Общая теория статистики

Понятие о статистике, обобщающие статистические показатели и вариационные ряды распределения. Статистическое изучение структуры совокупности, понятие и способы выборочного наблюдения. Показатели ряда динамики и статистическое изучение взаимосвязей.

Рубрика Экономика и экономическая теория
Вид учебное пособие
Язык русский
Дата добавления 04.11.2014
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

По характеру изменений x и y в парной корреляции различают прямую и обратную связь. При прямой связи значения обоих признаков изменяются в одном направлении, т.е. с увеличением (уменьшением) значений x увеличиваются (уменьшаются) и значения y. При обратной связи значения факторного и результативного признаков изменяются в разных направлениях.

Изучение корреляционных связей сводится в основном к решению следующих задач:

1) выявление наличия (отсутствия) корреляционной связи между изучаемыми признаками;

2) измерение тесноты связи между двумя (и более) признаками с помощью специальных коэффициентов (эта часть исследования именуется корреляционным анализом);

3) определение уравнения регрессии - математической модели, в которой среднее значение результативного признака у рассматривается как функция одной или нескольких переменных - факторных признаков (эта часть исследования именуется регрессионным анализом).

Общий термин «корреляционно-регрессионный анализ» подразумевает всестороннее исследование корреляционных связей (т.е. решение всех трех задач).

Корреляционно-регрессионный анализ находит широкое применение в статистике. Рассмотрим его практическое применение на примере данных таможенной статистики внешней торговли России в 2006 году - таблица 39.

Таблица 39. Величина внешнеторгового оборота и таможенных платежей

Месяц

Оборот,

млрд.долл.

Платеж,

млрд.руб.

Январь

27,068

172,17

Февраль

29,889

200,90

Март

34,444

231,83

Апрель

33,158

232,10

Май

37,755

233,40

Июнь

37,554

236,99

Июль

37,299

246,53

Август

40,370

253,62

Сентябрь

37,909

256,43

Октябрь

38,348

261,89

Ноябрь

39,137

259,36

Декабрь

46,298

278,87

В качестве факторного признака x примем стоимостной внешнеторговый товарооборот в млрд. долл. США, а в качестве результативного признака y - величину таможенных платежей в федеральный бюджет в млрд. руб.

7.2 Методы выявления и оценки корреляционной связи

Для выявления наличия и характера корреляционной связи между двумя признаками в статистике используется ряд методов.

1. Рассмотрение параллельных данных (значений x и y в каждой из n единиц). Единицы наблюдения необходимо расположить по возрастанию значений факторного признака х (как в таблице справа) и затем сравнить с ним (визуально) поведение результативного признака у.

В нашей задаче в 6 случаях по мере увеличения значений x увеличиваются и значения y, а в 5 случаях этого не происходит, поэтому затруднительно говорить о прямой связи между х и у.

2. Графический метод - это графическое изображение корреляционной зависимости. Для этого, имея n взаимосвязанных пар значений x и y и пользуясь прямоугольной системой координат, каждую такую пару изображают в виде точки на плоскости с координатами x и y. Совокупность полученных точек представляет собой корреляционное поле (рис. 20), а соединяя последовательно нанесенные точки отрезками, получают ломаную линию, именуемую эмпирической линией регрессии (рис. 21).

Рис. 20. Корреляционное поле

Визуально анализируя график, можно предположить характер зависимости между признаками x и y. В нашей задаче эмпирическая линия регрессии (рис.21) похожа на восходящую прямую, что позволяет выдвинуть гипотезу о наличии прямой зависимости между величиной стоимостного внешнеторгового товарооборота и величиной таможенных платежей в федеральный бюджет.

3. Метод аналитических группировок используется при большом числе наблюдений для выявления корреляционной связи между двумя количественными признаками. Чтобы выявить наличие корреляционной связи между двумя признаками, проводится группировка единиц совокупности по факторному признаку х и для каждой выделенной группы рассчитывается среднее значение результативного признака . Если результативный признак у зависит от факторного х, то в изменении среднего значения будет прослеживаться определенная закономерность. Примером такой группировки могут служить данные об издержках обращения предприятий оптовой торговли с различным товарооборотом (см. табл. 40).

Таблица 40. Условные пример аналитической группировки

Оптовый

товарооборот,

млн.руб.

Количество

предприятий

Издержки обращения,

% к оптовому

товарообороту

менее 25

26-50

51-100

101-200

201-500

более 501

9362

3633

3618

3261

3031

3100

46,0

26,5

24,4

23,0

17,6

16,9

В последнем столбце табл. 40 приведены средние величины, рассчитанные на основе индивидуальных данных об издержках отдельных предприятий каждой группы. Данные таблицы 40 свидетельствуют, что чем крупнее товарооборот, тем меньше издержки обращения. Таким образом, с помощью простой аналитической группировки можно выявить наличие зависимости между рассматриваемыми показателями: объемом товарооборота как показателем размера предприятий и средним уровнем издержек обращения.

4. Метод корреляционных таблиц предполагает комбинационное распределение единиц совокупности по двум количественным признакам. Такая таблица строится по типу «шахматной», т.е. в подлежащем (строках) таблицы выделяются группы по факторному признаку х, а в сказуемом (столбцах) - по результативному у (или наоборот), а в клетках таблицы на пересечении х и у показано число случаев совпадения каждого значения х с соответствующим значением у. Общий вид такой таблицы показан на условном распределении 40 единиц по признакам х и у, где х - стаж работы, у - производительность труда (число изделий, вырабатываемых в час одним рабочим) - таблица 41. Среднее значение по группам определяется по средней арифметической взвешенной по серединам группировочных интервалов.

Таблица 41. Условные корреляционной таблицы

Значение

признака

xj

Значение признака уi

Итого

Среднее

значение

по группам

менее 7,5

7,5-12,5

12,5-17,5

более 17,5

менее 2

2 - 4

4 - 6

6 - 8

1

2

-

-

3

3

3

-

-

7

9

5

-

-

4

3

4

12

16

8

8,75

12,08

15,31

16,87

Итого

3

9

21

7

40

14,00

Как видно из таблицы 41, по мере увеличения значений х итоговые групповые средние тоже увеличиваются от группы к группе, что свидетельствует о том, что между х и у существует корреляционная связь. О наличии и направлении связи можно судить и по «внешнему виду» таблицы, т.е. по расположению в ней частот: если частоты расположены в клетках таблицы беспорядочно, то это чаще всего свидетельствует об отсутствии связи между группировочными признаками (или о незначительной зависимости); если частоты сконцентрированы ближе к одной из диагоналей и центру таблицы, образуя своего рода эллипс, то это почти всегда свидетельствует о наличии зависимости между х и у, близкой к линейной. Расположение по диагонали из верхнего левого угла в нижний правый свидетельствует о прямой линейной связи, а из нижнего левого угла в верхний правый - об обратной.

На основе аналитических группировок и корреляционных таблиц можно не только выявить наличие зависимости между двумя коррелируемыми показателями, но и измерить тесноту этой связи, в частности, с помощью эмпирического корреляционного отношения.

где m - число групп по факторному признаку х;

k - число групп по результативному признаку у;

- средние значения результативного признака по группам;

- общее среднее значение результативного признака;

- индивидуальные значения результативного признака;

- частота в j-й группе х;

- частота в i-й группе у.

Рассчитаем это отношение для нашего примера (таблица 41):

=(5*3+10*9+15*21+20*7)/40=14

=6,19599;

=16,5; =0,613.

Полученное значение =0,613 позволяет утверждать, что существует заметная связь между стажем работы и производительностью труда.

5. Коэффициент корреляции знаков (Фехнера) - простейший показатель тесноты связи, основанный на сравнении поведения отклонений индивидуальных значений каждого признака (x и y) от своей средней величины. При этом во внимание принимаются не величины отклонений () и (), а их знаки («+» или «-»). Определив знаки отклонений от средней величины в каждом ряду, рассматривают все пары знаков и подсчитывают число их совпадений (С) и несовпадений (Н). Тогда коэффициент Фехнера рассчитывается как отношение разности чисел пар совпадений и несовпадений знаков к их сумме, т.е. к общему числу наблюдаемых единиц:

.(121)

Очевидно, что если знаки всех отклонений по каждому признаку совпадут, то КФ=1, что характеризует наличие прямой связи. Если все знаки не совпадут, то КФ=-1 (обратная связь). Если же С=Н, то КФ=0. Итак, как и любой показатель тесноты связи, коэффициент Фехнера может принимать значения от 0 до 1. Однако, если КФ=1, то это ни в коей мере нельзя воспринимать как свидетельство функциональной зависимости между х и у.

Средние значения факторного и результативного признаков определяем по формуле средней арифметической простой (10):

; .

В двух последних столбцах таблицы 42 приведены знаки отклонений каждого х и у от своей средней величины. Число совпадений знаков - 10, а несовпадений - 2, тогда определяем коэффициент корреляции знаков (Фехнера) по формуле (121):

КФ=

Таблица 42. Вспомогательная таблица для расчета коэффициента Фехнера

п/п

x

y

x -

y -

1

27,068

172,17

-

-

2

29,889

200,90

-

-

3

33,158

232,10

-

-

4

34,444

231,83

-

-

5

37,299

246,53

+

+

6

37,554

236,99

+

-

7

37,755

233,40

+

-

8

37,909

256,43

+

+

9

38,348

261,89

+

+

10

39,137

259,36

+

+

11

40,370

253,62

+

+

12

46,298

278,87

+

+

Итого

439,229

2864,09

Обычно такое значение показателя тесноты связи характеризует заметную прямую зависимость между x и y, однако, следует иметь в виду, что поскольку КФ зависит только от знаков и не учитывает величину самих отклонений х и у от их средних величин, то он практически характеризует не столько тесноту связи, сколько ее наличие и направление.

6. Линейный коэффициент корреляции - самый популярный измеритель тесноты линейной связи между двумя количественными признаками x и y. Он основан на предположении, что при полной независимости признаков x и у отклонения значений факторного признака от средней () носят случайный характер и должны случайно сочетаться с различными отклонениями (). При наличии значительного перевеса совпадений или несовпадений таких отклонений делается предположение о наличии связи между x и y.

В отличие от КФ в линейном коэффициенте корреляции учитываются не только знаки отклонений от средних величин, но и значения самих отклонений, выраженные для сопоставимости в единицах среднего квадратического отклонения t:

.

Линейный коэффициент корреляции r представляет собой среднюю величину из произведений нормированных отклонений для x и у:

, (122)

. (123)

Числитель формулы (123), деленный на n, представляющий собой среднее произведение отклонений значений двух признаков от их средних значений, называется коэффициентом ковариации - это мера совместной вариации факторного x и результативного y признаков:

(124)

Недостатком коэффициента ковариации является то, что он не нормирован, в отличие от линейного коэффициента корреляции. Очевидно, что линейный коэффициент корреляции представляет собой частное от деления ковариации между х и у на произведение их средних квадратических отклонений:

.(125)

Путем несложных математических преобразований можно получить и другие модификации формулы линейного коэффициента корреляции, например:

,(126)

,(127)

, (128)

. (129)

Линейный коэффициент корреляции может принимать значения от -1 до +1, причем знак определяется в ходе решения. Например, если , то r по формуле (126) будет положительным, что характеризует прямую зависимость между х и у, в противном случае (r<0) - обратную связь. Если , то r=0, что означает отсутствие линейной зависимости между х и у, а при r=1 - функциональная зависимость между х и у. Следовательно, всякое промежуточное значение r от 0 до 1 характеризует степень приближения корреляционной связи между х и у к функциональной. Существует эмпирическое правило (шкала Чэддока) для оценки тесноты связи, представленное в таблице 43.

Таблица 43. Шкала Чэддока

| r |

Теснота связи

менее 0,1

отсутствует линейная связь

0,1 ч 0,3

слабая

0,3 ч 0,5

умеренная

0,5 ч 0,7

заметная

более 0,7

сильная (тесная)

Таким образом, коэффициент корреляции при линейной зависимости служит как мерой тесноты связи, так и показателем, характеризующим степень приближения корреляционной зависимости между х и у к линейной. Поэтому близость значения r к 0 в одних случаях может означать отсутствие связи между х и у, а в других свидетельствовать о том, что зависимость не линейная.

В нашей задаче для расчета r построим вспомогательную таблицу 44.

Тогда линейный коэффициент корреляции по формуле (122): r = 11,241/12 = 0,937.

Аналогичный результат получаем по формуле (123): r = 1485,066/(12*4,784*27,618) = 0,937

Или по формуле (126): r = (106317,681/12 - 36,602*238,674) / (4,784*27,618) = 0,937,

Найденное значение свидетельствует о том, что связь между величиной стоимостного внешнеторгового товарооборота и величиной таможенных платежей в федеральный бюджет очень близка к функциональной (сильная по шкале Чэддока).

Проверка коэффициента корреляции на значимость (существенность). Интерпретируя значение коэффициента корреляции, следует иметь в виду, что он рассчитан для ограниченного числа наблюдений и подвержен случайным колебаниям, как и сами значения x и y, на основе которых он рассчитан. Другими словами, как любой выборочный показатель, он содержит случайную ошибку и не всегда однозначно отражает действительно реальную связь между изучаемыми показателями. Для того, чтобы оценить существенность (значимость) самого r и, соответственно, реальность измеряемой связи между х и у, необходимо рассчитать среднюю квадратическую ошибку коэффициента корреляции уr. Оценка существенности (значимости) r основана на сопоставлении значения r с его средней квадратической ошибкой: .

1. Если число наблюдений достаточно велико (n>30), то уr рассчитывается по формуле (130):

.(130)

Обычно, если >3, то r считается значимым (существенным), а связь - реальной. Задавшись определенной вероятностью, можно определить доверительные пределы (границы) r = (), где t - коэффициент доверия, рассчитываемый по интегралу Лапласа (см. Приложение 1).

2. Если число наблюдений небольшое (n<30), то уr рассчитывается по формуле (131):

,(131)

а значимость r проверяется на основе t-критерия Стьюдента, для чего определяется расчетное значение критерия по формуле (132) и сопоставляется c tТАБЛ.

.(132)

Табличное значение tТАБЛ находится по таблице распределения t-критерия Стьюдента (см. Приложение 2) при уровне значимости б=1-в и числе степеней свободы н=n-2. Если tРАСЧ> tТАБЛ , то r считается значимым, а связь между х и у - реальной. В противном случае (tРАСЧ< tТАБЛ) считается, что связь между х и у отсутствует, и значение r, отличное от нуля, получено случайно.

В нашей задаче число наблюдений небольшое, значит, оценивать существенность (значимость) линейного коэффициента корреляции будем по формулам (131) и (132):

= 0,349/3,162 = 0,110;

= 0,937/0,110 = 8,482.

Из приложения 2 видно, что при числе степеней свободы н = 12 - 2 = 10 (в 10-й строке) и вероятности в = 95% (уровень значимости б =1 - в = 0,05) tтабл=2,2281, а при вероятности 99% (б=0,01) tтабл=3,169, значит, tРАСЧ > tТАБЛ, что дает возможность считать линейный коэффициент корреляции r = 0,937 значимым.

7. Подбор уравнения регрессии представляет собой математическое описание изменения взаимно коррелируемых величин по эмпирическим (фактическим) данным. Уравнение регрессии должно определить, каким будет среднее значение результативного признака у при том или ином значении факторного признака х, если остальные факторы, влияющие на у и не связанные с х, не учитывать, т.е. абстрагироваться от них. Другими словами, уравнение регрессии можно рассматривать как вероятностную гипотетическую функциональную связь величины результативного признака у со значениями факторного признака х.

Уравнение регрессии можно также назвать теоретической линией регрессии. Рассчитанные по уравнению регрессии значения результативного признака называются теоретическими. Они обычно обозначаются или (читается: «игрек, выравненный по х») и рассматриваются как функция от х, т.е. = f(x).

Найти в каждом конкретном случае тип функции, с помощью которой можно наиболее адекватно отразить ту или иную зависимость между признаками х и у, -- одна из основных задач регрессионного анализа. Выбор теоретической линии регрессии часто обусловлен формой эмпирической линии регрессии; теоретическая линия как бы сглаживает изломы эмпирической линии регрессии. Кроме того, необходимо учитывать природу изучаемых показателей и специфику их взаимосвязей.

Для аналитической связи между х и у могут использоваться виды уравнений, приведенные в таблице 30 (при условии замены t на x). Обычно зависимость, выражаемую уравнением прямой, называют линейной (или прямолинейной), а все остальные -- криволинейными зависимостями.

Выбрав тип функции (таблица 30), по эмпирическим данным определяют параметры уравнения. При этом отыскиваемые параметры должны быть такими, при которых рассчитанные по уравнению теоретические значения результативного признака были бы максимально близки к эмпирическим данным.

Существует несколько методов нахождения параметров уравнения регрессии. Наиболее часто используется метод наименьших квадратов (МНК). Его суть заключается в следующем требовании: искомые теоретические значения результативного признака должны быть такими, при которых бы обеспечивалась минимальная сумма квадратов их отклонений от эмпирических значений, т.е.

.

Поставив данное условие, легко определить, при каких значениях a0, a1 и т.д. для каждой аналитической кривой эта сумма квадратов отклонений будет минимальной. Данный метод уже использовался нами в теме 6 «Статистическое изучение динамики ВЭД», поэтому, воспользуемся формулой (100) для нахождения параметров теоретической линии регрессии, заменив параметр t на x:

(133)

Выразив из первого уравнения системы (133) a0, получим:

.(134)

Подставив (134) во второе уравнение системы (133), затем разделив обе его части на n, получим:

.(135)

Применяя 3 раза формулу средней арифметической, получим:

.(136)

Раскрыв скобки и перенеся члены без a1 в правую часть уравнения, выразим a1:

.(137)

Параметр a1 в уравнении линейной регрессии называется коэффициентом регрессии, который показывает на сколько изменяется значение результативного признака y при изменении факторного признака x на единицу.

Исходные данные и расчеты для нашего примера представим в таблице 45.

Таблица 45. Вспомогательные расчеты для нахождения уравнения регрессии

п/п

x

y

x2

xy

1

27,068

172,17

732,677

4660,298

187,124

223,612

2657,453

2

29,889

200,90

893,352

6004,700

202,377

2,181

1317,497

3

33,158

232,10

1099,453

7695,972

220,052

145,147

346,774

4

34,444

231,83

1186,389

7985,153

227,006

23,274

136,153

5

37,299

246,53

1391,215

9195,322

242,443

16,706

14,202

6

37,554

236,99

1410,303

8899,922

243,821

46,669

26,495

7

37,755

233,40

1425,440

8812,017

244,908

132,441

38,864

8

37,909

256,43

1437,092

9721,005

245,741

114,256

49,940

9

38,348

261,89

1470,569

10042,958

248,115

189,761

89,122

10

39,137

259,36

1531,705

10150,572

252,381

48,710

187,871

11

40,370

253,62

1629,737

10238,639

259,048

29,459

415,076

12

46,298

278,87

2143,505

12911,123

291,100

149,580

2748,498

Итого

439,229

2864,09

16351,437

106317,681

2864,115

1121,795

8027,945

По формуле (137): = 5,407.

По формуле (134): a0 = 238,674 - 5,407*36,602 = 40,767.

Отсюда получаем уравнение регрессии:=40,767+5,407x, подставляя в которое вместо x эмпирические значения факторного признака (2-й столбец таблицы 45), получаем выравненные по прямой линии теоретические значения результативного признака (6-й столбец таблицы 45). Для иллюстрации различий между эмпирическими и теоретическими линиями регрессии построим график (рисунок Ошибка! Источник ссылки не найден.).

Рис. 22. График эмпирической и теоретической линий регрессии

Из рисунка 22 видно, что небольшие различия между эмпирической и теоретической линиями регрессии существуют, поэтому необходимо оценить существенность коэффициента регрессии и уравнения связи, для чего определяют среднюю ошибку параметров уравнения регрессии и сравнивают их с этой ошибкой.

Расчет ошибок параметров уравнения регрессии основан на использовании остаточной дисперсии, характеризующей расхождение (отклонение) между эмпирическими и теоретическими значениями результативного признака. Для линейного уравнения регрессии () средние ошибки параметров a1 и a2 определяются по формулам (138) и (139) соответственно:

, (138)

, (139)

.(140)

Значимость параметров проверяется путем сопоставления его значения со средней ошибкой. Обозначим это соотношение как t:

,(141)

При большом числе наблюдений (n>30) параметр ai считается значимым, если >3.

Если выборка малая (n<30), то значимость параметра ai проверяется путем сравнения с табличным значения t-критерия Стьюдента при числе степеней свободы н=n-2 и заданном уровне значимости б (Приложение 2). Если рассчитанное по формуле (141) значение больше табличного, то параметр считается значимым.

В нашем примере по формуле (140): = 9,669.

Находим среднюю ошибку параметра a0 по формуле (138): = 3,06.

Теперь находим среднюю ошибку параметра a1 по формуле (139): =0,639.

Теперь по формуле (141) для параметра a0: =13,3.

И по той же формуле для параметра a1: =8,46.

Так как выборка малая, то задавшись стандартной значимостью б=0,05 находим в 10-й строке Приложения 2 табличное значение tб=2,23, которое значительно меньше полученных значений 13,3 и 8,46, что свидетельствует о значимости обоих параметров уравнения регрессии.

Наряду с проверкой значимости отдельных параметров осуществляется проверка значимости уравнения регрессии в целом или, что то же самое, проверка адекватности модели с помощью критерия Фишера по Приложению 4. Данный метод уже использовался нами для проверки адекватности уравнения тренда в предыдущей теме, поэтому воспользовавшись формулой (102) в нашем примере получим:

Сравнивая расчетное значение критерия Фишера Fр = 71,56 с табличным Fт = 4,96, определяемое по Приложению 4 при числе степеней свободы н1 = k - 1 = 2 -1 = 1 и н2 = n - k = 12 - 2 = 10 (т.е. 1-й столбец и 10-я строка) и стандартном уровне значимости б=0,05, можно сделать вывод, что уравнение регрессии значимо.

8. Коэффициент эластичности показывает, на сколько процентов изменяется в среднем результативный признак y при изменении факторного признака x на 1%. Он рассчитывается на основе уравнения регрессии:

,(142)

где - первая производная уравнения регрессии y по x.

Коэффициент эластичности - величина переменная, т.е. изменяется с изменением значений фактора x. Так, для линейной зависимости :

.(143)

Применительно к рассмотренному уравнению регрессии, выражающему зависимость величины таможенных платежей в федеральный бюджет от величины стоимостного внешнеторгового оборота (= 40,767 + 5,407x), коэффициент эластичности по формуле (143): .

Подставляя в данное выражение разные значения x, получаем и разные значения Э. Так, например, при x = 40 коэффициент эластичности = 0,84, а при x = 50 соответственно = 0,87 и т.д. Это значит, что при увеличении внешнеторгового товарооборота x с 40 до 40,4 млрд.долл. (т.е. на 1%), величина таможенных платежей возрастет в среднем на 0,84% прежнего уровня; при увеличении x с 50 до 50,5 млрд.долл. (т.е. на 1%) y возрастет на 0,87% и т.д.

9. Теоретическое корреляционное отношение как универсальный показатель тесноты связи. Измерить тесноту связи между коррелируемыми величинами - значит определить, насколько вариация результативного признака обусловлена вариацией факторного (факторных) признака. Ранее были рассмотрены показатели, с помощью которых можно выявить наличие корреляционной связи между двумя признаками x и y и измерить тесноту этой связи. Наряду с ними существует универсальный показатель - корреляционное отношение (или коэффициент корреляции по Пирсону), применимое ко всем случаям корреляционной зависимости независимо от формы этой связи. Следует различать эмпирическое и теоретическое корреляционное отношение. Эмпирическое корреляционное отношение рассчитывается на основе правила сложения дисперсий как корень квадратный из отношения межгрупповой дисперсии к общей дисперсии, т.е.

.(144)

Теоретическое корреляционное отношение определяется на основе выравненных (теоретических) значений результативного признака , рассчитанных по уравнению регрессии. представляет собой относительную величину, получаемую в результате сравнения среднего квадратического отклонения в ряду теоретических значений результативного признака со средним квадратическим отклонением в ряду эмпирических значений. Если обозначить дисперсию эмпирического ряда игреков через , а теоретического ряда - , то каждая из них выразится формулами

,

.

Сравнивая вторую дисперсию с первой, получим теоретический коэффициент детерминации:

,(145)

который показывает, какую долю в общей дисперсии результативного признака занимает дисперсия, выражающая влияние вариации фактора x на вариацию y. Извлекая корень квадратный из коэффициента детерминации, получаем теоретическое корреляционное отношение

.(146)

Оно может находиться в пределах от 0 до 1, чем ближе его значение к 1, тем теснее связь между вариацией y и x. Для оценки тесноты связи обычно применяется шкала Чэддока (таблица 43). Корреляционное отношение применимо как для парной, так и для множественной корреляции независимо от формы связи. В этом смысле его можно назвать универсальным показателем тесноты связи. При линейной зависимости .

Покажем расчет на условном примере. Исходные данные и расчет дополнительных показателей приведен в таблице 46.

Таблица 46. Исходные данные и вспомогательные расчеты для нахождения теоретического корреляционного отношения

В данном примере общая средняя урожайность: (ц/га).

Общая дисперсия: =30/5=6, факторная дисперсия: =29,46/5=5,892.

Отсюда теоретическое корреляционное отношение: =0,99. Данное значение характеризует очень тесную зависимость изменения урожайности от изменения количества внесенных удобрений. В нашем примере незначительные расхождения (3029,46+0,46 - это правило сложения дисперсий) объясняются округлением значений параметров уравнения регрессии и самих .

7.3. Коэффициенты корреляции рангов

Коэффициенты корреляции рангов - это менее точные, но более простые по расчету непараметрические показатели для измерения тесноты связи между двумя коррелируемыми признаками. К ним относятся коэффициенты Спирмэна (с) и Кендэла (ф), основанные на корреляции не самих значений коррелируемых признаков, а их рангов - порядковых номеров, присваиваемых каждому индивидуальному значению х и у (отдельно) в ранжированном ряду. Оба признака необходимо ранжировать (нумеровать) в одном и том же порядке: от меньших значений к большим и наоборот. Если встречается несколько значений х (или у), то каждому из них присваивается ранг, равный частному от деления суммы рангов (мест в ряду), приходящихся на эти значения, на число равных значений. Ранги признаков х и у обозначают символами Rx и Ry (иногда Nx и Ny). Суждение о связи между изменениями значений х и у основано на сравнении поведения рангов по двум признакам параллельно. Если у каждой пары х и у ранги совпадают, это характеризует максимально тесную связь. Если же наблюдается полная противоположность рангов, т.е. в одном ряду ранги возрастают от 1 до n, а в другом - убывают от n до 1, это максимально возможная обратная связь. Подходы для оценки тесноты связи у Спирмэна и Кендэла несколько различаются. Для расчета коэффициента Спирмэна значения признаков х и у нумеруют (отдельно) в порядке возрастания от 1 до n, т.е. им присваивают определенный ранг (Rx и Ry) - порядковый номер в ранжированном ряду. Затем для каждой пары рангов находят их разность (обозначается как d= Rx - Ry), и квадраты этой разности суммируют.

,(147)

где d - разность рангов х и у;

n - число наблюдаемых пар значений х и у.

Коэффициент с может принимать значения от 0 до ±1. Следует иметь в виду, что, поскольку коэффициент Спирмэна учитывает разность только рангов, а не самих значений х и у, он менее точен по сравнению с линейным коэффициентом. Поэтому его крайние значения (1 или 0) нельзя безоговорочно расценивать как свидетельство функциональной связи или полного отсутствия зависимости между х и у. Во всех других случаях, т.е. когда с не принимает крайних значений, он довольно близок к r.

Формула (147) применима строго теоретически только тогда, когда отдельные значения х (и у), а следовательно, и их ранги не повторяются. Для случая повторяющихся (связанных) рангов есть другая, более сложная формула, скорректированная на число повторяющихся рангов. Однако опыт показывает, что результаты расчетов по скорректированной формуле для связанных рангов мало отличаются от результатов, полученных по формуле для неповторяющихся рангов. Поэтому на практике формула (147) успешно применяется как для неповторяющихся, так и для повторяющихся рангов.

Коэффициент корреляции рангов Кендэла ф строится несколько по-другому, хотя его расчет также начинается с ранжирования значений признаков х и у. Ранги х (Rx) располагают строго в порядке возрастания и параллельно записывают соответствующее каждому Rx значение Ry. Поскольку Rx записаны строго по возрастанию, то ставится задача определить меру соответствия последовательности Ry «правильному» следованию Rx. При этом для каждого Ry последовательно определяют число следующих за ним рангов, превышающих его значение, и число рангов, меньших по значению. Первые («правильное» следование) учитываются как баллы со знаком «+», и их сумма обозначается буквой Р. Вторые («неправильное» следование) учитываются как баллы со знаком «-», и их сумма обозначается буквой Q. Очевидно, что максимальное значение Р достигается в том случае, если ранги y (Ry) совпадают с рангами х (Rx) и в каждом ряду представляют ряд натуральных чисел от 1 до п. Тогда после первой пары значений Rx = 1 и Ry = 1 число превышения данных значений рангов составит (n - 1), после второй пары, где Rx = 2 и Ry = 2, соответственно (п - 2) и т.д. Таким образом, если ранги х и у совпадают и число пар рангов равно n, то

.

Если же последовательность рангов х и у имеет обратную тенденцию по отношению к последовательности рангов х, то Q будет такое же максимальное значение по модулю:

.

Если же ранги у не совпадают с рангами х, то суммируются все положительные и отрицательные баллы (S=P+Q); отношение этой суммы S к максимальному значению одного из слагаемых и представляет собой коэффициент корреляции рангов Кендэла ф, т.е.:

.(148)

Формула коэффициента корреляции рангов Кендэла (148) применяется для случаев, когда отдельные значения признака (как х, так и у) не повторяются и, следовательно, их ранги не объединены. Если же встречается несколько одинаковых значений х (или у), т.е. ранги повторяются, становятся связанными, коэффициент корреляции рангов Кендэла определяется по формуле:

,(149)

где S - фактическая общая сумма баллов при оценке +1 каждой пары рангов с одинаковым порядком изменения и -1 каждой пары рангов с обратным порядком изменения;

- число баллов, корректирующих (уменьшающих) максимальную сумму баллов за счет повторений (объединений) t рангов в каждом ряду.

Отметим, что случаи следования одинаковых повторяющихся рангов (в любом ряду) оцениваются баллом 0, т.е. они не учитываются при расчете ни со знаком «+», ни со знаком «-».

Преимущества ранговых коэффициентов корреляции Спирмэна и Кендэла: они легко вычисляются, с их помощью можно изучать и измерять связь не только между количественными, но и между качественными (описательными) признаками, ранжированными определенным образом. Кроме того, при использовании ранговых коэффициентов корреляции не требуется знать форму связи изучаемых явлений.

Если число ранжируемых признаков (факторов) больше двух, то для измерения тесноты связи между ними можно использовать предложенный М. Кендэлом и Б. Смитом коэффициент конкордации (множественный коэффициент ранговой корреляции):

,(150)

где S -- сумма квадратов отклонений суммы т рангов от их средней величины;

т -- число ранжируемых признаков;

п -- число ранжируемых единиц (число наблюдений).

Формула (150) применяется для случая, кода ранги по каждому признаку не повторяются. Если же есть связанные ранги, то коэффициент конкордации рассчитывается с учетом числа таких повторяющихся (связанных) рангов по каждому фактору:

, (151)

где t - число одинаковых рангов по каждому признаку.

Коэффициент конкордации W может принимать значения от 0 до 1. Однако, необходимо проверить его на существенность (значимость) с помощью критерия ч2 при отсутствии связанных рангов по формуле (152), а при их наличии - по формуле (153):

, (152)

. (153)

Фактическое значение ч2 сравнивается с табличным, соответствующим принятому уровню значимости б (0,05 или 0,01) и числу степеней свободы v = п - 1. Если ч2факт > ч2табл, то W - существенен (значим).

Коэффициент конкордации особенно часто используется в экспертных оценках, например, для того, чтобы определить степень согласованности мнений экспертов о важности того или иного оцениваемого показателя или составить рейтинг отдельных единиц по какому-либо признаку. В формуле (150) в этих случаях т означает число экспертов, а n -- число ранжируемых единиц (или признаков).

7.4 Особенности коррелирования рядов динамики

Во многих исследованиях приходится изучать динамику нескольких показателей одновременно, т.е. рассматривать параллельно несколько рядов динамики. В этом случае возникает необходимость измерить зависимость между ними, вернее, определить, насколько изменения уровней одного ряда зависят от изменения уровней другого ряда. Эта задача решается путем коррелирования рядов динамики.

Однако при этом возникает следующая проблема: если показатели ряда x и ряда y рассматривать как функцию времени, т.е. x = f(t) и y = f(t), то при однонаправленности их трендов можно получить большое значение коэффициента корреляции между x и y даже тогда, когда они независимы, именно в силу однонаправленности их изменения.

Поэтому, прежде чем коррелировать ряды динамики, необходимо установить путем логического (качественного) анализа, возможна ли связь между исследуемыми показателями x и y. Кроме того, одно из условий корреляции - независимость отдельных значений переменных множества x, так же как и множества y. Для рядов динамики это равнозначно отсутствию автокорреляции между уровнями ряда, т.е. отсутствию зависимости между последовательными (соседними) уровнями ряда динамики. Другими словами, прежде чем коррелировать ряды динамики, необходимо проверить каждый ряд на автокорреляцию.

Если исходные фактические уровни ряда, относящиеся к определенному моменту (периоду) времени t, обозначить через yt, то сдвинутые на один момент (период) уровни обозначают yt-1. Тогда, подставив в формулу коэффициента корреляции (126) значения yt и yt-1, получим формулу:

,(154)

а поскольку и , получим следующие формулы для расчета коэффициента автокорреляции:

, (155)

. (156)

Сдвинутый (укороченный) ряд условно дополняют, принимая y1 = yn (чтобы сдвинутый ряд не укорачивался и чтобы средний уровень и дисперсия исходного и сдвинутого рядов были одинаковы).

Найденное по формуле (155) или (156) значение коэффициента автокорреляции само по себе еще не говорит о наличии или отсутствии автокорреляции. Его нужно сравнить с критическим.

Существуют специальные таблицы, в которых для разного числа членов ряда n и разных уровней значимости б определено критическое значение коэффициента автокорреляции: если найденное по формуле (155) или (156) значение окажется меньше критического, то автокорреляция отсутствует. Одна из таких таблиц, составленная Р. Андерсоном, приведена в Приложении 5.

В нашем примере про внешнеторговый оборот и таможенные платежи проверим оба эти ряда динамики на автокорреляцию с помощью формулы (155), для чего построим таблицу 47.

Таблица 47. Вспомогательные расчеты для проверки на автокорреляцию

Месяц

xt

xt-1

xt xt-1

xt2

yt

yt-1

yt yt-1

yt2

1

27,068

46,298

1253,194

732,677

172,170

278,870

48013,048

29642,509

2

29,889

27,068

809,035

893,352

200,900

172,170

34588,953

40360,810

3

34,444

29,889

1029,497

1186,389

231,830

200,900

46574,647

53745,149

4

33,158

34,444

1142,094

1099,453

232,100

231,830

53807,743

53870,410

5

37,755

33,158

1251,880

1425,440

233,400

232,100

54172,140

54475,560

6

37,554

37,755

1417,851

1410,303

236,990

233,400

55313,466

56164,260

7

37,299

37,554

1400,727

1391,215

246,530

236,990

58425,145

60777,041

8

40,370

37,299

1505,761

1629,737

253,620

246,530

62524,939

64323,104

9

37,909

40,370

1530,386

1437,092

256,430

253,620

65035,777

65756,345

10

38,348

37,909

1453,734

1470,569

261,890

256,430

67156,453

68586,372

11

39,137

38,348

1500,826

1531,705

259,360

261,890

67923,790

67267,610

12

46,298

39,137

1811,965

2143,505

278,870

259,360

72327,723

77768,477

Итого

439,229

439,229

16106,951

16351,437

2864,090

2864,090

685863,823

692737,647

Теперь по формуле (155) для ряда x: ra == 0,111.

Аналогично по формуле (155) для ряда y: ra == 0,249.

По таблице Приложения 5 определяем критическое (предельное) значение коэффициента корреляции для числа уровней n = 12 и уровне значимости б = 0,05. Оно равно 0,348. Оба рассчитанных значения оказались меньше критического, значит автокорреляция между уровнями в обоих рядах динамики отсутствует, следовательно, можно коррелировать уровни x и y.

Исключение автокорреляции в рядах динамики. Если между уровнями ряда (при коррелировании рядов динамики) существует автокорреляция, она должна быть устранена. Есть несколько способов исключения автокорреляции в рядах динамики. Наиболее простой - коррелирование отклонений от выравненных уровней. Для этого каждый ряд динамики выравнивают по определенной для него аналитической формуле (т.е. находят и ), затем из эмпирических уровней вычитают выравненные (т.е. находят остаточные величины, не описываемые уравнением тренда: и ). Так как остаточные величины могут содержать автокорреляцию (например, в случае недостаточно точно подобранного уравнения тренда), необходимо убедиться, что между ними автокорреляция отсутствует. Лишь после этого можно определять тесноту связи между dx и dy. Формулу коэффициента корреляции между остаточными величинами можно записать в следующем виде:

.(157)

7.5 Показатели тесноты связи между качественными признаками

Метод корреляционных таблиц применим не только к количественным, но и к описательным (качественным) признакам, взаимосвязи между которыми часто приходится изучать при проведении различных социологических исследований путем опросов или анкетирования. В этом случае такие таблицы называют таблицами сопряженности. Они могут иметь различную размерность. Простейшая размерность - 2х2 (таблица «четырех полей»), когда по альтернативному признаку («да» - «нет», «хорошо» - «плохо» и т.д.) выделяются 2 группы. В таблице 48 приведены условные данные о распределении 500 опрошенных человек по двум показателям: наличие (отсутствии) у них прививки против гриппа и факт заболевания (незаболевания) гриппом во время его эпидемии.

Таблица 48. Распределение 500 опрошенных человек

Группа лиц

Число лиц

заболевших

гриппом

не заболевших

гриппом

Итого

Сделавших прививку

30 (а)

270 (b)

300

Не сделавших прививку

120 (c)

80 (d)

200

Итого

150

350

500

Нетрудно заметить, что среди сделавших прививку подавляющее большинство (270 из 300, или 90%) не заболели гриппом, а среди не сделавших большая часть заболела (120 из 200, или 60%). Таким образом, можно предположить, что прививка положительно влияет на предупреждение заболевания; другими словами, можно предположить, что распределение в таблице (a, b, c, d) не случайно и существует стохастическая зависимость между группировочными признаками. Однако выводы о зависимости, сделанные «на глаз», часто могут быть ненадежными (ошибочными), поэтому они должны подкрепляться определенными статистическими критериями, например критерием Пирсона ч2. Он позволяет судить о случайности (или неслучайности) распределения в таблицах взаимной сопряженности, а следовательно, и об отсутствии или наличии зависимости между признаками группировки в таблице. Чтобы воспользоваться критерием Пирсона ч2, в таблице взаимной сопряженности наряду с эмпирическими частотами записывают теоретические частоты, рассчитываемые исходя из предположения, что распределение внутри таблицы случайно и, следовательно, зависимость между признаками группировки отсутствует. То есть считается, что распределение частот в каждой строке (столбце) таблицы пропорционально распределению частот в итоговой строке (столбце). Поэтому теоретические частоты по строкам (столбцам) рассчитывают пропорционально распределению единиц в итоговой строке (столбце).

Так, в нашем примере в итоговой строке число заболевших 150 из 500, т.е. их доля - 30%, а доля не заболевших - 70%. Следовательно, теоретические частоты в первой строке для заболевших составят 30% от 300, т.е. 0,3*300=90, а для не заболевших - 0,7*300=210. По второй строке произведем аналогичные расчеты и их результаты занесем в таблицу в скобках.

Таблица 49. Эмпирические и теоретические частоты

Группа

I (да)

II (нет)

?

I (да)

30 (90)

270 (210)

300

II (нет)

120 (60)

80 (140)

200

?

150

350

500

На сопоставлении эмпирических и теоретических частот и основан критерий Пирсона ч2, рассчитываемый по формуле (44):

.

Рассчитанное (фактическое) значение ч2 сопоставляют с табличным (критическом), определяемым по таблице Приложения 3 для заданного уровня значимости б и числа степеней свободы , где k1 и k2 - число групп по одному и второму признакам группировки (число строк и число столбцов в таблице).

В рассматриваемом примере н=(2-1)(2-1)=1, а приняв уровень значимости б=0,01, по таблице Приложения 3 находим ч2табл=6,63. Поскольку рассчитанное значение ч2> ч2табл, значит существует стохастическая зависимость между рассматриваемыми показателями. При независимости признаков частоты теоретического и эмпирического распределений совпадают, а значит ч2=0. Чем больше различия между теоретическими и эмпирическими частотами, тем больше значение ч2 и вероятность того, что оно превысит критическое табличное значение, допустимое для случайных расхождений. Аналогично рассчитываются теоретические частоты и ч2 в таблицах большей размерности.

В корреляционном анализе недостаточно лишь выявить тем или иным методом наличие связи между исследуемыми показателями. Теснота такой связи может быть различной, поэтому весьма важно ее измерить, т.е. определить меру связи в каждом конкретном случае. В статистике для этой цели разработан ряд показателей (коэффициентов), используемых как для количественных, так и для качественных признаков.

Для измерения тесноты связи между группировочными признаками в таблицах взаимной сопряженности могут быть использованы такие показатели, как коэффициент ассоциации и контингенции (для «четырехклеточных таблиц»), а также коэффициенты взаимной сопряженности Пирсона и Чупрова (для таблиц любой размерности).

Применительно к таблице «четырех полей», частоты которых можно обозначить через a, b, c, d, коэффициент ассоциации (Д. Юла) выражается формулой (158):

.(158)

Его существенный недостаток: если в одной из четырех клеток отсутствует частота (т.е. равна 0), то 1, и тем самым преувеличена мера действительной связи.

Чтобы этого избежать, предлагается (К. Пирсоном) другой показатель - коэффициент контингенции:

.(159)

Рассчитаем коэффициенты (158) и (159) для нашего примера (таблица 48):

;

Связь считается достаточно значительной и подтвержденной, если >0,5 или >0,3.

Поэтому в нашем примере оба коэффициента характеризуют достаточно большую обратную зависимость между исследуемыми признаками.

Теснота связи между 2 и более признаками измеряется с помощью коэффициентов взаимной сопряженности Пирсона (160) или Чупрова (161), рассчитываемых на основе показателя ч2 :

, (160)

(161)

В нашем примере . Рассчитывать коэффициент Чупрова для таблицы «четырех полей» не рекомендуется, так как при числе степеней свободы н=(2-1)(2-1)=1 он будет больше коэффициента Пирсона (в нашем примере КЧ=0,54). Для таблиц же большей размерности всегда КЧП.

7.6 Множественная корреляция

При решении практических задач исследователи сталкиваются с тем, что корреляционные связи не ограничиваются связями между двумя признаками: результативным y и факторным x. В действительности результативный признак зависит от нескольких факторных. Например, инфляция тесно связана с динамикой потребительских цен, розничным товарооборотом, численностью безработных, объемами экспорта и импорта, курсом доллара, количеством денег в обращении, объемом промышленного производства и другими факторами.

В условиях действия множества факторов показатели парной корреляции оказываются условными и неточными. Количественно оценить влияние различных факторов на результат, определить форму и тесноту связи между результативным признаком y и факторными признаками x1, x2, …, xk можно методами множественной (многофакторной) корреляции.

Математически задача сводится к нахождению аналитического выражения, наилучшим образом описывающего связь факторных признаков с результативным, т.е. к отысканию функции . Выбрать форму связи довольно сложно. Эта задача на практике основывается на априорном теоретическом анализе изучаемого явления и подборе известных типов математических моделей.

Среди многофакторных регрессионных моделей выделяют линейные (относительно независимых переменных) и нелинейные. Наиболее простыми для построения, анализа и экономической интерпретации являются многофакторные линейные модели, которые содержат независимые переменные только в первой степени:

, (162)

где - свободный член;

- коэффициенты регрессии;

- факторные признаки.

Если связь между результативным признаком и анализируемыми факторами нелинейна, то выбранная для ее описания нелинейная многофакторная модель (степенная, показательная и т.д.) может быть сведена к линейной путем линеаризации.

Параметры уравнения множественной р...


Подобные документы

  • Предмет и метод статистики. Сущность и основные аспекты статистического наблюдения. Ряды распределения. Статистические таблицы. Абсолютные величины. Показатели вариации. Понятие о статистических рядах динамики. Сопоставимость в рядах динамики.

    шпаргалка [31,9 K], добавлен 26.01.2009

  • Характеристика предмета статистики как общественной науки, статистическое изучение массовых явлений. Понятие статистической совокупности, проведение анкетного опроса покупателей для изучения контингента. Статистические показатели коммерческих банков.

    контрольная работа [24,9 K], добавлен 11.08.2015

  • Абсолютные и относительные статистические показатели, методы прогнозирования. Закон распределения вероятностей дискретной случайной величины. Оценки параметров генеральной совокупности. Статистическое исследование социально-экономического потенциала.

    шпаргалка [1,8 M], добавлен 16.05.2012

  • Статистическое наблюдение; классификация признаков явлений; сводка и группировка. Ряды распределения и их графическое изображение; уровневые и интегральные графики. Динамические ряды, статистические таблицы, абсолютные, относительные и средние величины.

    учебное пособие [217,1 K], добавлен 23.12.2009

  • Классификация ошибок наблюдения в зависимости от причин возникновения. Особенности ошибок регистрации и репрезентативности. Преимущества выборочного наблюдения перед сплошным. Допустимый уровень ошибки. Понятие ряда динамики в статистической науке.

    контрольная работа [73,8 K], добавлен 22.06.2015

  • Статистическая методология и статистические показатели. Принципы организации статистики, его роль в плановой и рыночной экономике. Реформирование казахстанской статистики. Формы статистического наблюдения. Статистические отчетность, сводка и переписи.

    курс лекций [475,4 K], добавлен 11.02.2010

  • Статистическое наблюдение. Понятие и содержание статистической сводки. Группировка – основа статистической сводки. Статистические ряды распределения. Осуществление конкретной аналитической группировки. Табличное представление статистических данных.

    курсовая работа [172,8 K], добавлен 22.12.2010

  • Статистическое изучение рядов динамики, виды показателей. Расчет коэффициента смыкания. Цепной и базисный показатель. Средний уровень динамического ряда. Определение общей закономерности в развитии явления. Статистическое изучение сезонных колебаний.

    лекция [325,3 K], добавлен 27.04.2013

  • Статистическое изучение динамики показателей страхового рынка. Построение статистического ряда группировки страховых организаций по размеру денежных доходов, расчёт характеристик ряда распределения. Расчет ошибки выборки средней величины доходов.

    курсовая работа [236,9 K], добавлен 03.01.2010

  • Общая характеристика органов пенсионного обеспечения, организация работы органов Пенсионного фонда Российской Федерации. Статистические показатели и их расчет: средние величины, показатели вариации, ряды динамики, индексы, трендовый анализ, группировка.

    курсовая работа [256,8 K], добавлен 15.06.2010

  • Статистическое изучение состава и структуры оборотных средств, показатели эффективности их использования. Вычисление индивидуального, общего и факторного индексов. Анализ динамики производительности труда в целом по объединению, по предприятиям.

    контрольная работа [38,2 K], добавлен 09.02.2009

  • Исследование структуры совокупности организаций по признаку "среднегодовая стоимость материальных оборотных фондов". Характеристика ряда интервального ряда распределения: средней арифметической, среднеквадратического отклонения, коэффициента вариации.

    курсовая работа [586,0 K], добавлен 07.05.2015

  • Определение среднего значения показателя в совокупности. Вариационный анализ статистической совокупности по показателю. Проведение выборочного наблюдения и корреляционно-регрессионного анализа. Построение уравнения парной регрессии, ряды динамики.

    курсовая работа [290,2 K], добавлен 29.11.2011

  • Социально-экономическая сущность инвестиционного процесса. Показатели статистики инвестиций и методология их исчисления. Статистическое изучение финансовых инвестиций, инвестиций в нефинансовые активы. Определение экономической эффективности инвестиций.

    курсовая работа [339,7 K], добавлен 10.08.2011

  • Основные показатели миграции населения. Анализ социально-экономического положения России. Статистическое исследование структуры и динамики миграционных процессов в стране. Оценка факторов и прогнозирование уровня миграционной активности населения.

    курсовая работа [294,9 K], добавлен 05.08.2011

  • Цели и задачи экономической статистики и статистического наблюдения. Характеристика бюджетов домашних хозяйств и методов количественного измерения их доходов. Статистическое изучение расходов и доходов населения и потребления материальных благ и услуг.

    курсовая работа [637,7 K], добавлен 27.03.2010

  • Систематизация материалов статистического наблюдения. Понятие статистической сводки как сводной характеристики объекта исследования. Статистические группировки, их виды. Принципы выбора группированного признака. Статистические таблицы и ряд распределения.

    реферат [196,8 K], добавлен 04.10.2016

  • Ошибки статистического наблюдения. Способы контроля отчетных данных. Отрасль как объект изучения статистики. Определение относительной величины структуры, интенсивности; среднегодовой урожайности, себестоимости продукции; выработки деталей; фонда времени.

    контрольная работа [48,8 K], добавлен 11.11.2010

  • Анализ сути прибыли, ее роли в деятельности предприятия, а также порядка ее исчисления и анализа статистическими методами. Понятие рентабельности и статистическое изучение ее показателей. Применение выборочного и метода в финансово-экономических задачах.

    курсовая работа [611,9 K], добавлен 12.12.2012

  • Статистическое наблюдение, формы, виды статистического наблюдения и отчетности. Статистические показатели, характеризующие экономическую деятельность организаций. Классификация, группировка и номенклатура - их роль в статистическом исследовании.

    шпаргалка [1,3 M], добавлен 31.05.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.