Основы эконометрики

Программно-методологические и организационные вопросы сбора информации. Виды группировок, их применение в анализе финансово-экономической деятельности предприятия. Основные характеристики ряда распределения, их роль в анализе структуры совокупности.

Рубрика Экономика и экономическая теория
Вид шпаргалка
Язык русский
Дата добавления 05.01.2014
Размер файла 144,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Темпом роста называют отношение одного ряда динамики к другому уровню, принятому за базу сравнения. Темпы роста, исчисленные к постоянной базе сравнения, называются базисными (Кpбаз =yi/y0). Темпы роста, исчисленные к переменой базисной, т. е. к предшествующему уровню, называется цепными (Кpцепн. =yi/yi-1). Базисные темпы характеризуют непрерывную линию развития явления.

Цепные темпы характеризуют интенсивность развития явлений для каждого периода (месяца, квартала, года). Относительный прирост, или темп прироста - отношение абсолютного прироста к уровню, принятому за базу. Темп прироста базисный вычисляется делением абсолютного прироста базисного ?у баз. нак. на уровень, принятый за постоянную базу сравнения, т. е. на начальный базисный уровень у0.

Темп прироста цепной - отношение (деление) абсолютного прироста цепного ?у цепн. год к предшествующему уровню уi-1. Темпы прироста, как базисные, так и цепные, можно исчислять по формулам: ?Кприр. (базисный) = Кp - 100%, если темпы роста выражены в процентах ?К прир. (баз. Цепн. ) = Кp -1. если темпы роста выражены в коэффициентах.

Абсолютное значение одного процента прироста (изменения) представляет собой отношение цепного годового (месячного, квартального) абсолютного прироста (изменения) к цепному годовому (месячному, квартальному) темпу прироста и показывает, какая абсолютная величина скрывается за одним процентом прироста; выражается в абсолютных единицах измерения: А1% прироста (измерения) = ?уцепн. Год/?К прир. Цепн. год.

Темп наращивания (изменения) - деление абсолютного прироста (годового) ?у цепн. год на уровень, принятый за постоянную базу сравнения у0, и выражается в %. Для полной характеристики динамического ряда исчисляют средние показатели как абсолютные, так и относительные, дающие средние характеристики за ряд периодов (месяцев, кварталов, лет). К ним относятся средний, или среднегодовой абсолютный прирост ?уЇ (=), и средний, или среднегодовой темп роста КЇp (=). Зная цепные темпы роста по годам (кварталам, месяцам), можно определить среднегодовой (среднеквартальный, среднемесячный) темп прироста.

Однако полученные значения годовых (квартальных, месячных) темпов роста нельзя суммировать, так как их сумма не будет иметь смысла, а полученные значения необходимо перемножать. Если средняя величина признака образуется как произведение отдельных его значений, то при расчёте средней применяется формула средней геометрической: xЇгеом. =. Используя правило - произведение цепных темпов роста равно конечному базисному - можно, не производя перемножения, подставив в формулу базисный темп роста последнего года (квартала, месяца). На основе средних темпов роста КЇ p можно исчислить средние темпы прироста по формулам, если темпы роста выражены в процентах: , а если в долях единицы, то .

19. Методы выявления основной тенденции развития уровней рядов динамики. Прогнозирование уровней динамических рядов в финансово-экономическом анализе

Одной из важнейших задач статистики является определение в рядах динамики общей тенденции развития явления. На развитие явления во времени оказывают влияние различные факторы. Поэтому при анализе динами речь идет об основной тенденции, достаточно стабильной (устойчивой) на протяжении изученного этапа развития.

Основной тенденцией развития (ТРЕНДОМ) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний. С этой целью ряды динамики подвергаются обработке методами укрупнения интервалов, скользящей средней и аналитического выравнивания. Наиболее простым методом изучения основной тенденции в рядах динамики является укрупнение интервалов.

Данный метод основан на укрупнении периодов времени, к которым относятся уровни ряда динамики (одновременно уменьшается количество интервалов). Выявление основной тенденции может осуществляться также методом скользящей (подвижной) средней.

Сущность его заключается в том, что исчисляется средний уровень из определенного числа, обычно нечетного (3, 5, 7 и т. д. ), первых по счету уровней ряда, затем - из такого же числа уровней, но начиная со второго по счету, далее - начиная со среднего и т. д. Таким образом, средняя как бы «скользит» по ряду динамики, передвигаясь на один срок.

Недостатком сглаживания ряда является «укорачивание» сглаженного ряда по сравнению с фактическим, а следовательно, происходит потеря информации. Для того, чтобы дать количественную модель, выражающую основную тенденцию изменения уровней динамического ряда во времени, используется аналитическое выравнивание ряда динамики.

Основным содержанием метода аналитического выравнивания в рядах динамики является то, что общая тенденция развития рассчитывается как функция времени:, где уровни динамического ряда, вычисленные по соответствующему аналитическому уравнению на момент времени.

Определение теоретических (расчетных) уровней производится на основе так называемой адекватной математической модели. Выбор модели зависит от цели исследования и должен быть основан на теоретическом анализе, выявляющем характер развития явления, а также на графическом изображении ряда динамики.

Простейшими моделями, выражающими тенденцию развития, являются: линейная, показательная, степенная функции. Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадратов отклонений между теоретическими и эмпирическими уровнями: . Выравнивание по прямой применяется в тех случаях, когда абсолютные прироста практически постоянны, т. е. когда уровни изменяются в арифметической прогрессии (или близко к ней).

Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометрической прогрессии, т. е. когда цепные коэффициенты роста практически постоянны. Выравнивание ряда динамики по прямой: . Параметры а0, а1 согласно методу наименьших квадратов находятся решением следующей системы нормальных уравнений: , где у - фактические (эмпирические) уровни ряда; t - время (порядковый номер периода или момента времени). Расчет параметров значительно упрощается, если за начало отсчета времени (t = 0) принять центральный интервал (момент). Т. о. , система принимает вид . Таким образом, получаем: ; .

20. Методы выявления сезонных колебаний. Индексы сезонности. Их применение в анализе и прогнозировании экономических процессов

При сравнении квартальных и месячных данных многих социально-экономических явлений часто обнаруживаются периодические колебания, возникающие под влиянием смены времён года. В статистике периодические колебания, которые имеют определённый и постоянный период, равный годовому промежутку, называются сезонные колебания или сезонные волны, динамический ряд называют сезонным рядом динамики.

Сезонные колебания наблюдаются в различных отраслях экономики и обычно отрицательно влияют на результаты производственной деятельности. Поэтому хозяйственные организации принимают меры за счёт рационального сочетания отраслей, механизацией и т. д. В статистике существуют методы изучения и измерения сезонных колебаний.

Самый простой - построение специальных показателей, которые называются индексами сезонности (Is). Совокупность этих показателей отражает сезонную волну. Индексы сезонности - % отношения фактических (эмпирических) внутригрупповых уровней к теоретическим (расчётным) уровням, выступающим в качестве базы сравнения. Для того, чтобы выявить устойчивую сезонную волну их вычисляют по данным за несколько лет (не менее 3), распределенным по месяцам.

Для каждого месяца рассчитывается средняя величина уровня (), затем вычисляется среднемесячный уровень для всего ряда yЇ. После чего определяется показатель сезонной волны - индекс сезонности Is как процентное отношение средних для каждого месяца к общему среднемесячному уровню ряда, %.

Средний индекс сезонности для 12 месяцев должен быть равен 100%, тогда сумма индексов должна составлять 1200. Когда уровень проявляет тенденцию к росту или снижению, то отклонение от постоянного среднего уровня могут исказить сезонные колебания. В этом случае фактические данные сопоставляют с выравнеными, т. е. полученные аналитическим выравниванием. Формула:

21. Понятие об экономических индексах, сфера их применения. Классификация индексов. Индивидуальные индексы, их взаимосвязи

Индекс - относительная величина, показывает во сколько раз уровень изучаемого явления в данных рын усл. Отличается от уровня того же явления в других условиях. Выделяют:*индивидуальный индекс*общие индексы*индексы средних величин.

Индивидуальный индекс - относительная величин, получаемая при сравнении уровней, если исследователь не интересуется изучаемого явления и количественную оценку уровня в данных усл сравнивает с такой же конкретн величин уровня этого явлен в других услов. Можно рассчитать для любого показателя. Индивид. индекс ценыи колич прод тов. Индивид. индекс товарооборота Исходным моментом индексного метода-построение мультипликативной модели, определ уровень исслед показат как результат умножения уровня исслед показат в базисном периоде на индексы факторов его динамики.

22. Агрегатный индекс как форма общего индекса. Выбор весов при построении общих индексов. Индексы цен Г. Пааше и Э. Ласпейреса, их практическое применение

Общий индекс отражает изменение всех элементов сложного явления. Если индексы охватывают не все элементы, то их называют групповыми или субиндексами. Различают индексы агрегатные и средние, исчисление которых и составляет особый прием исследования, именуемый индексным методом. При построении общих индексов:

1. необходимо выбрать элементы, которые следует объединить в одном индексе;

2. правильно выбрать соизмеритель или вес, т. е. постоянный признак.

Выбор веса зависит от того, какой индексируется признак - количественный или качественный.

Основной формой общих индексов является агрегатная форма. Индекс агрегатной формы строится по методу сумм. Агрегатная форма применяется, если мы имеем данные поэлементные в отчетном и базисном периоде. Индекс товарооб: ; ин физ объем прод; Индекс потребительских цен является общим измерителем инфляции. Индексируемой величиной в нем будет цена товара.

При построении индекса цен в качестве весов индекса обычно берут количество товаров, проданных в текущем (отчетном) периоде. Агрегатный индекс цен с отчетными весами впервые предложен Пааше и носит его имя: формула агрегатного индекса цен Пааше , где - фактическая стоимость продукции (товарооборот) отчетного периода; - условная стоимость товаров, реализованных в отчетном периоде по базисным ценам. Индекс цен Пааше показывает, во сколько раз возрос (уменьшился) в среднем уровень цен на массу товара, реализованную в отчетном периоде.

Если индекс цен рассчитывается по продукции базисного периода, для расчета используют формулу агрегатного индекса цен Ласпейреса: . Они не идентичны. Индекс Пааше показывает, на сколько товары в отчетном периоде стали дороже (дешевле), чем в базисном.

Индекс цен Ласпейреса показывает, во сколько раз товары базисного периода подорожали (подешевели) из-за изменения цен на них в отчетном периоде. В тех случаях, когда неизвестны значения p0 и q1 , но дано произведение p1q1 (товарооборот текущего периода) и индивидуальные индексы цен , а сводный индекс должен быть исчислен с отчетными весами, - применяется средний гармонический индекс цен.

Причем средний гармонический индекс должен совпасть с агрегатным. Из формулы определяется неизвестное значение цены , подставляется в знаменатель агрегатной формулы и получается средний гармонический индекс цен, тождественный формуле Пааше: . Весами индивидуальных индексов в этом индексе служат стоимость отдельных видов продукции отчетного периода в ценах того же периода p1q1.

Если из индивидуального индекса цен выразить цену отчетного периода р1=р0ip и подставить ее в числитель агрегатного индекса цен Ласпейреса, то получится средний арифметический индекс цен, тождественный формуле Ласпейреса: . Весами осредняемых индивидуальных индексов в этом случае служит объем товарооборота в базисном периоде p0q0.

23. Преобразование агрегатных индексов в средние. Средние арифметический и гармонический индексы. Их применение в изучении динамики цен и физического объема производства

Основной формой общих индексов является агрегатная форма. Индекс агрегатной формы строится по методу сумм. Агрегатная форма применяется, если мы имеем данные поэлементные в отчетном и базисном периоде. Многие статистические показатели, характеризующие различные стороны общественных явлений, находятся между собой в определенной связи (часто в виде произведения).

Статистика характеризует эти взаимосвязи количественно. Многие экономические показатели тесно связаны между собой и образуют индексные системы. Принята следующая практика факторного анализа: если результативный показатель = произведению объемного и качественного факторов, то качественный фактор фиксируется на уровне базисного периода; если же определяется влияние качественного показателя, то объемный фактор фиксируется на уровне отчетного периода.

Рассмотрим построение взаимосвязанных индексов на примере индексов цен, физического объема продукции (если речь идет об отпускных ценах) или физического объема товарооборота (если речь идет о розничных ценах) и индекса стоимости продукции (товарооборота в фактических ценах). Индексы физического объема и цен являются факторными по отношению к индексу стоимости продукции (товарооборота в фактических ценах): , или . Таким образом, произведение индекса цен на индекс физического объема продукции дает индекс стоимости продукции (товарооборота в фактических ценах).

Индексная система позволяет по двум известным значениям индексов найти значение третьего неизвестного. Индекс физического объема продукции: ; Помимо агрегатного способа расчета общих индексов существует и другой способ, который состоит в расчете общих индексов как средних из соответствующих индивидуальных индексов.

К исчислению таких средневзвешенных индексов прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать агрегатный индекс. Так, если неизвестны количества произведенных отдельных продуктов в натуральных измерителях, но известны индивидуальные индексы и стоимость продукции базисного периода (p0q0), можно определить средний арифметический индекс физического объема продукции.

Исходной базой построения служит агрегатная форма. Из имеющихся данных можно получить только знаменатель этой формулы. Для нахождения числителя используется формула индивидуального индекса объема продукции, из которой следует, что q1=q0iq.

Подставляя данное выражение в числитель агрегатной формы, получаем общий индекс физического объема в форме среднего арифметического индекса физического объема продукции, где весами служит стоимость отдельных видов продукции в базисном периоде (q0p0): . Если известные данные позволяют вычислить только числитель агрегатного индекса физического объема, то, аналогично выражая продукцию базисного периода как , производим замену в знаменателе. В результате получаем общий индекс физического объема в форме среднего гармонического взвешенного индекса физического объема продукции, где весами служит стоимость продукции отчетного периода в базисных ценах (q1p0): . В форме средней гармонической взвешенной индекс физического объема используется только в аналитических целях. Т. о. , применение той или иной формулы индекса физического объема (агрегатного или среднего арифметического или среднего гармонического) зависит от имеющихся в нашем распоряжении конкретных данных и цели исследования.

24. Индексы средних уровней качественных показателей. Индексы переменного, постоянного состава и структурных сдвигов. Определения абсолютных приростов (снижения) средних уровней за счет отдельных факторов

На динамику качественных показателей, уровни которых выражены средними величинами, оказывает влияние изменение структуры изучаемого явления. Под изменением структуры явления понимается изменение доли отдельных единиц совокупности, из которых формируются средние, в общей их численности.

При изучении динамики средней величины задача состоит в определении степени влияния двух факторов: изменений значения осредняемого показателя и изменений структуры явления. Эта задача решается с помощью индексного метода, т. е. путем построения системы взаимосвязанных индексов, в которую включаются три индекса: переменного состава, постоянного состава и структурных сдвигов.

Индекс переменного состава представляет собой отношение двух взвешенных средних с изменяющимися (переменными) весами, показывающее изменение индексируемой средней величины. Для любых качественных показателей индекс переменного состава можно записать в общем виде: , где х1, х2 - уровни осредняемого показателя в отчетном и базисном периодах соответственно; f1, f2 - веса (частоты) осредняемого показателя в отчетном и базисном периодах соответственно.

Чтобы элимитировать влияние изменения структуры совокупности на динамику средней величины, берут отношение средних взвешенных с одними и теми же весами (как правило на уровне отчетного периода).

Индекс, характеризующий динамику средней величины при одной и той же фиксированной структуре совокупности, носит название индекса постоянного (фиксированного) состава и исчисляется в общем виде: . Индекс постоянного состава показывает, как в отчетном периоде по сравнению с базисным изменилась средняя величина показателя по какой-либо однородной совокупности за счет изменения только самой индексируемой величины, т. е. когда влияние структурного фактора устранено.

Для измерения влияния только структурных изменений на исследуемый средний показатель исчисляют индекс структурных сдвигов, как отношение среднего уровня индексируемого показателя базисного периода, рассчитанного на отчетную структуру, к фактической средней этого показателя в базисном периоде: .

25. Индексный метод в исследовании изменения сложного экономического явления за счет отдельных факторов. Взаимосвязь индексов

Индексом в статистике называют относительный показатель, характеризующий изменение величины какого-либо явления (простого или сложного) во времени, пространстве или по сравнению с любым эталоном. Основным элементом индексного отношения является индексируемая величина.

Индексируемая величина - значение признака статистической совокупности. По содержанию изучаемых величин индексы разделяют на индексы количественных и индексы качественных показателей. Индексы количественных показателей - индексы физического объема. Все индексируемые показатели этих индексов являются объемными, поскольку они характеризуют общий, суммарный размер (объем) того или иного явления и выражаются абсолютными величинами.

При расчете таких индексов количества оцениваются в одинаковых, сопоставимых ценах. Индексы качественных показателей - индексы курса валют, цен, себестоимости, производительности труда, заработной платы и т. д.

Индексируемые показатели этих индексов характеризуют уровень явления в расчете на ту или иную единицу совокупности. Такие показатели называются качественными. Они измеряют не объем, а интенсивность, эффективность явления или процесса. Как правило, они являются либо средними, либо относительными величинами.

По степени охвата единиц совокупности индексы делятся на: индивидуальные и общие. При этом под сложным явлением понимают такую статистическую совокупность, отдельные элементы которой непосредственно не подлежат суммированию. Если индексы охватывают не все элементы сложного явления, а лишь часть, то их называют групповыми или субиндексами.

По методам расчета различают индексы агрегатные и средние. Расчет индивидуальных индексов прост, их определяют вычислением отношения двух индексируемых величин: индивидуальный индекс физического объема продукции iq рассчитывается по формуле: , где q1, q0 - количество (объем) произведенного товара в текущем (отчетном) и базисном периодах соответственно; индивидуальный индекс цен iр: , где р1, р0 - цена единицы одноименной продукции в отчетном и базисном периодах соответственно.

Любые общие индексы могут быть построены двумя способами: как агрегатные и как средние из индивидуальных. (средние арифметические и средние гармонические). Агрегатные индексы качественных показателей - переменного состава и постоянного (фиксированного) состава.

Общие индексы дают обобщающую цифровую характеристику, и при помощи общих индексов обобщаются элементы совокупности с непосредственно несоизмеримыми величинами. При построении общих индексов возникают следующие проблемы:

1. необходимо выбрать элементы, которые следует объединить в одном индексе;

2. правильно выбрать соизмеритесь или вес, т. е. постоянный признак.

Выбор веса зависит от того, какой индексируется признак - количественный или качественный. Основной формой общих индексов является агрегатная форма.

Индекс агрегатной формы строится по методу сумм. Агрегатная форма применяется, если мы имеем данные поэлементные в отчетном и базисном периоде. Индекс товарооб; ин физ объе прод ; Многие статистические показатели находятся между собой в определенной связи (часто в виде произведения).

Форма взаимосвязи между такими показателями выявляется на основе теоретического анализа. Статистика характеризует эти взаимосвязи количественно. Связь между экономическими показателями образует индексные системы. Рассмотрим построение взаимосвязанных индексов на примере индексов цен, физического объема продукции (если речь идет об отпускных ценах) или физического объема товарооборота (если речь идет о розничных ценах) и индекса стоимости продукции (товарооборота в фактических ценах).

Индексы физического объема и цен являются факторными по отношению к индексу стоимости продукции (товарооборота в фактических ценах): , или . Таким образом, произведение индекса цен на индекс физического объема продукции дает индекс стоимости продукции (товарооборота в фактических ценах), т. е. образует индексную систему из этих трех индексов.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.