ошибки выборки зависит от значения вероятности Р, с которой гарантируется величина предельной ошибки выборки.

Предельная ошибка выборки при бесповторном отборе определяется по следующим формулам:

Предельная ошибка выборки при повторном отборе определяется по формуле:

18. Расчет необходимой численности выборки, обеспечивающей с определенной вероятностью заданную точность наблюдения

Смотри 17 ответ.

Трудовые и материальные затраты на проведение выборки напрямую зависят от ее численности, поэтому чрезвычайно важно до оптимума сохранить численность выборки, так чтобы не утратить ее точность.

Поиск оптимальной численности выборки удобно осуществлять на основе формул средней и предельной ошибок. Из формулы средней ошибки случайного повторного отбора видно, что величина средней ошибки обратно пропорциональна квадратному корню из численности выборки ([pic]). Чтобы сократить среднюю ошибку в 2 раза, нужно численность выборки увеличить в 4 раза. Используя формулу предельной ошибки выборки [pic] можно найти численность [pic]. Это оптимальная численность выборки для случайного повторного отбора.

Пример: Для определения среднего размера банковского вклада сроком на 91 день необходимо провести повторный отбор из совокупности в 2500 договоров. Какое количество договоров необходимо отобрать, чтобы с вероятностью 0,954 предельная ошибка выборки не превысила 25 руб.

N=2500

p=0,954

(=25 руб.

n-?

(2=8900

Расчет численности выборки основывается на статистическом подходе обработки данных и за ним стоит множество вычислений, но для простоты, ниже мы представим формулу, следуя которой можно достичь хороших результатов.

n - Количество элементов в выборке.

t - Определяется по таблице значений функции F(t), при условии известной исследователю доверительной вероятности. Практически всегда не больше 3.

p - Доля брака в генеральной совокупности.

q - Доля качественной продукции в генеральной совокупности.

Если соотношение брака и качественной продукции не известно, то положим p=0,5 и q=0,5 .

Д - Заданная точность.

Пример 1. Пусть необходимо определить объем выборки, которая позволила бы оценить долю брака в партии продукции (10000 единиц) с точностью до 2% при доверительной вероятности P = 0,95. То есть, если истинная доля брака составляет k%, то с вероятностью 0,95 мы хотим получить долю брака k'% лежащую в интервале k% + 2% < k'% < k% - 2%.

Численность выборки может быть определена по формуле

Где при неизвестных p и q положим их равными 0,5. Д = 0,02, значение t определяется по таблице (смотрите ниже), по заданной доверительной вероятности и равно 2.

Таблица значений функции Лапласа:

Однако это число можно и уменьшить, например используя дополнительную информацию. Допустим нам известно приблизительное значение p=0,1, тогда q=1-p=0,9 и используя эти цифры получаем:

Каким способом следует выбирать данные?

Для того чтобы посредством выборки как можно лучше оценить генеральную совокупность, выборка должна иметь каждое свойство генеральной совокупности. Выборка называется репрезентативной, если каждое свойство в выборке и в генеральной совокупности имеет одинаковые частоты.

Выборка имеет больше шансов быть репрезентативной, если она построена таким образом, что (1) каждые объект генеральной совокупности имеет одинаковую вероятность быть отобранным и (2) объекты отбираются независимо друг от друга.

Есть несколько методов извлечения выборки: применение таблиц случайных чисел, метод перемешивания генеральной совокупности, стратифицированная случайная выборка, систематическая выборка. Ниже мы рассмотрим первые два из этих методов.

1. Применение таблицы случайных чисел.

Одним из способов извлечения случайной выборки является применение таблицы случайных чисел.

Определение: Таблица случайных чисел - это набор цифр такой, что вероятность возникновения любой цифры от 0 до 9 одна и та же.

2057 0762 1429 8535 9029 9745 3458 5023 3502 2436

6435 2646 0295 6177 2755 3080 3275 0521 6623 1133

3278 0500 7573 7426 3188 0187 7707 3047 4901 3519

7888 6411 1631 6981 1972 4269 0022 3860 1580 6751

4022 6540 7804 5528 4690 3586 9839 6641 0404 0735

0888 3504 2651 9051 5764 7155 6489 2660 3341 8784

19. Ряды динамики: понятие, виды (моментные, интервальные). Показатели ряда динамики

РЯДЫ ДИНАМИКИ. КЛАССИФИКАЦИЯ.

Рядами динамики наз. стат. данные, отображающие развитие изучаемого явления во времени. В каждом ряду динамики имеются два основных эл-та: показатель времени t; соответствующие им уровни развития изучаемого явления у. В кач-ве показаний времени в рядах динамики выступают либо опр. даты времени, либо отдельные периоды.

Уровни рядов динамики отображают колич-ную оценку развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.

В зависимости от хар-ра изучаемого явления уровни рядов динамики могут относиться или к опр. датам, или к отдельным периодам. В соответствии с этим, ряды динамики делятся на моментные и интервальные.

Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени. Особенностью моментного ряда динамики является то, что в его уровни могут входить одни и те же единицы изучаемой совокупности. Так, основная часть персонала фирмы N, составляющая списочную численность на 1.01.1994г., продолжающая работать в течение данного года, отображена в уровнях последующих периодов. Поэтому при суммировании уровней моментного ряда динамики может возникнуть повторный счет.

Интервальные ряды динамики отображают итоги развития изучаемых явлений за отдельные периоды (интервалы) времени. Особенностью интервального ряда динамики является то, что каждый его уровень складывается из данных за более короткие интервалы времени. Например, суммируя товарооборот за первые три месяца года, получают его объем за I квартал, а сумма товарооборота четырех кварталов дает объем товарооборота за год и т.д.

Ряды динамики могут быть полными и неполными.

Полный - в котором одноименные моменты времени или периоды времени строго следуют один за другим в календарном порядке или равноотстоят друг от друга. Неполный - в котором уровни зафиксированы в неравноотстоящие моменты.

Чтобы анализ ряда был объективен, необходимо учитывать события, приводящие к несопоставимости уровней ряда и использовать приемы приведения рядов в сопоставимый вид. Наиболее характерные случаи несопоставимости уровней ряда динамики:

Территориальные изменения объекта исследования, к которому относится изучаемый показатель.

Разновеликие интервалы времени, к которым относится показатель.

Изменение даты учета.

Изменение методологии учета или расчета показателя.

Изменение цен.

Изменение единиц измерения.

1982 1983 1984

22,0 22,3 22,8 - в старых границах района.

1985 1986 1987

34,2 34,3 34,4 - в новых границах района.

Для приведения ряда в сопоставимый вид необходимо для 1984 года знать численность населения в старых и новых границах района для определения коэфф. пересчета: К=34,2/22,8=1,5 Все уровни ряда до 1984 года, умножаются на коэфф. К и ряд принимает вид:

1982 1983 1984 1985 1986 1987

33,0 33,3 34,2 34,2 34,3 34,4

После этого преобразования ряда динамики возможен дальнейший анализ ряда.

В качестве обобщенной характеристики уровней ряда динамики служит средний уровень ряда динамики. В зависимости от типа ряда динамики используются различные расчетные формулы.

Интервальный ряд абсолютных величин с равными периодами (интервалами времени):

.

Моментный ряд с равными интервалами между датами:

.

Моментный ряд с неравными интервалами между датами:

.

где yi - уровни ряда, ПОКАЗАТЕЛИ АНАЛИЗА РЯДОВ ДИНАМИКИ

Одним из важнейших направлений анализа рядов динамики явл. изучение особенностей развития явления за отдельные периоды времени.

Для динамических рядов рассчитывают ряд показателей: К - темпы роста; y- абсолютные приросты;K- темпы прироста.

Темп роста - относительный показатель, получающийся в результате деления двух уровней одного ряда друг на друга. Могут рассчитываться как цепные, когда каждый уровень ряда сопоставляется с предшествующим ему уровнем: , либо как базисные, когда все уровни ряда сопоставляются с одним и тем же уровнем y0, выбранным за базу сравнения: . Темпы роста могут быть представлены в виде коэффициентов либо в виде процентов. Абсолютный прирост - разность между двумя уровнями ряда динамики, имеет ту же размерность, что и уровни самого ряда динамики. Абсолютные приросты могут быть цепными и базисными, в зависимости от способа выбора базы для сравнения:

цепной абсолютный прирост -; базисный абсолютный прирост -. Для относительной оценки абсолютных приростов рассчитываются показатели темпов прироста. Темп прироста - относительный показатель, показывающий на сколько процентов один уровень ряда динамики больше (или меньше) другого, принимаемого за базу для сравнения. Базисные и цепные темпы прирос: . yб и yц- абсолютный базисный или цепной прирост; y0- уровень ряда динамики, выбранный за базу для определения базисных абсолютных приростов; yi-1 - уровень ряда динамики, выбранный за базу для определения i-го цепного абсолютного прироста.

Существует связь между темпами роста и прироста:

К = К - 1 или К = К - 100 % (если темпы роста определены в процентах).

Если разделить абсолютный прирост (цепной) на темп прироста (цепной) за соответствующий период, получим показатель, называемый - абсолютное значение одного процента прироста:

.

По показателям изменения уровней ряда динамики (абсолютные приросты, темпы роста и прироста), полученным в результате анализа исходного ряда, могут быть рассчитаны обобщающие показатели в виде средних величин - средний абсолютный прирост, средний темп роста, средний темп прироста.

Средний абсолютный прирост может быть получен по одной из формул:

или

где n - число уровней ряда динамики;y1 - первый уровень ряда динамики; yn- последний уровень ряда динамики;

yцi- цепные абсолютные приросты.

Средний темп роста можно определить, пользуясь формулами:

20. Средние показатели ряда динамики

В качестве обобщенной характеристики уровней ряда динамики служит средний уровень ряда динамики . В зависимости от типа ряда динамики используются различные расчетные формулы.

Интервальный ряд абсолютных величин с равными периодами (интервалами времени):

Моментный ряд с равными интервалами между датами:

Моментный ряд с неравными интервалами между датами:

где - уровни ряда, сохраняющиеся без изменения на протяжении интервала времени .

21.Методы сглаживания рядов динамики

Методы сглаживания и выравнивания динамических рядов.

Исключение случайных колебаний значений уровней ряда осуществляется с помощью нахождения «усредненных» значений. Способы устранения случайных факторов делятся на две больше группы:

1. Способы «механического» сглаживания колебаний путем усреднения значений ряда относительно других, расположенных рядом, уровней ряда.

2. Способы «аналитического» выравнивания, т. е. определения сначала функционального выражения тенденции ряда, а затем новых, расчетных значений ряда.

Методы «механического» сглаживания.

Сюда относятся:

а. Метод усреднения по двум половинам ряда, когда ряд делится на две части. Затем, рассчитываются два значения средних уровней ряда, по которым графически определяется тенденция ряда. Очевидно, что такой тренд не достаточно полно отражает основную закономерность развития явления.

б. Метод укрупнения интервалов, при котором производится увеличение протяженности временных промежутков, и рассчитываются новые значения уровней ряда.

в. Метод скользящей средней. Данный метод применяется для характеристики тенденции развития исследуемой статистической совокупности и основан на расчете средних уровней ряда за определенный период. Последовательность определения скользящей средней:

- устанавливается интервал сглаживания или число входящих в него уровней. Если при расчете средней учитываются три уровня, скользящая средняя называется трехчленной, пять уровней - пятичленной и т.д. Если сглаживаются мелкие, беспорядочные колебания уровней в ряду динамики, то интервал (число скользящей средней) увеличивают. Если волны следует сохранить, число членов уменьшают.

- Исчисляют первый средний уровень по арифметической простой:

y1 = y1/m, где

y1 - I-ый уровень ряда;

m - членность скользящей средней.

- первый уровень отбрасывают, а в исчисление средней включают уровень, следующий за последним уровнем, участвующем в первом расчете. Процесс продолжается до тех пор, пока в расчет y будет включен последний уровень исследуемого ряда динамики yn.

- по ряду динамики, построенному из средних уровней, выявляют общую тенденцию развития явления.

Отрицательной стороной использования метода скользящей средней является образование сдвигов в колебаниях уровней ряда, обусловленных «скольжением» интервалов укрупнения. Сглаживание с помощью скользящей средней может привести к появлению «обратных» колебаний, когда выпуклая «волна» заменяется на вогнутую.

В последнее время стала рассчитываться адаптивная скользящая средняя. Ее отличие состоит в том, что среднее значение признака, рассчитываемое также как описано выше, относится не к середине ряда, а к последнему промежутку времени в интервале укрупнения. Причем предполагается, что адаптивная средняя зависит от предыдущего уровня в меньшей степени, чем от текущего. То есть., чем больше промежутков времени между уровнем ряда и средним значением, тем меньшее влияние оказывает значение этого уровня ряда на величину средней.

г. Метод экспоненциальной средней. Экспоненциальная средняя - это адаптивная скользящая средняя, рассчитанная с применением весов, зависящих от степени «удаленности» отдельных уровней ряда от среднего значения. Величина веса убывает по мере удаления уровня по хронологической прямой от среднего значения в соответствии с экспоненциальной функцией, поэтому такая средняя называется экспоненциальной. На практике применяется многократное экспоненциальное сглаживания ряда динамики, которое используется для прогнозирования развития явления.

Вывод: способы, включенные в первую группу, ввиду применяемых методик расчета предоставляют исследователю очень упрощенное, неточное, представление о тенденции в ряду динамики. Однако корректное применение этих способов требует от исследователя глубины знаний о динамике различных социально - экономических явлений.

Методы «аналитического» выравнивания

Более точным способом отображения тенденции динамического ряда является аналитическое выравнивание, т. е. выравнивание с помощью аналитических формул. В этом случае динамический ряд выражается в виде функции у (t), в которой в качестве основного фактора принимается время t, и изменения аргумента функции определяют расчетные значения уt.

...

Подобные документы

  • Статистическая практика. Понятие статистического наблюдения. Цель статистического наблюдения. Программа статистического наблюдения. Формы статистического наблюдения. Способы статистического наблюдения.

    реферат [17,2 K], добавлен 23.03.2004

  • Формирование информационной базы статистического исследования. Программно-методологические и организационные вопросы статистического наблюдения. Виды статистического наблюдения и их особенности. Статистический нализ предпочтения газет в г. Череповец.

    курсовая работа [41,2 K], добавлен 15.03.2008

  • Программно-методологические вопросы статистического наблюдения. Этапы создания и классификация статистических сводок. Расчет средней арифметической из внутригрупповых дисперсий. Выравнивание ряда динамики выпуска продукции, анализ ее абсолютного прироста.

    контрольная работа [722,7 K], добавлен 27.03.2012

  • Индексы в статистике, их применение при анализе динамики, выполнении плановых заданий и территориальных сравнений, сравниваемый и базисный уровни. Формирование информационной базы статистического исследования, сводка и группировка результатов наблюдения.

    контрольная работа [86,2 K], добавлен 19.10.2010

  • Информационная база статистического исследования: наблюдение и его этапы, принципы выборки. Программно-методологические задачи, формы, виды и способы проведения статистического исследования. Контроль за полнотой и достоверностью статистических данных.

    курсовая работа [3,9 M], добавлен 07.12.2010

  • Сводка, группировка данных статистического наблюдения, группировка с выделением регионов со значением показателя выше и ниже среднего. Вариационный анализ, структурные характеристики, характеристики и моделирование формы распределения вариационного ряда.

    курсовая работа [145,2 K], добавлен 11.03.2010

  • Формирование информационной базы статистического исследования. Программно-методологические и организационные вопросы плана статистического наблюдения. Объемные показатели статистики автомобильных перевозок. Статистика себестоимости перевозок пассажиров.

    контрольная работа [177,8 K], добавлен 05.12.2010

  • Статистическое наблюдение как первый этап статистического исследования. Формы организации статистического наблюдения. Виды и способы статистического наблюдения. Организация сбора данных, план статистического наблюдения, ошибки и меры борьбы с ними.

    реферат [19,6 K], добавлен 04.06.2010

  • Систематизация материалов статистического наблюдения. Понятие статистической сводки как сводной характеристики объекта исследования. Статистические группировки, их виды. Принципы выбора группированного признака. Статистические таблицы и ряд распределения.

    реферат [196,8 K], добавлен 04.10.2016

  • Основные понятия статистики. Организация статистического наблюдения. Ряды распределения, табличный метод представления данных. Статистическая сводка и группировка. Объекты уголовно-правовой, гражданско-правовой и административно-правовой статистики.

    реферат [24,7 K], добавлен 29.03.2013

  • Статистическая методология и статистические показатели. Принципы организации статистики, его роль в плановой и рыночной экономике. Реформирование казахстанской статистики. Формы статистического наблюдения. Статистические отчетность, сводка и переписи.

    курс лекций [475,4 K], добавлен 11.02.2010

  • Массовость и стабильность статистической информации. Программно-методологическое обеспечение статистического наблюдения. Сущность и особенности непосредственного и документального наблюдения, опроса. Общее понятие про моду, медиану и ранжированный ряд.

    контрольная работа [46,8 K], добавлен 30.03.2012

  • Понятие статистики, пути ее развития, отличительные черты массовых явлений и признаки единиц совокупности. Формы, виды и способы статистического наблюдения. Задачи и виды статистической сводки. Метод группировки, абсолютные и относительные показатели.

    реферат [33,9 K], добавлен 20.01.2010

  • Предмет и метод статистической науки. Методология наблюдения, статистическая сводка, группировка, таблицы и графики, показатели и средние величины. Показатели вариации, выборочное наблюдение. Корреляционно-регрессионный анализ. Экономические индексы.

    лекция [1,2 M], добавлен 02.01.2014

  • Понятие и виды статистического наблюдения, их отличительные признаки и значение. Способы статистического наблюдения в зависимости от источников собираемых сведений: непосредственное, документальное, опрос. Сбор и группировка статистических данных.

    контрольная работа [131,4 K], добавлен 16.12.2010

  • Раскрытие содержания статистического наблюдения как процесса сбора сведений по заранее разработанному плану. Изучение организационных и программно-методологических вопросов статистического наблюдения. Ошибки наблюдения и обработка статистических данных.

    реферат [48,7 K], добавлен 11.10.2011

  • Задачи сводки и её основное содержание. Сведение воедино материалов статистического наблюдения и получение обобщающих статистических показателей как цель сводки. Разновидности группировок, задачи группировок и их значение в статистическом исследовании.

    реферат [15,1 K], добавлен 04.06.2010

  • Проведение статистического наблюдения: принципы, основные этапы и закономерности, теоретическая база. Группировка статистических данных. Расчет характеристик вариационного ряда. Анализ связи между признаками по аналитической группировке, рядов динамики.

    курсовая работа [202,5 K], добавлен 08.03.2011

  • Предмет и метод статистики. Сущность и основные аспекты статистического наблюдения. Ряды распределения. Статистические таблицы. Абсолютные величины. Показатели вариации. Понятие о статистических рядах динамики. Сопоставимость в рядах динамики.

    шпаргалка [31,9 K], добавлен 26.01.2009

  • Виды и основные организационные формы статистического наблюдения. Понятие и главные особенности сплошного и несплошного наблюдения. Применение несплошного наблюдения на практике. Краткая характеристика методов и способов статистического наблюдения.

    реферат [24,0 K], добавлен 17.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.