Альтернативные источники энергии

Проблема глобального потепления и необходимость освоения нетрадиционных источников энергии, их общедоступность и неисчерпаемость. Виды альтернативной энергии: солнечное излучение, ветер, мировой океан, биомасса; геотермальная и водородная энергетика.

Рубрика Экономика и экономическая теория
Вид реферат
Язык русский
Дата добавления 19.01.2014
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В свободном состоянии и при нормальных условиях водород -- бесцветный газ, без запаха и вкуса. Относительно воздуха водород имеет плотность 1/14. Он обычно и существует в комбинации с другими элементами, например, кислорода в воде, углерода в метане и в органических соединениях. Поскольку водород химически чрезвычайно активен, он редко присутствует как несвязанный элемент.

Охлажденный до жидкого состояния водород занимает 1/700 объема газообразного состояния. Водород при соединении с кислородом имеет самое высокое содержание энергии на единицу массы: 120.7 ГДж/т. Это -- одна из причин, почему жидкий водород используется как топливо для ракет и энергетики космического корабля, для которой малая молекулярная масса и высокое удельное энергосодержание водорода имеют первостепенное значение.

Добавление водорода к обычному топливу двигателей внутреннего сгорания и газовых турбин приводит к увеличению КПД и уменьшению уровня вредных выбросов.

Рис. 13. Области применения водорода и водородсодержащего газа

Запасы водорода, связанного в органическом веществе и в воде, практически неисчерпаемы. Разрыв этих связей позволяет производить водород и затем использовать его как топливо. Разработаны многочисленные процессы по разложению воды на составные элементы.

Рис. 14. Источники и пути получения водорода

Одним из источников производства водорода является природное топливо: метан, уголь, древесина и т.д. При взаимодействии топлива с парами воды или воздухом образуется синтез-газ - смесь СО и Н2 (рис. 14). Из нее затем выделяется водород.

Другой источник - отходы сельскохозяйственного производства, из которых получают биогаз, а затем - синтез-газ. Промышленно-бытовые отходы тоже используются для производства синтез-газа, что способствует одновременно и решению экологических проблем, в плане их утилизации. В конечном счете, образуются углекислый газ, водород и окись углерода.

Водород можно получать также электролизом воды, то есть разложением ее под воздействием электрического тока. Электролитический водород является наиболее доступным, но дорогим продуктом. В промышленных и опытно-промышленных установках реализован КПД электролизера ~ 70-80% при плотностях тока менее 1 А/см2, в том числе для электролиза под давлением. Японские исследователи разработали экспериментальные мембранно-электродные блоки с твердополимерным электролитом, обеспечивающие электролиз воды с КПД (по электричеству) > 90% при плотностях тока 3 А/см2.

Очень важным элементом при преобразовании газа, содержащего водород, является очистка газа на палладиевых мембранах. В конечном счете получается чистый водород.

Так как водород - это взрывоопасный газ, то особое место в его использовании занимает вопрос хранения. Самый эффективный из них - это баллоны. Если баллон выдерживает 300 атмосфер, то в нем можно хранить 13% (масс) водорода; 500 атм. - 11%. В США разработаны баллоны, рассчитанные на 700 атм. Они хранят 9% водорода. Удобно хранить водород в сжиженном состоянии. Хорошие способы его хранения - адсорбция водорода в гидридах металлов (порядка 3%) и в интерметаллидах (до 5%). Есть идеи и проводятся уже эксперименты по таким способам хранения водорода, как углеродные наноматериалы, нанотрубки и стеклянные микросферы.

В Европе в конце XIX столетия сжигали топливо, называемое «городской, или синтез-газ» -- смесь водорода и монооксида углерода (СО). Несколько стран, включая Бразилию и Германию, кое-где все еще применяют это топливо. Применяли водород и для перемещения по воздуху (дирижабли и воздушные шары), начиная с первого полета во Франции 27 августа 1784 г. Жака Шарля на воздушном шаре, наполненным водородом. В настоящее время многие отрасли промышленности используют водород для очистки нефти и для синтеза аммиака и метанола. Американская космическая система «Шаттл» использовала водород как топливо для блоков разгона. Водород применяется и для запуска ракеты-носителя «Энергия».

Сейчас наблюдается новый всплеск интереса к масштабной атомно-водородной энергетике, основным инициатором которого явились автомобилестроительные гиганты. Водород имеет много преимуществ в качестве топлива для транспортных средств и автомобильная промышленность активно включилась в его использование. Автомашины и камеры сгорания летательных аппаратов сравнительно легко конвертируются на применение водорода в качестве топлива. Первые созданные образцы использовали водород в баллонах. Затем появились автомобили с водородом, химически связанным в метиловом спирте (метаноле). В 2002 г. продемонстрированы первые варианты машин, в которых водород генерируется из бензина.

Первый автомобиль на топливных элементах был показан компанией Daimler-Benz в 1994 г. К 2000 г. был готов улучшенный образец NECAR-4, намеченный к опытному выпуску с 2004 г. Топливные элементы и бак, содержащий 100 л жидкого водорода, расположены под полом, что обеспечивает достаточное пространство в салоне для пассажиров и багажа. Мощность электромотора -- 74 л.с., максимальная скорость -- 160 км/ч, запас хода -- 450 км. Движение начинается сразу после нажатия на педаль акселератора. 90% максимальной мощности двигателя достигается за две секунды. Автомобиль с топливными элементами имеет динамику, сопоставимую с машинами, оснащенными бензиновыми или дизельными моторами.

Итак, водород - хорошая замена сегодняшним видам топлива. До недавнего времени использующийся лишь в космической сфере, сегодня, в век нависающей над человечеством экологической катастрофы и энергетического кризиса, он стал активно внедряться в жизнь как источник чистой энергии.

Энергия биомассы

Понятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз).

Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х годов в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение получило производство спирта.

Одно из наиболее перспективных направлений энергетического использования биомассы - производство из неё биогаза, состоящего на 50-80% из метана и на 20-50% из углекислоты. Его теплотворная способность - 5-6 тыс. ккал/м3 .

Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 10-12 м3 метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома злаковых культур, может дать около 20 млрд. м3 метана. В хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника, из которых можно получить до 2 млрд. м3 метана. Для тех же целей возможна утилизация ботвы культурных растений, трав и др.

Биогаз можно конвертировать в тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтез-газа и искусственного бензина.

Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую. Установки по производству биогаза размещают, как правило, в районе крупных городов, центров переработки сельскохозяйственного сырья.

Одним из наиболее необычных видов использования отходов человеческой деятельности является получение электроэнергии из мусора. Проблема городских свалок стала одной из наиболее актуальных проблем современных мегаполисов. Но, оказывается, их можно еще использовать для производства электроэнергии. Разлагаясь на свалках, мусор выделяет газ, 50-55% которого приходится на метан, а 45-50% - на углекислый газ и около одного процента - на другие соединения. Если раньше выделяемый газ просто отравлял воздух, то теперь в его начинают использовать в качестве горючего в двигателях внутреннего сгорания с целью выработки электроэнергии. Только в мае 1993 года 114 электростанций, работающих на газе от свалок, произвели 344 МДж электроэнергии. Самая крупная из них, в городе Уиттиер, производит за год 50 МДж. Станция мощностью 12 МВт способна удовлетворить потребность в электроэнергии жителей 20 000 домов. По подсчетам специалистов, газа на свалках хватит для работы небольших станций на 30-50 лет. При наличии эффективной технологии мы могли бы сократить количество мусорных “курганов”, а заодно значительно пополнить и восполнить запасы энергии, благо “дефицита сырья” для ее производства не предвидится.

ЗАКЛЮЧЕНИЕ

В обозримом будущем природное топливо по-прежнему будет важным источником энергии. Однако природные ресурсы ограничены, и, в конце концов, человечество будет вынуждено перейти на использование альтернативных видов энергии, о чем с незапамятных времен мечтают защитники окружающей среды.

Теоретически, каждое предприятие, здание, жилой дом и автомобиль может иметь свой собственный экологически чистый, возобновляемый источник энергии, что позволит человечеству обходиться без нефтяных скважин, угольных шахт, электростанций, линий электропередачи и избавиться, таким образом, от всех негативных последствий их использования. Однако на данный момент перед человечеством стоит более неотложная задача: остановить перегревание планеты и сделать это как можно быстрее. Благодаря автомобилям с топливными элементами, более совершенным ветровым турбинам и солнечным элементам, и другим описанным в данном реферате проектам, внедрение которых уже становится реальностью, угроза глобального потепления кажется теперь не столь устрашающей, какой она представлялась еще несколько лет назад.

Размещено на Allbest.ru

...

Подобные документы

  • Особенности решении проблемы ресурсообеспечения человечества с соблюдением экологического императива. Угроза исчерпания природных ресурсов, поиски источников энергии, понятие автотрофного существования и роль солнечной энергии в развитии человека.

    контрольная работа [26,5 K], добавлен 26.03.2013

  • Производство, передача, распределение электрической и тепловой энергии. Эксплуатация, монтаж наладка, ремонт и реконструкция энергообектов и оборудования. Создание и освоение навой техники и технологий. Оказание услуг, связанных с реализацией энергии.

    курсовая работа [67,5 K], добавлен 07.03.2009

  • Топливно-энергетический комплекс как основа экономики. Становление отечественной нефтяной промышленности: история династии Нобелей, российский период. Деятельность "Товарищества нефтяного производства", его роль в развитии нефтедобывающей отрасли России.

    курсовая работа [29,3 K], добавлен 10.01.2013

  • Энергетическая база Украины. Алгоритм реструктуризационных изменений рынка тепловой энергии Украины. Формы собственности генерирующих мощностей. Проблемы тепловой энергетики Украины. Приватизация и приток инвестиций в тепловую энергетику Украины.

    курсовая работа [895,4 K], добавлен 09.12.2007

  • Значение инвестиций для энергетического комплекса. Инвестирование в альтернативные источники энергии. Современное состояние и проблемы инвестирования российского энергетического комплекса. Анализ перспектив развития инвестирования российской энергетики.

    курсовая работа [857,2 K], добавлен 29.11.2016

  • Паросиловые установки как новый источник энергии. Централизованное теплоснабжение на базе комбинированного производства тепловой и электрической энергии. Изучение организации энергетического хозяйства в ЗАО "ЗКПД-4 Инвест" и его технической подготовки.

    курсовая работа [58,4 K], добавлен 01.04.2009

  • Саморегулирование на оптовом рынке электрической энергии России. Реализационные договоры на розничных рынках электрической энергии. Оценка вероятности банкротства энергетического предприятия при помощи различных моделей, пути его предотвращения.

    дипломная работа [1,5 M], добавлен 03.07.2016

  • Разработка сетевого графика. Элементы затрат электроэнергетической составляющей себестоимости продукции. Стоимость электрической энергии, потребляемой промышленным предприятием. Годовой фонд заработной платы рабочих и инженерно-технических работников.

    курсовая работа [181,9 K], добавлен 05.03.2015

  • Расчет абсолютных и удельных капиталовложений в строительство станции, ее энергетических показателей, издержек производства электрической и тепловой энергии по элементам. Составление калькуляции проектной себестоимости электрической и тепловой энергии.

    курсовая работа [87,6 K], добавлен 07.08.2013

  • Расчет вложений капитала в новое строительство электростанции, вычисление энергетических показателей ее работы. Анализ издержек производства электрической и тепловой энергии по экономическим элементам затрат. Калькуляция проектной себестоимости энергии.

    курсовая работа [107,7 K], добавлен 07.08.2013

  • Определение суммарной паспортной мощность турбин теплоэлектростанции. Расчет объема производства энергии, капитальных вложений, численности персонала, фонда заработной платы, затрат на топливо. Расчет себестоимости производства энергии, ее калькуляция.

    курсовая работа [50,5 K], добавлен 06.06.2012

  • Топливно-энергетический баланс России на период до 2030 года, стратегические инициативы развития данного комплекса. Ядерно-топливный цикл и атомная энергетика. Использование возобновляемых источников энергии и местных видов топлива. Прогноз инвестиций.

    презентация [2,1 M], добавлен 16.06.2014

  • Тенденции глобального потепления климата планеты. Методы статистического анализа и наблюдения за изменением климата на примере Санкт-Петербурга за последние сто лет. Вычисление среднегодовой сезонной температуры, построение графика ее общего изменения.

    курсовая работа [1,2 M], добавлен 22.12.2010

  • Расчет расходной части энергетического баланса теплоэлектроцентрали ремонтного предприятия. Определение мощности ТЭЦ, количества и типа турбин и котлов. Расчет годовой выработки энергии и годового расхода топлива. Определение себестоимости энергии.

    курсовая работа [358,0 K], добавлен 25.04.2015

  • Определение потребности предприятия в тепловой энергии. Расчет показателей котельной и норм расхода тепловой энергии на обогрев. Определение себестоимости отпущенной теплоты и энергозатрат предприятия. Эффективность мероприятий по экономии топлива.

    курсовая работа [325,2 K], добавлен 28.02.2012

  • Прогнозирование отказов тепловых сетей. Уравнение тренда изменения количества отказов тепловых сетей по различным причинам. Годовые издержки производства (эксплуатационные расходы), связанные с передачей тепловой энергии, расчет ее плановой себестоимости.

    курсовая работа [884,2 K], добавлен 15.11.2010

  • Определение затрат в схемы теплоснабжения поселка городского типа. Определение часовой нагрузки на процессы отопления и горячего водоснабжения. Расчет себестоимости выработки тепловой энергии при использовании котельной. Расчет рентабельности инвестиций.

    курсовая работа [123,2 K], добавлен 09.12.2013

  • Понятие и виды материальных потребностей, отличия между товарами и услугами. Классификация экономических ресурсов и факторов производства, их назначение. Оценка ограниченности ресурсов и необходимость поиска альтернативных ресурсов и средств энергии.

    контрольная работа [27,4 K], добавлен 16.11.2009

  • Прогнозирование инвестиций в проект по внедрению возобновляемых источников энергии. Использование специальных вычислительных и логических приемов, позволяющих определить параметры функционирования отдельных элементов производительных сил, их взаимосвязи.

    контрольная работа [2,1 M], добавлен 11.12.2010

  • Пути роста производительности труда: углубление разделения труда и привлечение внешних источников энергии. Основные законы сохранения стационарного состояния открытых систем. Социально-экологические последствия капиталистической формы производства.

    реферат [19,1 K], добавлен 10.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.