Альтернативные источники энергии
Проблема глобального потепления и необходимость освоения нетрадиционных источников энергии, их общедоступность и неисчерпаемость. Виды альтернативной энергии: солнечное излучение, ветер, мировой океан, биомасса; геотермальная и водородная энергетика.
Рубрика | Экономика и экономическая теория |
Вид | реферат |
Язык | русский |
Дата добавления | 19.01.2014 |
Размер файла | 2,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
Энерговооруженность общества - основа его научно-технического прогресса, база развития производительных сил. Её соответствие общественным потребностям - важнейший фактор экономического роста. Развивающееся мировое хозяйство требует постоянного наращивания энерговооруженности производства. Она должна быть надежна и с расчетом на отдаленную перспективу.
На пороге ХХI века человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Homo Sapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов - угля, нефти и газа, научился использовать энергию рек, освоил “мирный атом”, но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии.
По оценкам специалистов, мировые ресурсы угля составляют 15, а по неофициальным данным 30 триллионов тонн, нефти - 300 миллиардов тонн, газа - 220 триллионов кубометров. Разведанные запасы угля составляют 1685 миллиардов тонн, нефти - 137 миллиардов тонн, газа - 142 триллионов кубометров. Почему же наблюдается тенденция к освоению альтернативных видов энергии, при таких, казалось бы, внушительных цифрах, при том, что в последние годы в шельфовых зонах морей открыты огромные запасы нефти и газа?
Есть несколько ответов на этот вопрос. Во-первых, непрерывный рост промышленности, как основного потребителя энергетической отрасли. Существует точка зрения, что при нынешней ситуации запасов угля хватит примерно на 270 лет, нефти на 35-40 лет, газа на 50 лет. В отличие от ископаемых топлив нетрадиционные формы энергии не ограничены геологически накопленными запасами. Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.
Во-вторых, необходимость значительных финансовых затрат на разведку новых месторождений, так как часто эти работы связаны с организацией глубокого бурения (в частности, в морских условиях) и другими сложными и наукоемкими технологиями. И, в третьих, экологические проблемы, связанные с добычей энергетических ресурсов. Склады нефтепродуктов и окружающие их территории подчас напоминают “города мертвых”, а кадры кинохроники о плавающих в нефтяной пленке морских птицах и животных тревожат не только Greenpeace.
Не менее важной причиной необходимости освоения альтернативных источников энергии является проблема глобального потепления. Суть ее заключается в том, что двуокись углерода (СО2), высвобождаемая при сжигании угля, нефти и бензина в процессе получения тепла, электроэнергии и обеспечения работы транспортных средств, поглощает тепловое излучение поверхности нашей планеты, нагретой Солнцем и создает так называемый парниковый эффект.
В настоящее время выдвигаются множество различных идей и предложений по использованию всевозможных возобновляемых видов энергии. Разработка некоторых проектов еще только начинается. Так, существуют предложения по использованию энергии разложения атомных частиц, искусственных смерчей и даже энергии молнии. Проводятся эксперименты по использованию “биоэнергетики”, например, энергии парного молока для обогрева коровников.
Но существуют и “традиционные” виды альтернативной энергии. Это энергия Солнца и ветра, энергия морских волн, приливов и отливов. Есть проекты преобразования в электроэнергию газа, выделяющегося на мусорных свалках, а также из навоза на звероводческих фермах. Основным видом “бесплатной” неиссякаемой энергии по справедливости считается Солнце. В Солнце сосредоточено 99,886% всей массы солнечной системы. Солнце ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг U235.
Рассмотренные в работе новые схемы преобразования энергии можно объединить единым термином «экоэнергетика», под которым подразумеваются любые методы получения чистой энергии, не вызывающие загрязнения окружающей среды.
Энергия солнца
Солнце - неисчерпаемый источник энергии - ежесекундно дает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть её достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той её части, которую получает Земля, в 5 млрд. раз. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции. Нужно только уметь пользоваться им.
В последнее время интерес к проблеме использования солнечной энергии резко возрос. Потенциальные возможности энергетики, основанные на использовании непосредственного солнечного излучения, чрезвычайно велики.
Использование всего лишь 0,0125% энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0,5% полностью покрыть потребности на перспективу. К сожалению, вряд ли когда-нибудь эти громадные потенциальные ресурсы удастся реализовать в больших масштабах. Только очень небольшая часть этой энергии может быть практически использована. Едва ли не главная причина подобной ситуации - слабая плотность солнечной энергии. Простой расчет показывает, что если снимаемая с 1 м2 освещенной солнцем поверхности мощность в среднем составляет 160 Вт, то для генерирования 100 тыс. кВт нужно снимать энергию с площади в 1,6 км2. Ни один из известных в настоящее время способов преобразования энергии не может обеспечить экономическую эффективность такой трансформации.
Доказано, что в высоких широтах плотность солнечной энергии составляет 80-130 Вт/м2, в умеренном поясе - 130-210, а в пустынях тропического пояса - 210-250 Вт /м2. Это означает, что наиболее благоприятные условия для использования солнечной энергии существуют в развивающихся странах Африки, Южной Америки, в Японии, Израиле, Австралии, в отдельных районах США (Флорида, Калифорния). В СНГ в районах, благоприятных для этого, живет примерно 130 млн. человек, в том числе 60 млн. в сельской местности.
Например, Тибет - самая близкая к Солнцу часть нашей планеты - по праву считает солнечную энергию своим богатством. На сегодня в Тибетском автономном районе Китая построено уже более 50 тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч м2, созданы гелиотеплицы общей площадью 1 миллион м2.
Рис. 1. Распределение плотности солнечного излучения на Земле
Чтобы в полной мере использовать лучистую энергию Солнца, ее необходимо превратить в какой-либо иной вид.
Сегодня для преобразования солнечного излучения в электрическую энергию мы располагаем двумя возможностями: использовать солнечную энергию как источник тепла для выработки электроэнергии традиционными способами (например, с помощью турбогенераторов) или же непосредственно преобразовывать солнечную энергию в электрический ток в солнечных элементах. В значительно более широких масштабах солнечную энергию используют после ее концентрации при помощи зеркал - для плавления веществ, дистилляции воды, нагрева, отопления и т. д.
Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточной поверхностью.
Простейшее устройство такого рода - плоский коллектор.
Рис. 2. Плоский коллектор
В принципе это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. В пространстве между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и т. п. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше (на 200-500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парники, по сути дела, представляют собой простые коллекторы солнечного излучения. Но чем дальше от тропиков, тем менее эффективен горизонтальный коллектор, а поворачивать его вслед за Солнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавливают под определенным оптимальным углом к югу.
Более сложным и дорогостоящим коллектором является вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной геометрической точки - фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу - это позволяет собирать возможно большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов достигает 3000°С и выше.
Рис. 3. Схема работы Крымской экспериментальной СЭ
Рис. 4. Высокотемпературный гелиостат
По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.
Но, для примера, электростанция на солнечных батареях вблизи экватора с суточной выработкой 500 МВт·ч (примерно столько энергии вырабатывает довольно крупная ГЭС) при КПД, равном10%, потребовала бы эффективной поверхности около 500 тыс. м2. Ясно, что такое огромное количество солнечных полупроводниковых элементов может окупиться только тогда, когда их производство будет действительно дешево. Эффективность солнечных электростанций в других зонах Земли была бы мала из-за неустойчивых атмосферных условий, относительно слабой интенсивности солнечной радиации, которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи.
Тем не менее, солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях. Освоение космического пространства позволяет разрабатывать проекты солнечно-космических электростанций для энергоснабжения Земли. Эти станции, в отличие от земных, не только смогут получать более плотный поток теплового солнечного излучения, но и не зависеть от погодных условий и смены дня и ночи, ведь в космосе Солнце сияет с неизменной интенсивностью.
На Земле солнечные фотоэлементы используются, в первую очередь, для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радиоаппаратура, электрические бритвы и зажигалки и т.п.). С 80-х годов прошлого века фотоэлементы стали использоваться в авиации в плане строительства экспериментальных летательных аппаратов, использующих солнечные зеркала, установленные преимущественно на крыльях, в качестве источника питания для работы тяговых электродвигателей и электросистем летательного аппарата.
Продолжается изучение возможностей более широкого использования гелиоустановок: «солнечные» крыши на домах для энерго- и теплоснабжения, «солнечные» крыши на автомобилях для подзарядки аккумуляторов, «солнечные» фермы в сельских районах и т.д.
Однако не обходится без недостатков, и здесь камнем преткновения солнечной электроэнергетики является низкий КПД кремниевых элементов. Дело в том, что лишь небольшая часть солнечной энергии поглощается электронами в полупроводниках. Львиная доля падающего излучения идет на нагрев фотоэлемента (что, между прочим, ухудшает его фотоэлектрические характеристики), какая-то часть отражается, какая-то пронизывает его насквозь. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16%, у лучших образцов до 25%. В лабораторных же условиях уже достигнут КПД 40,7%.
Также существенного повышения КПД фотоэлектрических преобразователей (ФЭП) удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80% к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т.д.
Однако даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130 000 км2. Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Т.к. материалом для простейшего коллектора солнечного излучения служит металл (как правило, алюминий), то согласно расчетам специалистов, изготовление коллекторов солнечного излучения площадью в 1 км2, потребует примерно 10 тыс. тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1150 миллионов тонн.
Из вышеизложенного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики.
Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Пока ещё электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами.
Некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья или сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например, за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.д.
Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например, на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление фотоэлементов и сборка солнечных батарей на автоматизированных линиях обеспечит многократное снижение себестоимости батареи.
Наиболее вероятными материалами для фотоэлементов СЭС считаются кремний (к сожалению, ресурс его эксплуатации ограничивается 25-30 годами), Cu(In,Ga)Se2 и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.
Ученые надеются, что эксперименты, которые они проводят на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.
Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании “Боинг”. Созданный там солнечный элемент преобразует в электроэнергию 41% попавшего на него солнечного света.
Это достижение стало возможным, с одной стороны, также благодаря использованию двухслойной конструкции. Верхний слой - из арсенида галлия. Он поглощает излучение видимой части спектра. Нижний слой - из антимонида галлия и предназначен улавливать инфракрасное излучение, которое обычно теряется. С другой стороны, высокая эффективность достигается благодаря специальному покрытию, преломляющему свет и фокусирующему его на активные области солнечной ячейки.
Солнечные пруды. Солнечные пруды - еще более дешевый способ улавливать солнечную энергию. Искусственный водоем частично заполняется рассолом (очень соленой водой), поверх которого находится пресная вода. Плотность рассола гораздо выше, поэтому он остается на дне и с верхним слоем почти не смешивается. Солнечные лучи без помех проходят через пресную воду, но поглощаются рассолом, превращаясь при этом в тепло. Верхний слой действует как изоляция, не позволяя нижнему остывать. Иными словами, в солнечных прудах используется тот же принцип, что и в парниках, только земля и стекло заменены соответственно рассолом и пресной водой. Горячий раствор соли может циркулировать по трубам, отапливая помещения, или использоваться для выработки электричества; им нагревают жидкости с низкой точкой кипения, которые, испаряясь, приводит в движение турбогенераторы низкого давления. Поскольку солнечный пруд представляет собой высокоэффективный теплоаккумулятор, с его помощью можно получать энергию непрерывно
Учитывая все вышеизложенное, можно выделить основные достоинства и недостатки использования данного вида получения энергии.
Достоинства:
- общедоступность и неисчерпаемость источника;
- теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (лат. Albus - белый - характеристика отражательной способности поверхности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это маловероятно).
Недостатки:
- зависимость от погоды и времени суток;
- как следствие, необходимость аккумуляции энергии;
- большая площадь для развертывания установок.
Следует добавить, что ученые и энергетики продолжают вести работу по поиску новых более дешевых возможностей использования солнечной энергии. Предлагаются и подчас фантастические предложения, например такие, как строительство космической солнечной станции на орбите планеты, способной принимать испускаемое Солнцем излучение напрямую, без влияния атмосферы, как это происходит на поверхности Земли, к тому же постоянно. Остается лишь изобрести способ передавать полученную энергию из космоса на землю без использования электропроводов. Эта идея не кажется такой уж и фантастической, учитывая тот факт, что первые практические опыты в нашей стране по передаче энергии без проводов с помощью СВЧ-излучения были проведены под руководством профессора С.И. Тетельбаума в Киевском политехническом институте около 30 лет назад.
Две простейшие квадратные антенны со стороной квадрата 100 м при длине волны 1 см позволили передавать энергию на расстояние 50 км с КПД 40%, а на расстояние 5 км - с КПД 60%. Принимая во внимание современное состояние техники, можно полагать, что удастся существенно улучшить все показатели беспроводной линии передачи энергии с помощью СВЧ-излучения. Кто знает, возможно в ближайшем будущем подобный способ передачи будет таким же обыденным как и простая лампа накаливания в помещениях.
Энергия ветра
На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может “работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер - это очень рассеянный энергоресурс. Природа не создала “месторождения” ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда “размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо, что делает его менее “надежным”, чем Солнце.
Но, как ни странно, такой, казалось бы, непостоянный источник энергии как ветер в настоящее время активно исследуется. Поэтому ветроэнергетика активно развивается - 24% в год. Сейчас это наиболее быстро растущий сектор энергетической промышленности в мире. Во многих странах возникла новая отрасль - ветроэнергетическое машиностроение. По-видимому, и в ближайшей перспективе ветроэнергетика сохранит свои передовые позиции. Мировыми лидерами по применению энергии ветра являются США, Германия, Нидерланды, Дания, Индия. В Европе ветрогенераторы стали привычным элементом пейзажа. Например, в Дании 13% электроэнергии уже сейчас вырабатывается с помощью возобновляемых источников. Половина ветровых турбин изготавливается именно в этой стране, отсюда их развозят по всему свету.
Первоначально наибольшее распространение ветроустановки получили в сельском хозяйстве. На парусниках ветряки приводили в движение насосы и якорные механизмы. Воздушный винт использовали для привода судовых механизмов. Уже позже делались попытки использовать энергию ветра уже на научной и государственной основе.
Рис. 5. Ветрофермы, установленные на воде и на земле
Ветродвигатели
Принцип действия всех ветродвигателей один: под напором ветра вращается ветроколесо с лопастями, передавая крутящий момент через систему передач валу генератора, вырабатывающего электроэнергию, водяному насосу. Чем больше диаметр ветроколеса, тем больший воздушный поток оно захватывает и тем больше энергии вырабатывает агрегат.
Принципиальная простота дает здесь исключительный простор для конструкторского творчества, но только неопытному взгляду ветроагрегат представляется простой конструкцией.
Выход энергии не находится в линейной зависимости от длины лопасти и от скорости ветра: он растет пропорционально квадрату длины лопасти и кубу скорости ветра. Именно поэтому инженеры склоняются в пользу крупных ветродвигателей и стремятся перехватить ветер на большой высоте.
Типы ветродвигателей
Большинство типов ветродвигателей известны так давно, что история умалчивает имена их изобретателей. Основные разновидности ветроагрегатов изображены на рис. 5. Они делятся на две группы:
Рис. 6. Ветродвигатели с вертикальной осью вращения (карусельные: лопастные (1) и ортогональные (6)); ветродвигатели с горизонтальной осью вращения (крыльчатые) (2-5);
Основные разновидности ветрогенераторов
Крыльчатые
Типы крыльчатых ветродвигателей отличаются только количеством лопастей
Рис. 7. Традиционный крыльчатый ветрогенератор
Традиционная компоновка ветряков - с горизонтальной осью вращения (рис. 6) - неплохое решение для агрегатов малых размеров и мощностей. Когда же размахи лопастей выросли, такая компоновка оказалась неэффективной, так как на разной высоте ветер дует в разные стороны. В этом случае не только не удается оптимально ориентировать агрегат по ветру, но и возникает опасность разрушения лопастей.
Для крыльчатых ветродвигателей, наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастей крыльев, требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор.
Рис. 8. Внешний вид малой ВЭС с крылом-стабилизатором
Карусельные ветродвигатели обладают тем преимуществом, что могут работать при любом направлении ветра, не изменяя своего положения.
Коэффициент использования энергии ветра у крыльчатых ветродвигателей намного выше, чем у карусельных. В то же время, у карусельных ветродвигателей намного больше момент вращения. Он максимален для карусельных лопастных агрегатов при нулевой относительной скорости ветра.
Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без повышающего редуктора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше трех практически не используются.
Карусельные
Различие в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряками. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы. Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем “откуда дует ветер”, что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде.
Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. С увеличением нагрузки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки
Для того чтобы строительство ветроэлектростанции оказалось экономически оправданным, необходимо, чтобы среднегодовая скорость ветра в данном районе составляла не менее 6 метров в секунду. В нашей стране ветряки можно строить на побережьях Черного, Балтийского и Каспийского морей, в Нижнем Поволжье или на юге Западной Сибири, в Центральном Черноземном районе. Но самой большой ветропотенциал имеют побережья Северного Ледовитого и Тихого океанов, в том числе Ямал, Таймыр, Камчатка, Чукотка и близлежащие острова. В нынешнюю эпоху высоких цен на топливо можно думать, что ветродвигатели окажутся конкурентоспособными по стоимости и смогут участвовать в удовлетворении энергетических нужд страны.
Таблица 1
Суммарная установленная мощность ветростанций различных стран мира
Страна, регион |
Установленная мощность (МВт) |
|
США Дания Германия Великобритания Нидерланды Испания Греция Швеция Италия Бельгия Португалия Ирландия Франция Остальные регионы Европы Индия Китай Остальные регионы Мира |
1700 520 320 145 132 55 35 12 10 7 2 7 1 35 100 25 75 |
|
Всего |
около 3200 |
Но ветер дует почти всегда неравномерно. Значит, и, генератор будет работать неравномерно, отдавая то большую, то меньшую мощность, ток будет вырабатываться переменной частотой, а то и полностью прекратится, и притом, возможно, как раз тогда, когда потребность в нем будет наибольшей. В итоге любой ветроагрегат работает на максимальной мощности лишь малую часть времени, а в остальное время он либо работает на пониженной мощности, либо просто стоит. Для выравнивания отдачи тока применяют аккумуляторы, что и дорого, и малоэффективно.
Интенсивности ветров сильно зависят и от географии. ВЭС выгодно использовать в таких местах, где среднегодовая скорость ветра выше 3,5--4 м/с для небольших станций и выше 6 м/с для станций большой мощности. В нашей стране зоны со скоростью ветра 6 м/с расположены, в основном на Крайнем Севере, вдоль берегов Ледовитого океана, где потребности в энергии минимальны (табл. 2).
Но совершенно ясно, что даже к одному работающему ветряку близко подходить не желательно, и притом с любой стороны, так как при изменениях направления ветра направление оси ротора тоже изменяется. Для размещения же сотен, тысяч и тем более миллионов ветряков потребовались бы обширные площади в сотни тысяч гектаров.
глобальный альтернативный нетрадиционный энергия
Таблица 2
Возможности использования энергии ветра
Район |
Ср. скорость ветра, м/с |
Возможные типы ВЭС |
|
Побережье Ледовитого океана, отдельные места у берегов Каспийского моря |
> 6 |
Крупные ВЭС по 3 - 4 МВт |
|
Европейская часть СНГ, Западная Сибирь, Казахстан, Дальний Восток, Камчатка |
3,5-6 |
ВЭС средней мощности |
|
Юг Средней Азии, Восточная Сибирь |
< 3,5 |
Мелкие ВЭС для решения локальных задач |
Дело в том, что ветроагрегаты близко друг к другу ставить нельзя, так как они могут создавать взаимные помехи в работе, "отнимая ветер" один от другого. Минимальное расстояние между ветряками должно быть не менее их утроенной высоты. Поэтому для размешения ветряной станции высокой мощности требуется большие площади.
При этом необходимо иметь в виду, что уже ничего другого на этой площади делать будет нельзя. Работающие ветродвигатели создают значительный шум, и что особенно плохо -- генерируют неслышимые ухом, но вредно действующие на людей инфразвуковые колебания с частотами ниже 16 Гц.
Кроме этого, ветряки распугивают птиц и зверей, нарушая их естественный образ жизни, а при большом их скоплении на одной площадке -- могут существенно исказить естественное движение воздушных потоков с непредсказуемыми последствиями. Неудивительно, что во многих странах, в том числе в Ирландии, Англии и других, жители неоднократно выражали протесты против размещения ВЭС вблизи населенных пунктов и сельскохозяйственных угодий, а в условиях густо населенной Европы это означает -- везде.
Поэтому было выдвинуто предложение о размещении систем ветряков в открытом море. Но в то же время строительство и последующая эксплуатация, обслуживание будут обходиться не дешево. В Швеции было начато строительство одной ВЭС мощностью 200 кВт на расстоянии 250 м от берега, которая будет передавать энергию на землю по подводному кабелю. Аналогичные проекты были и у нас: предлагали устанавливать ветряки и на акватории Финского залива, и на Арабатской стрелке в Крыму. Помимо сложности и дороговизны подобных проектов, их реализация создала бы серьезные помехи судоходству, рыболовству, а также оказало бы все те же вредные экологические воздействия, о которых говорилось ранее. Поэтому и эти планы вызывают движения протеста в частности по поводу пагубного влияния на рыб.
Из всего сказанного следует вывод. Ветрогенераторы могут быть полезными в районах Крайнего Севера, например -- на льдинах у зимовщиков, или в некоторых других районах, куда затруднена подача энергии в других формах, и где потребности в энергии относительно невелики. Ветровые двигатели не загрязняют окружающую среду, но они очень громоздкие и шумные. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры. И, тем не менее, всего одна электростанция, работающая на ископаемом топливе, может заменить по количеству полученной энергии тысячи ветряных турбин.
Энергия мирового океана
В Мировом Океане скрыты колоссальные запасы энергии. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной. Но принимая во внимание тот факт, что в настоящее время происходит весьма быстрое истощение запасов ископаемых топлив (прежде всего нефти и газа), использование которых к тому же связано с существенным загрязнением окружающей среды (включая сюда также и тепловое "загрязнение", выделение СО2), резкая ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляет ученых и инженеров уделять все большее внимание поискам альтернативных источников энергии, к которой в полной мере можно приписать и огромные ресурсы Мирового океана. Широкая общественность, да и многие специалисты еще не знают, что поисковые работы по извлечению энергии из морей и океанов приобрели в последние годы в ряде стран уже довольно большие масштабы и что их перспективы становятся все более обещающими. Океан таит в себе несколько различных видов энергии: энергию океанских течений, энергию приливов и отливов, термальную энергию, и др.
Энергия морских течений
Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, «погруженным» в атмосферу).
Важнейшее и самое известное морское течение - Гольфстрим. Его основная часть проходит между полуостровом Флорида и Багамскими островами. Ширина течения составляет 60 км, глубина до 800 м, а поперечное сечение 28 км2. Подсчитанная энергия, которую несет в себе Гольфстрим, составляет приблизительно 50 тыс. МВт. Но эта цифра чисто теоретическая, а практически можно рассчитывать на использование лишь около 10% энергии течения.
Но сможет ли человек генерировать энергию, извлекая ее из подводных течений. «Сможет» - таково в 1974 году было заключение Комитета Мак-Артура, находящегося под эгидой Национального управления по исследованию океана и атмосферы в Майами (Флорида). Общее мнение заключалось в том, что имеют место определенные проблемы, но все они могут быть решены в случае выделения ассигнований, так как "в этом проекте нет ничего такого, что превышало бы возможности современной инженерной и технологической мысли".
Рис. 9. Электростанции, использующие энергию водных течений
Станции, генерирующие электроэнергию из подводных течений, по принципу работы схожи с ветровыми электростанциями, с одной лишь разницей, что лопасти генератора находятся под водой. Такие электростанции также дороги в строительстве и обслуживании. Не обходится без недостатков, таких как, например, негативные последствия для обитателей океана - строительство большого количества таких станций неминуемо повлияет на сами течения, в частности, смешение нижних и верхних слоев вод. В случае с Гольфстримом это недопустимо.
Энергия приливов и отливов
Столетиями люди думали и размышляли над природой морских приливов и отливов. Сегодня мы точно знаем, что это грандиозное явление природы - ритмичное движение морских вод провоцируют силы притяжения Солнца и Луны. Так как наше Солнце расположено от Земли в 400 раз дальше, то гораздо более скромная масса Луны оказывает действие на земные воды вдвое большее, чем масса Солнца. Поэтому определяющую роль играет именно прилив, вызванный Луной (лунный прилив).
По оценкам экспертов организации «Greenpeace», ресурсы приливной энергии в мире таковы, что их использование позволит получить количество энергии, превышающее современные потребности человечества в электричестве в 5 тыс. раз.
На морских просторах приливы сменяются отливами теоретически через 6 часов 12 минут 30 секунд. Если Луна, Солнце и Земля находятся на одной прямой линии (сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает более сильный прилив (сизигийный прилив, или большая вода). А когда Солнце находится под прямым углом к отрезку прямой Земля-Луна (квадратура), имеет место слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы сменяют друг друга через 7 дней.
Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер. Для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые «бассейны».
Рис. 10. Крупнейшая в мире приливная электростанция на реке Ля Ранс, Франция
Приливная электростанция (ПЭС) -- особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 13 метров.
Для их использования сооружаются плотины, образуется водоем - бассейн приливной электростанции и при достаточной высоте прилива создается напор. Сила падения воды, проходящей через гидротурбины, вращает их и приводит в движение генераторы электрического тока. На однобассейновой приливной станции двойного действия, работающей как во время прилива, так и во время отлива, можно вырабатывать электроэнергию четыре раза в сутки в течение 4-5 часов во время наполнения и опорожнения бассейна. Агрегаты такой станции должны быть приспособлены к работе в прямом и обратном режимах и служить как для производства электроэнергии, так и для перекачки воды.
Крупная приливная электростанция мощностью 240МВт работает в устье реки Ля Ранс (рис. 10). Она действует в сочетании с другими электростанциями в качестве пиковой (т.е. покрывающей потребность в электроэнергии в часы пик). Система использует двадцать четыре 10-мегаваттных турбины Каплана и ежегодно производит около 50 ГВт*ч электроэнергии. Амплитуда прилива в устье реки составляет 14 м, бассейн площадью 22 км2, который содержит 180 млн м3 полезной воды.
В России в 1968 г. вступила в строй небольшая приливная электростанция на побережье Баренцева моря в губе Кислой. Разработаны проекты Мезенской приливной электростанции на берегу Белого моря, а также Пенжинской и Тугурской не берегу Охотского моря.
Существуют проекты строительства подводных электростанций-турбин, которые будут собраны на дне моря и станут работать от быстрых течений, вызванных приливами и отливами (рис. 11).
Рис. 11. Проект подводной станции
Турбины будут находиться на глубине, достаточной для прохождения на ними судов, любого водоизмещения. Негативное влияние на экологию предполагается даже меньшим, чем у традиционных «барьерных» приливных электростанций, препятствующих миграции рыб, например лососю, сельди и угрю.
Ожидается, что мощности станции хватит на обеспечение потребности в электроэнергии 200 000 домов. Внешний вид турбин обусловлен существующей технологией, применяющейся при производстве нефтяных платформ. Каркас, весом 2500 тон, служит основой для насоса, генератора, мотора и электроники. Возможными местами размещения таких электростанций может быть залив Пентланд в Шотландии, где станция могла бы дать 10 тыс. МВт, пролив Св. Георгия, акваторий острова Уайт и Нормандских островов, а также Южная Корея.
Преимуществами ПЭС является сравнительная экологичность и низкая себестоимость производства энергии. Недостатками -- во-первых, высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в составе энергосистемы, располагающей достаточной мощностью электростанций других типов. Во-вторых, недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым -- условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения. Морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.
Энергия волн
В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.
Один из проектов использования морских волн основан на принципе колеблющегося водяного столба. В гигантских «коробах» без дна и с отверстиями вверху под влиянием волн уровень воды то поднимается, то опускается. Столб воды в коробе действует наподобие поршня: засасывает воздух и нагнетает его в лопатки турбин. Главную трудность здесь составляет согласование инерции рабочих колес турбин с количеством воздуха в коробах, так чтобы за счет инерции сохранялась постоянной скорость вращения турбинных валов в широком диапазоне условий на поверхности моря.
Тепловая энергия океана
Температура воды океана в разных местах различна. Между тропиком Рака и тропиком Козерога поверхность воды нагревается до 82 градусов по Фаренгейту (27 C). На глубине в 2000 футов (600 метров) температура падает до 35,36,37 или 38 градусов по Фаренгейту (2-3.5 С). Возникает вопрос: есть ли возможность использовать разницу температур для получения энергии? Могла бы тепловая энергоустановка, плывущая под водой, производить электричество? Да, это оказалось возможным.
За последние десятилетия достигнуты определенные успехи в использовании тепловой энергии океана. Были созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС - начальные буквы английских слов Осеаn Тhеrmal Energy Conversion, т.e. преобразование тепловой энергии океана. Пробная эксплуатация установки мини-ОТЕС в течение трех с половиной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, не считая мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Полная мощность установки составляла в среднем 48,7 кВт, максимальная -53 кВт; 12 кВт (максимум 15) установка отдавала на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.
Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости быстро отсоединить трубопровод. Полиэтиленовая труба одновременно используется и для заякоривания системы труба-судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.
Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это - одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования энергии. Верхний конец трубопровода холодной воды расположится в океане на глубине 25-50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. Масса всего сооружения превышает 300 тыс. т.
Подводя итог, можно выделить то, что энергетические ресурсы мирового океана поистине колоссальны. Пусть человек пока и не в состоянии использовать их полностью, но работы над этим ведутся, создаются все более и более совершенные агрегаты для генерирования энергии океана в электроэнергию. Главным критерием производства и эксплуатации данных установок по-прежнему является финансовый вопрос. К сожалению, на данном этапе технического развития человек не в состоянии избежать негативного влияния на природу.
Геотермальная энергия
Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. История человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится - пока у людей нет ни возможностей, ни технологий, чтобы обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это - проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.
Геотермальная энергетика -- направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях.
Недра Земли таят в себе огромный, практически неисчерпаемый источник энергии. Ежегодное излучение внутреннего тепла на нашей планете составляет 2,8·1014 млрд. кВт·ч. Оно постоянно компенсируется радиоактивным распадом некоторых изотопов в земной коре.
Источники же геотермальной энергии могут быть двух типов. Первый тип - это подземные бассейны естественных теплоносителей - горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.
Второй тип - это тепло горячих горных пород. Закачивая в такие горизонты воду, можно также получить пар или перегретую воду для дальнейшего использования в энергетических целях. Высокие горизонты пород с температурой менее 100°C распространены и на множестве геологически малоактивных территориях, потому наиболее перспективным считается использование геотерм в качестве источника тепла. Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты, в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.
Рис. 12. Геотермальная ЭС в Исландии
На 2006 г. в России разведано 56 месторождений термальных вод. На двадцати месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).
От того, какой источник геотермальной энергии используется, зависит устройство станции. Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Например, в Западной Сибири имеется подземное море площадью 3 млн. м2 с температурой воды 70--90 °С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, Казахстане, на Камчатке и в ряде других районов России.
Следует сказать, что потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновимых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, в которых отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.
Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х -- около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт.
Но в обоих вариантах использования главный недостаток заключается, пожалуй, в очень слабой концентрации геотермальной энергии. Впрочем, в местах образования своеобразных геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низко- и среднетемпературные (с температурой до 130-150С) и высокотемпературные (свыше 150). От температуры во многом зависит характер их использования.
Итак, можно утверждать, что геотермальная энергия имеет четыре выгодные отличительные черты.
Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива.
Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара.
В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.
Наконец, в-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.
Подводя итог, вкратце можно сказать, что достоинствами геотермальной энергии можно считать практическую неисчерпаемость ресурсов, независимость от внешних условий, времени суток и года, возможность комплексного использования термальных вод для нужд теплоэлектроэнергетики и медицины. Недостатками же ее являются высокая минерализация термальных вод большинства месторождений и наличие токсичных соединений и металлов, что исключает в большинстве случаев сброс термальных вод в природные водоемы и необходимость ее обратной закачки в подземные «хранилища».
Водородная энергетика
Водородная энергетика -- развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики).
...Подобные документы
Особенности решении проблемы ресурсообеспечения человечества с соблюдением экологического императива. Угроза исчерпания природных ресурсов, поиски источников энергии, понятие автотрофного существования и роль солнечной энергии в развитии человека.
контрольная работа [26,5 K], добавлен 26.03.2013Производство, передача, распределение электрической и тепловой энергии. Эксплуатация, монтаж наладка, ремонт и реконструкция энергообектов и оборудования. Создание и освоение навой техники и технологий. Оказание услуг, связанных с реализацией энергии.
курсовая работа [67,5 K], добавлен 07.03.2009Топливно-энергетический комплекс как основа экономики. Становление отечественной нефтяной промышленности: история династии Нобелей, российский период. Деятельность "Товарищества нефтяного производства", его роль в развитии нефтедобывающей отрасли России.
курсовая работа [29,3 K], добавлен 10.01.2013Энергетическая база Украины. Алгоритм реструктуризационных изменений рынка тепловой энергии Украины. Формы собственности генерирующих мощностей. Проблемы тепловой энергетики Украины. Приватизация и приток инвестиций в тепловую энергетику Украины.
курсовая работа [895,4 K], добавлен 09.12.2007Значение инвестиций для энергетического комплекса. Инвестирование в альтернативные источники энергии. Современное состояние и проблемы инвестирования российского энергетического комплекса. Анализ перспектив развития инвестирования российской энергетики.
курсовая работа [857,2 K], добавлен 29.11.2016Паросиловые установки как новый источник энергии. Централизованное теплоснабжение на базе комбинированного производства тепловой и электрической энергии. Изучение организации энергетического хозяйства в ЗАО "ЗКПД-4 Инвест" и его технической подготовки.
курсовая работа [58,4 K], добавлен 01.04.2009Саморегулирование на оптовом рынке электрической энергии России. Реализационные договоры на розничных рынках электрической энергии. Оценка вероятности банкротства энергетического предприятия при помощи различных моделей, пути его предотвращения.
дипломная работа [1,5 M], добавлен 03.07.2016- Расчет электрической нагрузки промышленного предприятия и годового потребления электрической энергии
Разработка сетевого графика. Элементы затрат электроэнергетической составляющей себестоимости продукции. Стоимость электрической энергии, потребляемой промышленным предприятием. Годовой фонд заработной платы рабочих и инженерно-технических работников.
курсовая работа [181,9 K], добавлен 05.03.2015 Расчет абсолютных и удельных капиталовложений в строительство станции, ее энергетических показателей, издержек производства электрической и тепловой энергии по элементам. Составление калькуляции проектной себестоимости электрической и тепловой энергии.
курсовая работа [87,6 K], добавлен 07.08.2013Расчет вложений капитала в новое строительство электростанции, вычисление энергетических показателей ее работы. Анализ издержек производства электрической и тепловой энергии по экономическим элементам затрат. Калькуляция проектной себестоимости энергии.
курсовая работа [107,7 K], добавлен 07.08.2013Определение суммарной паспортной мощность турбин теплоэлектростанции. Расчет объема производства энергии, капитальных вложений, численности персонала, фонда заработной платы, затрат на топливо. Расчет себестоимости производства энергии, ее калькуляция.
курсовая работа [50,5 K], добавлен 06.06.2012Топливно-энергетический баланс России на период до 2030 года, стратегические инициативы развития данного комплекса. Ядерно-топливный цикл и атомная энергетика. Использование возобновляемых источников энергии и местных видов топлива. Прогноз инвестиций.
презентация [2,1 M], добавлен 16.06.2014Тенденции глобального потепления климата планеты. Методы статистического анализа и наблюдения за изменением климата на примере Санкт-Петербурга за последние сто лет. Вычисление среднегодовой сезонной температуры, построение графика ее общего изменения.
курсовая работа [1,2 M], добавлен 22.12.2010Расчет расходной части энергетического баланса теплоэлектроцентрали ремонтного предприятия. Определение мощности ТЭЦ, количества и типа турбин и котлов. Расчет годовой выработки энергии и годового расхода топлива. Определение себестоимости энергии.
курсовая работа [358,0 K], добавлен 25.04.2015Определение потребности предприятия в тепловой энергии. Расчет показателей котельной и норм расхода тепловой энергии на обогрев. Определение себестоимости отпущенной теплоты и энергозатрат предприятия. Эффективность мероприятий по экономии топлива.
курсовая работа [325,2 K], добавлен 28.02.2012Прогнозирование отказов тепловых сетей. Уравнение тренда изменения количества отказов тепловых сетей по различным причинам. Годовые издержки производства (эксплуатационные расходы), связанные с передачей тепловой энергии, расчет ее плановой себестоимости.
курсовая работа [884,2 K], добавлен 15.11.2010Определение затрат в схемы теплоснабжения поселка городского типа. Определение часовой нагрузки на процессы отопления и горячего водоснабжения. Расчет себестоимости выработки тепловой энергии при использовании котельной. Расчет рентабельности инвестиций.
курсовая работа [123,2 K], добавлен 09.12.2013Понятие и виды материальных потребностей, отличия между товарами и услугами. Классификация экономических ресурсов и факторов производства, их назначение. Оценка ограниченности ресурсов и необходимость поиска альтернативных ресурсов и средств энергии.
контрольная работа [27,4 K], добавлен 16.11.2009Прогнозирование инвестиций в проект по внедрению возобновляемых источников энергии. Использование специальных вычислительных и логических приемов, позволяющих определить параметры функционирования отдельных элементов производительных сил, их взаимосвязи.
контрольная работа [2,1 M], добавлен 11.12.2010Пути роста производительности труда: углубление разделения труда и привлечение внешних источников энергии. Основные законы сохранения стационарного состояния открытых систем. Социально-экологические последствия капиталистической формы производства.
реферат [19,1 K], добавлен 10.10.2015