Методология моделирования прогнозирования макроэкономических пространственных взаимосвязей
Моделирование прогнозирования региональной динамики. Сравнительный анализ нейросетевых и регрессионных моделей прогноза без учета пространственного лага. Прогноз реального ВВП на душу населения и отношение уровня реального ВВП к предыдущему году.
Рубрика | Экономика и экономическая теория |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 30.01.2016 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
gdp.54 <- NA
gdp.55 <- NA
gdp.56 <- NA
gdp.57 <- NA
gdp.58 <- NA
gdp.59 <- NA
gdp.60 <- NA
gdp.61 <- NA
gdp.62 <- NA
gdp.63 <- NA
gdp.64 <- NA
gdp.65 <- NA
gdp.66 <- NA
gdp.67 <- NA
gdp.68 <- NA
gdp.69 <- NA
gdp.70 <- NA
gdp.71 <- NA
gdp.72 <- NA
gdp.73 <- NA
gdp.74 <- NA
gdp.75 <- NA
gdp.76 <- NA
gdp.101 <- NA
gdp.102 <- NA
gdp.103 <- NA
gdp.104 <- NA
gdp.105 <- NA
gdp.106 <- NA
gdp.107 <- NA
gdp.108 <- NA
gdp.109 <- NA
gdp.110 <- NA
gdp.111 <- NA
gdp.112 <- NA
gdp.113 <- NA
gdp.114 <- NA
gdp.115 <- NA
gdp.116 <- NA
gdp.117 <- NA
gdp.118 <- NA
gdp.119 <- NA
MAPPE <- matrix(rep(NA,m*k),nrow=m,ncol=k)
sPPE <- matrix(rep(NA,m*k),nrow=m,ncol=k)
factors.all <- data.frame (gdp.r, state, year,
gdp.r.tlag,
gdp.r.tslag,
pop.r.tlag,
pop.r.tslag,
lab.r.tlag,
lab.r.tslag)
f01 <- gdp.r ~ gdp.r.tlag
f02 <- gdp.r ~ gdp.r.tlag + pop.r.tlag
f03 <- gdp.r ~ gdp.r.tlag + lab.r.tlag
f04 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + lab.r.tlag
f05 <- gdp.r ~ gdp.r.tlag + gdp.r.tslag
f06 <- gdp.r ~ gdp.r.tlag + lab.r.tslag
f07 <- gdp.r ~ gdp.r.tlag + pop.r.tslag
f08 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + gdp.r.tslag
f09 <- gdp.r ~ gdp.r.tlag + lab.r.tlag + gdp.r.tslag
f10 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + lab.r.tlag + gdp.r.tslag
f11 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + pop.r.tslag
f12 <- gdp.r ~ gdp.r.tlag + lab.r.tlag + pop.r.tslag
f13 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + lab.r.tlag + pop.r.tslag
f14 <- gdp.r ~ gdp.r.tlag + lab.r.tlag + lab.r.tslag
f15 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + lab.r.tslag
f16 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + lab.r.tlag + lab.r.tslag
f17 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + lab.r.tlag + lab.r.tslag + pop.r.tslag + gdp.r.tslag
f18 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + gdp.r.tslag + pop.r.tslag
f19 <- gdp.r ~ gdp.r.tlag + lab.r.tlag + gdp.r.tslag + lab.r.tslag
x01 <- data.frame(gdp.r.tlag) # monotone=c(1)
x02 <- data.frame(gdp.r.tlag,pop.r.tlag) # monotone=c(1,2)
x03 <- data.frame(gdp.r.tlag,lab.r.tlag)
x04 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x05 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x06 <- data.frame(gdp.r.tlag,lab.r.tslag)
x07 <- data.frame(gdp.r.tlag,pop.r.tslag)
x08 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x09 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x10 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x11 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x12 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x13 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x14 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x15 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x16 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x17 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x18 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x19 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
x20 <- data.frame(gdp.r.tlag)
x21 <- data.frame(gdp.r.tlag,pop.r.tlag)
x22 <- data.frame(gdp.r.tlag,lab.r.tlag)
x23 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x24 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x25 <- data.frame(gdp.r.tlag,lab.r.tslag)
x26 <- data.frame(gdp.r.tlag,pop.r.tslag)
x27 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x28 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x29 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x30 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x31 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x32 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x33 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x34 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x35 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x36 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x37 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x38 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
x39 <- data.frame(gdp.r.tlag) # monotone=c(1)
x40 <- data.frame(gdp.r.tlag,pop.r.tlag) # monotone=c(1,2)
x41 <- data.frame(gdp.r.tlag,lab.r.tlag)
x42 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x43 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x44 <- data.frame(gdp.r.tlag,lab.r.tslag)
x45 <- data.frame(gdp.r.tlag,pop.r.tslag)
x46 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x47 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x48 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x49 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x50 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x51 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x52 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x53 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x54 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x55 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x56 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x57 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
x58 <- data.frame(gdp.r.tlag) # monotone=c(1)
x59 <- data.frame(gdp.r.tlag,pop.r.tlag) # monotone=c(1,2)
x60 <- data.frame(gdp.r.tlag,lab.r.tlag)
x61 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x62 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x63 <- data.frame(gdp.r.tlag,lab.r.tslag)
x64 <- data.frame(gdp.r.tlag,pop.r.tslag)
x65 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x66 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x67 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x68 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x69 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x70 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x71 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x72 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x73 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x74 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x75 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x76 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
x101 <- data.frame(gdp.r.tlag) # monotone=c(1)
x102 <- data.frame(gdp.r.tlag,pop.r.tlag) # monotone=c(1,2)
x103 <- data.frame(gdp.r.tlag,lab.r.tlag)
x104 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x105 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x106 <- data.frame(gdp.r.tlag,lab.r.tslag)
x107 <- data.frame(gdp.r.tlag,pop.r.tslag)
x108 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x109 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x110 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x111 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x112 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x113 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x114 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x115 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x116 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x117 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x118 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x119 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
for(j in 12:(k-1))
{
LEARNset <- year>=(year0+j) & year<=(year0+window-1+j)
TESTset <- year==(year0+window+j)
TESTset2 <- year==(year0+window-1+j)
gdp.actual <- gdp[TESTset]
plm01 <- plm(formula = f01, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm02 <- plm(formula = f02, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm03 <- plm(formula = f03, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm04 <- plm(formula = f04, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm05 <- plm(formula = f05, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm06 <- plm(formula = f06, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm07 <- plm(formula = f07, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm08 <- plm(formula = f08, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm09 <- plm(formula = f09, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm10 <- plm(formula = f10, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm11 <- plm(formula = f11, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm12 <- plm(formula = f12, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm13 <- plm(formula = f13, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm14 <- plm(formula = f14, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm15 <- plm(formula = f15, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm16 <- plm(formula = f16, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm17 <- plm(formula = f17, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm18 <- plm(formula = f18, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm19 <- plm(formula = f19, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
y.learn <- as.matrix(gdp.r[LEARNset])
y.actual <- as.matrix(gdp.r[TESTset])
x01.learn <- as.matrix(x01[LEARNset,])
x01.predict <- as.matrix(x01[TESTset,])
x02.learn <- as.matrix(x02[LEARNset,])
x02.predict <- as.matrix(x02[TESTset,])
x03.learn <- as.matrix(x03[LEARNset,])
x03.predict <-
as.matrix(x03[TESTset,])
x04.learn <- as.matrix(x04[LEARNset,])
x04.predict <- as.matrix(x04[TESTset,])
x05.learn <- as.matrix(x05[LEARNset,])
x05.predict <- as.matrix(x05[TESTset,])
x06.learn <- as.matrix(x06[LEARNset,])
x06.predict <- as.matrix(x06[TESTset,])
x07.learn <- as.matrix(x07[LEARNset,])
x07.predict <- as.matrix(x07[TESTset,])
x08.learn <- as.matrix(x08[LEARNset,])
x08.predict <- as.matrix(x08[TESTset,])
x09.learn <- as.matrix(x09[LEARNset,])
x09.predict <- as.matrix(x09[TESTset,])
x10.learn <- as.matrix(x10[LEARNset,])
x10.predict <- as.matrix(x10[TESTset,])
x11.learn <- as.matrix(x11[LEARNset,])
x11.predict <- as.matrix(x11[TESTset,])
x12.learn <- as.matrix(x12[LEARNset,])
x12.predict <- as.matrix(x12[TESTset,])
x13.learn <- as.matrix(x13[LEARNset,])
x13.predict <- as.matrix(x13[TESTset,])
x14.learn <- as.matrix(x14[LEARNset,])
x14.predict <- as.matrix(x14[TESTset,])
x15.learn <- as.matrix(x15[LEARNset,])
x15.predict <- as.matrix(x15[TESTset,])
x16.learn <- as.matrix(x16[LEARNset,])
x16.predict <- as.matrix(x16[TESTset,])
x17.learn <- as.matrix(x17[LEARNset,])
x17.predict <- as.matrix(x17[TESTset,])
x18.learn <- as.matrix(x18[LEARNset,])
x18.predict <- as.matrix(x18[TESTset,])
x19.learn <- as.matrix(x19[LEARNset,])
x19.predict <- as.matrix(x19[TESTset,])
x20.learn <- as.matrix(x20[LEARNset,])
x20.predict <- as.matrix(x20[TESTset,])
x21.learn <- as.matrix(x21[LEARNset,])
x21.predict <- as.matrix(x21[TESTset,])
x22.learn <- as.matrix(x22[LEARNset,])
x22.predict <- as.matrix(x22[TESTset,])
x23.learn <- as.matrix(x23[LEARNset,])
x23.predict <- as.matrix(x23[TESTset,])
x24.learn <- as.matrix(x24[LEARNset,])
x24.predict <- as.matrix(x24[TESTset,])
x25.learn <- as.matrix(x25[LEARNset,])
x25.predict <- as.matrix(x25[TESTset,])
x26.learn <- as.matrix(x26[LEARNset,])
x26.predict <- as.matrix(x26[TESTset,])
x27.learn <- as.matrix(x27[LEARNset,])
x27.predict <- as.matrix(x27[TESTset,])
x28.learn <- as.matrix(x28[LEARNset,])
x28.predict <- as.matrix(x28[TESTset,])
x29.learn <- as.matrix(x29[LEARNset,])
x29.predict <- as.matrix(x29[TESTset,])
x30.learn <- as.matrix(x30[LEARNset,])
x30.predict <- as.matrix(x30[TESTset,])
x31.learn <- as.matrix(x31[LEARNset,])
x31.predict <- as.matrix(x31[TESTset,])
x32.learn <- as.matrix(x32[LEARNset,])
x32.predict <- as.matrix(x32[TESTset,])
x33.learn <- as.matrix(x33[LEARNset,])
x33.predict <- as.matrix(x33[TESTset,])
x34.learn <- as.matrix(x34[LEARNset,])
x34.predict <- as.matrix(x34[TESTset,])
x35.learn <- as.matrix(x35[LEARNset,])
x35.predict <- as.matrix(x35[TESTset,])
x36.learn <- as.matrix(x36[LEARNset,])
x36.predict <- as.matrix(x36[TESTset,])
x37.learn <- as.matrix(x37[LEARNset,])
x37.predict <- as.matrix(x37[TESTset,])
x38.learn <- as.matrix(x38[LEARNset,])
x38.predict <- as.matrix(x38[TESTset,])
x39.learn <- as.matrix(x39[LEARNset,])
x39.predict <- as.matrix(x39[TESTset,])
x40.learn <- as.matrix(x40[LEARNset,])
x40.predict <- as.matrix(x40[TESTset,])
x41.learn <- as.matrix(x41[LEARNset,])
x41.predict <- as.matrix(x41[TESTset,])
x42.learn <- as.matrix(x42[LEARNset,])
x42.predict <- as.matrix(x42[TESTset,])
x43.learn <- as.matrix(x43[LEARNset,])
x43.predict <- as.matrix(x43[TESTset,])
x44.learn <- as.matrix(x44[LEARNset,])
x44.predict <- as.matrix(x44[TESTset,])
x45.learn <- as.matrix(x45[LEARNset,])
x45.predict <- as.matrix(x45[TESTset,])
x46.learn <- as.matrix(x46[LEARNset,])
x46.predict <- as.matrix(x46[TESTset,])
x47.learn <- as.matrix(x47[LEARNset,])
x47.predict <- as.matrix(x47[TESTset,])
x48.learn <- as.matrix(x48[LEARNset,])
x48.predict <- as.matrix(x48[TESTset,])
x49.learn <- as.matrix(x49[LEARNset,])
x49.predict <- as.matrix(x49[TESTset,])
x50.learn <- as.matrix(x50[LEARNset,])
x50.predict <- as.matrix(x50[TESTset,])
x51.learn <- as.matrix(x51[LEARNset,])
x51.predict <- as.matrix(x51[TESTset,])
x52.learn <- as.matrix(x52[LEARNset,])
x52.predict <- as.matrix(x52[TESTset,])
x53.learn <- as.matrix(x53[LEARNset,])
x53.predict <- as.matrix(x53[TESTset,])
x54.learn <- as.matrix(x54[LEARNset,])
x54.predict <- as.matrix(x54[TESTset,])
x55.learn <- as.matrix(x55[LEARNset,])
x55.predict <- as.matrix(x55[TESTset,])
x56.learn <- as.matrix(x56[LEARNset,])
x56.predict <- as.matrix(x56[TESTset,])
x57.learn <- as.matrix(x57[LEARNset,])
x57.predict <- as.matrix(x57[TESTset,])
x58.learn <- as.matrix(x58[LEARNset,])
x58.predict <- as.matrix(x58[TESTset,])
x59.learn <- as.matrix(x59[LEARNset,])
x59.predict <- as.matrix(x59[TESTset,])
x60.learn <- as.matrix(x60[LEARNset,])
x60.predict <- as.matrix(x60[TESTset,])
x61.learn <- as.matrix(x61[LEARNset,])
x61.predict <- as.matrix(x61[TESTset,])
x62.learn <- as.matrix(x62[LEARNset,])
x62.predict <- as.matrix(x62[TESTset,])
x63.learn <- as.matrix(x63[LEARNset,])
x63.predict <- as.matrix(x63[TESTset,])
x64.learn <- as.matrix(x64[LEARNset,])
x64.predict <- as.matrix(x64[TESTset,])
x65.learn <- as.matrix(x65[LEARNset,])
x65.predict <- as.matrix(x65[TESTset,])
x66.learn <- as.matrix(x66[LEARNset,])
x66.predict <- as.matrix(x66[TESTset,])
x67.learn <- as.matrix(x67[LEARNset,])
x67.predict <- as.matrix(x67[TESTset,])
x68.learn <- as.matrix(x68[LEARNset,])
x68.predict <- as.matrix(x68[TESTset,])
x69.learn <- as.matrix(x69[LEARNset,])
x69.predict <- as.matrix(x69[TESTset,])
x70.learn <- as.matrix(x70[LEARNset,])
x70.predict <- as.matrix(x70[TESTset,])
x71.learn <- as.matrix(x71[LEARNset,])
x71.predict <- as.matrix(x71[TESTset,])
x72.learn <- as.matrix(x72[LEARNset,])
x72.predict <- as.matrix(x72[TESTset,])
x73.learn <- as.matrix(x73[LEARNset,])
x73.predict <- as.matrix(x73[TESTset,])
x74.learn <- as.matrix(x74[LEARNset,])
x74.predict <- as.matrix(x74[TESTset,])
x75.learn <- as.matrix(x75[LEARNset,])
x75.predict <- as.matrix(x75[TESTset,])
x76.learn <- as.matrix(x76[LEARNset,])
x76.predict <- as.matrix(x76[TESTset,])
x101.predict <- as.matrix(x101[TESTset,])
x102.predict <- as.matrix(x102[TESTset,])
x103.predict <- as.matrix(x103[TESTset,])
x104.predict <- as.matrix(x104[TESTset,])
x105.predict <- as.matrix(x105[TESTset,])
x106.predict <- as.matrix(x106[TESTset,])
x107.predict <- as.matrix(x107[TESTset,])
x108.predict <- as.matrix(x108[TESTset,])
x109.predict <- as.matrix(x109[TESTset,])
x110.predict <- as.matrix(x110[TESTset,])
x111.predict <- as.matrix(x111[TESTset,])
x112.predict <- as.matrix(x112[TESTset,])
x113.predict <- as.matrix(x113[TESTset,])
x114.predict <- as.matrix(x114[TESTset,])
x115.predict <- as.matrix(x115[TESTset,])
x116.predict <- as.matrix(x116[TESTset,])
x117.predict <- as.matrix(x117[TESTset,])
x118.predict <- as.matrix(x118[TESTset,])
x119.predict <- as.matrix(x119[TESTset,])
mlp01 <- monmlp.fit(x=x01.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp02 <- monmlp.fit(x=x02.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp03 <- monmlp.fit(x=x03.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp04 <- monmlp.fit(x=x04.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp05 <- monmlp.fit(x=x05.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp06 <- monmlp.fit(x=x06.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp07 <- monmlp.fit(x=x07.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp08 <- monmlp.fit(x=x08.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp09 <- monmlp.fit(x=x09.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp10 <- monmlp.fit(x=x10.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp11 <- monmlp.fit(x=x11.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp12 <- monmlp.fit(x=x12.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp13 <- monmlp.fit(x=x13.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp14 <- monmlp.fit(x=x14.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp15 <- monmlp.fit(x=x15.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp16 <- monmlp.fit(x=x16.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp17 <- monmlp.fit(x=x17.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp18 <- monmlp.fit(x=x18.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp19 <- monmlp.fit(x=x19.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp20 <- monmlp.fit(x=x20.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp21 <- monmlp.fit(x=x21.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp22 <- monmlp.fit(x=x22.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp23 <- monmlp.fit(x=x23.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp24 <- monmlp.fit(x=x24.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp25 <- monmlp.fit(x=x25.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp26 <- monmlp.fit(x=x26.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp27 <- monmlp.fit(x=x27.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp28 <- monmlp.fit(x=x28.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp29 <- monmlp.fit(x=x29.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp30 <- monmlp.fit(x=x30.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp31 <- monmlp.fit(x=x31.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp32 <- monmlp.fit(x=x32.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp33 <- monmlp.fit(x=x33.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp34 <- monmlp.fit(x=x34.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp35 <- monmlp.fit(x=x35.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp36 <- monmlp.fit(x=x36.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp37 <- monmlp.fit(x=x37.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp38 <- monmlp.fit(x=x38.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp39 <- monmlp.fit(x=x39.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp40 <- monmlp.fit(x=x40.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp41 <- monmlp.fit(x=x41.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp42 <- monmlp.fit(x=x42.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp43 <- monmlp.fit(x=x43.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp44 <- monmlp.fit(x=x44.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp45 <- monmlp.fit(x=x45.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp46 <- monmlp.fit(x=x46.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp47 <- monmlp.fit(x=x47.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp48 <- monmlp.fit(x=x48.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp49 <- monmlp.fit(x=x49.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp50 <- monmlp.fit(x=x50.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp51 <- monmlp.fit(x=x51.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp52 <- monmlp.fit(x=x52.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp53 <- monmlp.fit(x=x53.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp54 <- monmlp.fit(x=x54.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp55 <- monmlp.fit(x=x55.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp56 <- monmlp.fit(x=x56.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp57 <- monmlp.fit(x=x57.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp58 <- monmlp.fit(x=x58.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp59 <- monmlp.fit(x=x59.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp60 <- monmlp.fit(x=x60.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp61 <- monmlp.fit(x=x61.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp62 <- monmlp.fit(x=x62.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp63 <- monmlp.fit(x=x63.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp64 <- monmlp.fit(x=x64.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp65 <- monmlp.fit(x=x65.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp66 <- monmlp.fit(x=x66.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp67 <- monmlp.fit(x=x67.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp68 <- monmlp.fit(x=x68.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp69 <- monmlp.fit(x=x69.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp70 <- monmlp.fit(x=x70.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp71 <- monmlp.fit(x=x71.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp72 <- monmlp.fit(x=x72.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp73 <- monmlp.fit(x=x73.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp74 <- monmlp.fit(x=x74.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp75 <- monmlp.fit(x=x75.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp76 <- monmlp.fit(x=x76.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
fix01 <- as.matrix(fixef(plm01))
fix02 <- as.matrix(fixef(plm02))
fix03 <- as.matrix(fixef(plm03))
fix04 <- as.matrix(fixef(plm04))
fix05 <- as.matrix(fixef(plm05))
fix06 <- as.matrix(fixef(plm06))
fix07 <- as.matrix(fixef(plm07))
fix08 <- as.matrix(fixef(plm08))
fix09 <- as.matrix(fixef(plm09))
fix10 <- as.matrix(fixef(plm10))
fix11 <- as.matrix(fixef(plm11))
fix12 <- as.matrix(fixef(plm12))
fix13 <- as.matrix(fixef(plm13))
fix14 <- as.matrix(fixef(plm14))
fix15 <- as.matrix(fixef(plm15))
fix16 <- as.matrix(fixef(plm16))
fix17 <- as.matrix(fixef(plm17))
fix18 <- as.matrix(fixef(plm18))
fix19 <- as.matrix(fixef(plm19))
c01 <- as.matrix(coef(plm01))
c02 <- as.matrix(coef(plm02))
c03 <- as.matrix(coef(plm03))
c04 <- as.matrix(coef(plm04))
c05 <- as.matrix(coef(plm05))
c06 <- as.matrix(coef(plm06))
c07 <- as.matrix(coef(plm07))
c08 <- as.matrix(coef(plm08))
c09 <- as.matrix(coef(plm09))
c10 <- as.matrix(coef(plm10))
c11 <- as.matrix(coef(plm11))
c12 <- as.matrix(coef(plm12))
c13 <- as.matrix(coef(plm13))
c14 <- as.matrix(coef(plm14))
c15 <- as.matrix(coef(plm15))
c16 <- as.matrix(coef(plm16))
c17 <- as.matrix(coef(plm17))
c18 <- as.matrix(coef(plm18))
c19 <- as.matrix(coef(plm19))
y01.predict <- monmlp.predict(x = x01.predict, weights = mlp01)
y02.predict <- monmlp.predict(x = x02.predict, weights = mlp02)
y03.predict <- monmlp.predict(x = x03.predict, weights = mlp03)
y04.predict <- monmlp.predict(x = x04.predict, weights = mlp04)
y05.predict <- monmlp.predict(x = x05.predict, weights = mlp05)
y06.predict <- monmlp.predict(x = x06.predict, weights = mlp06)
y07.predict <- monmlp.predict(x = x07.predict, weights = mlp07)
y08.predict <- monmlp.predict(x = x08.predict, weights = mlp08)
y09.predict <- monmlp.predict(x = x09.predict, weights = mlp09)
y10.predict <- monmlp.predict(x = x10.predict, weights = mlp10)
y11.predict <- monmlp.predict(x = x11.predict, weights = mlp11)
y12.predict <- monmlp.predict(x = x12.predict, weights = mlp12)
y13.predict <- monmlp.predict(x = x13.predict, weights = mlp13)
y14.predict <- monmlp.predict(x = x14.predict, weights = mlp14)
y15.predict <- monmlp.predict(x = x15.predict, weights = mlp15)
y16.predict <- monmlp.predict(x = x16.predict, weights = mlp16)
y17.predict <- monmlp.predict(x = x17.predict, weights = mlp17)
y18.predict <- monmlp.predict(x = x18.predict, weights = mlp18)
y19.predict <- monmlp.predict(x = x19.predict, weights = mlp19)
y20.predict <- monmlp.predict(x = x20.predict, weights = mlp20)
y21.predict <- monmlp.predict(x = x21.predict, weights = mlp21)
y22.predict <- monmlp.predict(x = x22.predict, weights = mlp22)
y23.predict <- monmlp.predict(x = x23.predict, weights = mlp23)
y24.predict <- monmlp.predict(x = x24.predict, weights = mlp24)
y25.predict <- monmlp.predict(x = x25.predict, weights = mlp25)
y26.predict <- monmlp.predict(x = x26.predict, weights = mlp26)
y27.predict <- monmlp.predict(x = x27.predict, weights = mlp27)
y28.predict <- monmlp.predict(x = x28.predict, weights = mlp28)
y29.predict <- monmlp.predict(x = x29.predict, weights = mlp29)
y30.predict <- monmlp.predict(x = x30.predict, weights = mlp30)
y31.predict <- monmlp.predict(x = x31.predict, weights = mlp31)
y32.predict <- monmlp.predict(x = x32.predict, weights = mlp32)
y33.predict <- monmlp.predict(x = x33.predict, weights = mlp33)
y34.predict <- monmlp.predict(x = x34.predict, weights = mlp34)
y35.predict <- monmlp.predict(x = x35.predict, weights = mlp35)
y36.predict <- monmlp.predict(x = x36.predict, weights = mlp36)
y37.predict <- monmlp.predict(x = x37.predict, weights = mlp37)
y38.predict <- monmlp.predict(x = x38.predict, weights = mlp38)
y39.predict <- monmlp.predict(x = x39.predict, weights = mlp39)
y40.predict <- monmlp.predict(x = x40.predict, weights = mlp40)
y41.predict <- monmlp.predict(x = x41.predict, weights = mlp41)
y42.predict <- monmlp.predict(x = x42.predict, weights = mlp42)
y43.predict <- monmlp.predict(x = x43.predict, weights = mlp43)
y44.predict <- monmlp.predict(x = x44.predict, weights = mlp44)
y45.predict <- monmlp.predict(x = x45.predict, weights = mlp45)
y46.predict <- monmlp.predict(x = x46.predict, weights = mlp46)
y47.predict <- monmlp.predict(x = x47.predict, weights = mlp47)
y48.predict <- monmlp.predict(x = x48.predict, weights = mlp48)
y49.predict <- monmlp.predict(x = x49.predict, weights = mlp49)
y50.predict <- monmlp.predict(x = x50.predict, weights = mlp50)
y51.predict <- monmlp.predict(x = x51.predict, weights = mlp51)
y52.predict <- monmlp.predict(x = x52.predict, weights = mlp52)
y53.predict <- monmlp.predict(x = x53.predict, weights = mlp53)
y54.predict <- monmlp.predict(x = x54.predict, weights = mlp54)
y55.predict <- monmlp.predict(x = x55.predict, weights = mlp55)
y56.predict <- monmlp.predict(x = x56.predict, weights = mlp56)
y57.predict <- monmlp.predict(x = x57.predict, weights = mlp57)
y58.predict <- monmlp.predict(x = x58.predict, weights = mlp58)
y59.predict <- monmlp.predict(x = x59.predict, weights = mlp59)
y60.predict <- monmlp.predict(x = x60.predict, weights = mlp60)
y61.predict <- monmlp.predict(x = x61.predict, weights = mlp61)
y62.predict <- monmlp.predict(x = x62.predict, weights = mlp62)
y63.predict <- monmlp.predict(x = x63.predict, weights = mlp63)
y64.predict <- monmlp.predict(x = x64.predict, weights = mlp64)
y65.predict <- monmlp.predict(x = x65.predict, weights = mlp65)
y66.predict <- monmlp.predict(x = x66.predict, weights = mlp66)
y67.predict <- monmlp.predict(x = x67.predict, weights = mlp67)
y68.predict <- monmlp.predict(x = x68.predict, weights = mlp68)
y69.predict <- monmlp.predict(x = x69.predict, weights = mlp69)
y70.predict <- monmlp.predict(x = x70.predict, weights = mlp70)
y71.predict <- monmlp.predict(x = x71.predict, weights = mlp71)
y72.predict <- monmlp.predict(x = x72.predict, weights = mlp72)
y73.predict <- monmlp.predict(x = x73.predict, weights = mlp73)
y74.predict <- monmlp.predict(x = x74.predict, weights = mlp74)
y75.predict <- monmlp.predict(x = x75.predict, weights = mlp75)
y76.predict <- monmlp.predict(x = x76.predict, weights = mlp76)
y101.predict <- fix01 + x101.predict %*% c01
y102.predict <- fix02 + x102.predict %*% c02
y103.predict <- fix03 + x103.predict %*% c03
y104.predict <- fix04 + x104.predict %*% c04
y105.predict <- fix05 + x105.predict %*% c05
y106.predict <- fix06 + x106.predict %*% c06
y107.predict <- fix07 + x107.predict %*% c07
y108.predict <- fix08 + x108.predict %*% c08
y109.predict <- fix09 + x109.predict %*% c09
y110.predict <- fix10 + x110.predict %*% c10
y111.predict <- fix11 + x111.predict %*% c11
y112.predict <- fix12 + x112.predict %*% c12
y113.predict <- fix13 + x113.predict %*% c13
y114.predict <- fix14 + x114.predict %*% c14
y115.predict <- fix15 + x115.predict %*% c15
y116.predict <- fix16 + x116.predict %*% c16
y117.predict <- fix17 + x117.predict %*% c17
y118.predict <- fix18 + x118.predict %*% c18
y119.predict <- fix19 + x119.predict %*% c19
gdp01.predict <- gdp[TESTset2]*(1+y01.predict/100)
gdp02.predict <- gdp[TESTset2]*(1+y02.predict/100)
gdp03.predict <- gdp[TESTset2]*(1+y03.predict/100)
gdp04.predict <- gdp[TESTset2]*(1+y04.predict/100)
gdp05.predict <- gdp[TESTset2]*(1+y05.predict/100)
gdp06.predict <- gdp[TESTset2]*(1+y06.predict/100)
gdp07.predict <- gdp[TESTset2]*(1+y07.predict/100)
gdp08.predict <- gdp[TESTset2]*(1+y08.predict/100)
gdp09.predict <- gdp[TESTset2]*(1+y09.predict/100)
gdp10.predict <- gdp[TESTset2]*(1+y10.predict/100)
gdp11.predict <- gdp[TESTset2]*(1+y11.predict/100)
gdp12.predict <- gdp[TESTset2]*(1+y12.predict/100)
gdp13.predict <- gdp[TESTset2]*(1+y13.predict/100)
gdp14.predict <- gdp[TESTset2]*(1+y14.predict/100)
gdp15.predict <- gdp[TESTset2]*(1+y15.predict/100)
gdp16.predict <- gdp[TESTset2]*(1+y16.predict/100)
gdp17.predict <- gdp[TESTset2]*(1+y17.predict/100)
gdp18.predict <- gdp[TESTset2]*(1+y18.predict/100)
gdp19.predict <- gdp[TESTset2]*(1+y19.predict/100)
gdp20.predict <- gdp[TESTset2]*(1+y20.predict/100)
gdp21.predict <- gdp[TESTset2]*(1+y21.predict/100)
gdp22.predict <- gdp[TESTset2]*(1+y22.predict/100)
gdp23.predict <- gdp[TESTset2]*(1+y23.predict/100)
gdp24.predict <- gdp[TESTset2]*(1+y24.predict/100)
gdp25.predict <- gdp[TESTset2]*(1+y25.predict/100)
gdp26.predict <- gdp[TESTset2]*(1+y26.predict/100)
gdp27.predict <- gdp[TESTset2]*(1+y27.predict/100)
gdp28.predict <- gdp[TESTset2]*(1+y28.predict/100)
gdp29.predict <- gdp[TESTset2]*(1+y29.predict/100)
gdp30.predict <- gdp[TESTset2]*(1+y30.predict/100)
gdp31.predict <- gdp[TESTset2]*(1+y31.predict/100)
gdp32.predict <- gdp[TESTset2]*(1+y32.predict/100)
gdp33.predict <- gdp[TESTset2]*(1+y33.predict/100)
gdp34.predict <- gdp[TESTset2]*(1+y34.predict/100)
gdp35.predict <- gdp[TESTset2]*(1+y35.predict/100)
gdp36.predict <- gdp[TESTset2]*(1+y36.predict/100)
gdp37.predict <- gdp[TESTset2]*(1+y37.predict/100)
gdp38.predict <- gdp[TESTset2]*(1+y38.predict/100)
gdp39.predict <- gdp[TESTset2]*(1+y39.predict/100)
gdp40.predict <- gdp[TESTset2]*(1+y40.predict/100)
gdp41.predict <- gdp[TESTset2]*(1+y41.predict/100)
gdp42.predict <- gdp[TESTset2]*(1+y42.predict/100)
gdp43.predict <- gdp[TESTset2]*(1+y43.predict/100)
gdp44.predict <- gdp[TESTset2]*(1+y44.predict/100)
gdp45.predict <- gdp[TESTset2]*(1+y45.predict/100)
gdp46.predict <- gdp[TESTset2]*(1+y46.predict/100)
gdp47.predict <- gdp[TESTset2]*(1+y47.predict/100)
gdp48.predict <- gdp[TESTset2]*(1+y48.predict/100)
gdp49.predict <- gdp[TESTset2]*(1+y49.predict/100)
gdp50.predict <- gdp[TESTset2]*(1+y50.predict/100)
gdp51.predict <- gdp[TESTset2]*(1+y51.predict/100)
gdp52.predict <- gdp[TESTset2]*(1+y52.predict/100)
gdp53.predict <- gdp[TESTset2]*(1+y53.predict/100)
gdp54.predict <- gdp[TESTset2]*(1+y54.predict/100)
gdp55.predict <- gdp[TESTset2]*(1+y55.predict/100)
gdp56.predict <- gdp[TESTset2]*(1+y56.predict/100)
gdp57.predict <- gdp[TESTset2]*(1+y57.predict/100)
gdp58.predict <- gdp[TESTset2]*(1+y58.predict/100)
gdp59.predict <- gdp[TESTset2]*(1+y59.predict/100)
gdp60.predict <- gdp[TESTset2]*(1+y60.predict/100)
gdp61.predict <- gdp[TESTset2]*(1+y61.predict/100)
gdp62.predict <- gdp[TESTset2]*(1+y62.predict/100)
gdp63.predict <- gdp[TESTset2]*(1+y63.predict/100)
gdp64.predict <- gdp[TESTset2]*(1+y64.predict/100)
gdp65.predict <- gdp[TESTset2]*(1+y65.predict/100)
gdp66.predict <- gdp[TESTset2]*(1+y66.predict/100)
gdp67.predict <- gdp[TESTset2]*(1+y67.predict/100)
gdp68.predict <- gdp[TESTset2]*(1+y68.predict/100)
gdp69.predict <- gdp[TESTset2]*(1+y69.predict/100)
gdp70.predict <- gdp[TESTset2]*(1+y70.predict/100)
gdp71.predict <- gdp[TESTset2]*(1+y71.predict/100)
gdp72.predict <- gdp[TESTset2]*(1+y72.predict/100)
gdp73.predict <- gdp[TESTset2]*(1+y73.predict/100)
gdp74.predict <- gdp[TESTset2]*(1+y74.predict/100)
gdp75.predict <- gdp[TESTset2]*(1+y75.predict/100)
gdp76.predict <- gdp[TESTset2]*(1+y76.predict/100)
gdp101.predict <- gdp[TESTset2]*(1+y101.predict/100)
gdp102.predict <- gdp[TESTset2]*(1+y102.predict/100)
gdp103.predict <- gdp[TESTset2]*(1+y103.predict/100)
gdp104.predict <- gdp[TESTset2]*(1+y104.predict/100)
gdp105.predict <- gdp[TESTset2]*(1+y105.predict/100)
gdp106.predict <- gdp[TESTset2]*(1+y106.predict/100)
gdp107.predict <- gdp[TESTset2]*(1+y107.predict/100)
gdp108.predict <- gdp[TESTset2]*(1+y108.predict/100)
gdp109.predict <- gdp[TESTset2]*(1+y109.predict/100)
gdp110.predict <- gdp[TESTset2]*(1+y110.predict/100)
gdp111.predict <- gdp[TESTset2]*(1+y111.predict/100)
gdp112.predict <- gdp[TESTset2]*(1+y112.predict/100)
gdp113.predict <- gdp[TESTset2]*(1+y113.predict/100)
gdp114.predict <- gdp[TESTset2]*(1+y114.predict/100)
gdp115.predict <- gdp[TESTset2]*(1+y115.predict/100)
gdp116.predict <- gdp[TESTset2]*(1+y116.predict/100)
gdp117.predict <- gdp[TESTset2]*(1+y117.predict/100)
gdp118.predict <- gdp[TESTset2]*(1+y118.predict/100)
gdp119.predict <- gdp[TESTset2]*(1+y119.predict/100)
gdp.01[TESTset] <- gdp01.predict
gdp.02[TESTset] <- gdp02.predict
gdp.03[TESTset] <- gdp03.predict
gdp.04[TESTset] <- gdp04.predict
gdp.05[TESTset] <- gdp05.predict
gdp.06[TESTset] <- gdp06.predict
gdp.07[TESTset] <- gdp07.predict
gdp.08[TESTset] <- gdp08.predict
gdp.09[TESTset] <- gdp09.predict
gdp.10[TESTset] <- gdp10.predict
gdp.11[TESTset] <- gdp11.predict
gdp.12[TESTset] <- gdp12.predict
gdp.13[TESTset] <- gdp13.predict
gdp.14[TESTset] <- gdp14.predict
gdp.15[TESTset] <- gdp15.predict
gdp.16[TESTset] <- gdp16.predict
gdp.17[TESTset] <- gdp17.predict
gdp.18[TESTset] <- gdp18.predict
gdp.19[TESTset] <- gdp19.predict
gdp.20[TESTset] <- gdp20.predict
gdp.21[TESTset] <- gdp21.predict
gdp.22[TESTset] <- gdp22.predict
gdp.23[TESTset] <- gdp23.predict
gdp.24[TESTset] <- gdp24.predict
gdp.25[TESTset] <- gdp25.predict
gdp.26[TESTset] <- gdp26.predict
gdp.27[TESTset] <- gdp27.predict
gdp.28[TESTset] <- gdp28.predict
gdp.29[TESTset] <- gdp29.predict
gdp.30[TESTset] <- gdp30.predict
gdp.31[TESTset] <- gdp31.predict
gdp.32[TESTset] <- gdp32.predict
gdp.33[TESTset] <- gdp33.predict
gdp.34[TESTset] <- gdp34.predict
gdp.35[TESTset] <- gdp35.predict
gdp.36[TESTset] <- gdp36.predict
gdp.37[TESTset] <- gdp37.predict
gdp.38[TESTset] <- gdp38.predict
gdp.39[TESTset] <- gdp39.predict
gdp.40[TESTset] <- gdp40.predict
gdp.41[TESTset] <- gdp41.predict
gdp.42[TESTset] <- gdp42.predict
gdp.43[TESTset] <- gdp43.predict
gdp.44[TESTset] <- gdp44.predict
gdp.45[TESTset] <- gdp45.predict
gdp.46[TESTset] <- gdp46.predict
gdp.47[TESTset] <- gdp47.predict
gdp.48[TESTset] <- gdp48.predict
gdp.49[TESTset] <- gdp49.predict
gdp.50[TESTset] <- gdp50.predict
gdp.51[TESTset] <- gdp51.predict
gdp.52[TESTset] <- gdp52.predict
gdp.53[TESTset] <- gdp53.predict
gdp.54[TESTset] <- gdp54.predict
gdp.55[TESTset] <- gdp55.predict
gdp.56[TESTset] <- gdp56.predict
gdp.57[TESTset] <- gdp57.predict
gdp.58[TESTset] <- gdp58.predict
gdp.59[TESTset] <- gdp59.predict
gdp.60[TESTset] <- gdp60.predict
gdp.61[TESTset] <- gdp61.predict
gdp.62[TESTset] <- gdp62.predict
gdp.63[TESTset] <- gdp63.predict
gdp.64[TESTset] <- gdp64.predict
gdp.65[TESTset] <- gdp65.predict
gdp.66[TESTset] <- gdp66.predict
gdp.67[TESTset] <- gdp67.predict
gdp.68[TESTset] <- gdp68.predict
gdp.69[TESTset] <- gdp69.predict
gdp.70[TESTset] <- gdp70.predict
gdp.71[TESTset] <- gdp71.predict
gdp.72[TESTset] <- gdp72.predict
gdp.73[TESTset] <- gdp73.predict
gdp.74[TESTset] <- gdp74.predict
gdp.75[TESTset] <- gdp75.predict
gdp.76[TESTset] <- gdp76.predict
gdp.101[TESTset] <- gdp101.predict
gdp.102[TESTset] <- gdp102.predict
gdp.103[TESTset] <- gdp103.predict
gdp.104[TESTset] <- gdp104.predict
gdp.105[TESTset] <- gdp105.predict
gdp.106[TESTset] <- gdp106.predict
gdp.107[TESTset] <- gdp107.predict
gdp.108[TESTset] <- gdp108.predict
gdp.109[TESTset] <- gdp109.predict
gdp.110[TESTset] <- gdp110.predict
gdp.111[TESTset] <- gdp111.predict
gdp.112[TESTset] <- gdp112.predict
gdp.113[TESTset] <- gdp113.predict
gdp.114[TESTset] <- gdp114.predict
gdp.115[TESTset] <- gdp115.predict
gdp.116[TESTset] <- gdp116.predict
gdp.117[TESTset] <- gdp117.predict
gdp.118[TESTset] <- gdp118.predict
gdp.119[TESTset] <- gdp119.predict
MAPPE[1,(j+1)] <- mean(abs(1-gdp01.predict/gdp.actual))
MAPPE[2,(j+1)] <- mean(abs(1-gdp02.predict/gdp.actual))
MAPPE[3,(j+1)] <- mean(abs(1-gdp03.predict/gdp.actual))
MAPPE[4,(j+1)] <- mean(abs(1-gdp04.predict/gdp.actual))
MAPPE[5,(j+1)] <- mean(abs(1-gdp05.predict/gdp.actual))
MAPPE[6,(j+1)] <- mean(abs(1-gdp06.predict/gdp.actual))
MAPPE[7,(j+1)] <- mean(abs(1-gdp07.predict/gdp.actual))
MAPPE[8,(j+1)] <- mean(abs(1-gdp08.predict/gdp.actual))
MAPPE[9,(j+1)] <- mean(abs(1-gdp09.predict/gdp.actual))
MAPPE[10,(j+1)] <- mean(abs(1-gdp10.predict/gdp.actual))
MAPPE[11,(j+1)] <- mean(abs(1-gdp11.predict/gdp.actual))
MAPPE[12,(j+1)] <- mean(abs(1-gdp12.predict/gdp.actual))
MAPPE[13,(j+1)] <- mean(abs(1-gdp13.predict/gdp.actual))
MAPPE[14,(j+1)] <- mean(abs(1-gdp14.predict/gdp.actual))
MAPPE[15,(j+1)] <- mean(abs(1-gdp15.predict/gdp.actual))
MAPPE[16,(j+1)] <- mean(abs(1-gdp16.predict/gdp.actual))
MAPPE[17,(j+1)] <- mean(abs(1-gdp17.predict/gdp.actual))
MAPPE[18,(j+1)] <- mean(abs(1-gdp18.predict/gdp.actual))
MAPPE[19,(j+1)] <- mean(abs(1-gdp19.predict/gdp.actual))
MAPPE[20,(j+1)] <- mean(abs(1-gdp20.predict/gdp.actual))
MAPPE[21,(j+1)] <- mean(abs(1-gdp21.predict/gdp.actual))
MAPPE[22,(j+1)] <- mean(abs(1-gdp22.predict/gdp.actual))
MAPPE[23,(j+1)] <- mean(abs(1-gdp23.predict/gdp.actual))
MAPPE[24,(j+1)] <- mean(abs(1-gdp24.predict/gdp.actual))
MAPPE[25,(j+1)] <- mean(abs(1-gdp25.predict/gdp.actual))
MAPPE[26,(j+1)] <- mean(abs(1-gdp26.predict/gdp.actual))
MAPPE[27,(j+1)] <- mean(abs(1-gdp27.predict/gdp.actual))
MAPPE[28,(j+1)] <- mean(abs(1-gdp28.predict/gdp.actual))
MAPPE[29,(j+1)] <- mean(abs(1-gdp29.predict/gdp.actual))
MAPPE[30,(j+1)] <- mean(abs(1-gdp30.predict/gdp.actual))
MAPPE[31,(j+1)] <- mean(abs(1-gdp31.predict/gdp.actual))
MAPPE[32,(j+1)] <- mean(abs(1-gdp32.predict/gdp.actual))
MAPPE[33,(j+1)] <- mean(abs(1-gdp33.predict/gdp.actual))
MAPPE[34,(j+1)] <- mean(abs(1-gdp34.predict/gdp.actual))
MAPPE[35,(j+1)] <- mean(abs(1-gdp35.predict/gdp.actual))
MAPPE[36,(j+1)] <- mean(abs(1-gdp36.predict/gdp.actual))
MAPPE[37,(j+1)] <- mean(abs(1-gdp37.predict/gdp.actual))
MAPPE[38,(j+1)] <- mean(abs(1-gdp38.predict/gdp.actual))
MAPPE[39,(j+1)] <- mean(abs(1-gdp39.predict/gdp.actual))
MAPPE[40,(j+1)] <- mean(abs(1-gdp40.predict/gdp.actual))
MAPPE[41,(j+1)] <- mean(abs(1-gdp41.predict/gdp.actual))
MAPPE[42,(j+1)] <- mean(abs(1-gdp42.predict/gdp.actual))
MAPPE[43,(j+1)] <- mean(abs(1-gdp43.predict/gdp.actual))
MAPPE[44,(j+1)] <- mean(abs(1-gdp44.predict/gdp.actual))
MAPPE[45,(j+1)] <- mean(abs(1-gdp45.predict/gdp.actual))
MAPPE[46,(j+1)] <- mean(abs(1-gdp46.predict/gdp.actual))
MAPPE[47,(j+1)] <- mean(abs(1-gdp47.predict/gdp.actual))
MAPPE[48,(j+1)] <- mean(abs(1-gdp48.predict/gdp.actual))
MAPPE[49,(j+1)] <- mean(abs(1-gdp49.predict/gdp.actual))
MAPPE[50,(j+1)] <- mean(abs(1-gdp50.predict/gdp.actual))
MAPPE[51,(j+1)] <- mean(abs(1-gdp51.predict/gdp.actual))
MAPPE[52,(j+1)] <- mean(abs(1-gdp52.predict/gdp.actual))
MAPPE[53,(j+1)] <- mean(abs(1-gdp53.predict/gdp.actual))
MAPPE[54,(j+1)] <- mean(abs(1-gdp54.predict/gdp.actual))
MAPPE[55,(j+1)] <- mean(abs(1-gdp55.predict/gdp.actual))
MAPPE[56,(j+1)] <- mean(abs(1-gdp56.predict/gdp.actual))
MAPPE[57,(j+1)] <- mean(abs(1-gdp57.predict/gdp.actual))
MAPPE[58,(j+1)] <- mean(abs(1-gdp58.predict/gdp.actual))
MAPPE[59,(j+1)] <- mean(abs(1-gdp59.predict/gdp.actual))
MAPPE[60,(j+1)] <- mean(abs(1-gdp60.predict/gdp.actual))
MAPPE[61,(j+1)] <- mean(abs(1-gdp61.predict/gdp.actual))
MAPPE[62,(j+1)] <- mean(abs(1-gdp62.predict/gdp.actual))
MAPPE[63,(j+1)] <- mean(abs(1-gdp63.predict/gdp.actual))
MAPPE[64,(j+1)] <- mean(abs(1-gdp64.predict/gdp.actual))
MAPPE[65,(j+1)] <- mean(abs(1-gdp65.predict/gdp.actual))
MAPPE[66,(j+1)] <- mean(abs(1-gdp66.predict/gdp.actual))
MAPPE[67,(j+1)] <- mean(abs(1-gdp67.predict/gdp.actual))
MAPPE[68,(j+1)] <- mean(abs(1-gdp68.predict/gdp.actual))
MAPPE[69,(j+1)] <- mean(abs(1-gdp69.predict/gdp.actual))
MAPPE[70,(j+1)] <- mean(abs(1-gdp70.predict/gdp.actual))
MAPPE[71,(j+1)] <- mean(abs(1-gdp71.predict/gdp.actual))
MAPPE[72,(j+1)] <- mean(abs(1-gdp72.predict/gdp.actual))
MAPPE[73,(j+1)] <- mean(abs(1-gdp73.predict/gdp.actual))
MAPPE[74,(j+1)] <- mean(abs(1-gdp74.predict/gdp.actual))
MAPPE[75,(j+1)] <- mean(abs(1-gdp75.predict/gdp.actual))
MAPPE[76,(j+1)] <- mean(abs(1-gdp76.predict/gdp.actual))
MAPPE[101,(j+1)] <- mean(abs(1-gdp101.predict/gdp.actual))
MAPPE[102,(j+1)] <- mean(abs(1-gdp102.predict/gdp.actual))
MAPPE[103,(j+1)] <- mean(abs(1-gdp103.predict/gdp.actual))
MAPPE[104,(j+1)] <- mean(abs(1-gdp104.predict/gdp.actual))
MAPPE[105,(j+1)] <- mean(abs(1-gdp105.predict/gdp.actual))
MAPPE[106,(j+1)] <- mean(abs(1-gdp106.predict/gdp.actual))
MAPPE[107,(j+1)] <- mean(abs(1-gdp107.predict/gdp.actual))
MAPPE[108,(j+1)] <- mean(abs(1-gdp108.predict/gdp.actual))
MAPPE[109,(j+1)] <- mean(abs(1-gdp109.predict/gdp.actual))
MAPPE[110,(j+1)] <- mean(abs(1-gdp110.predict/gdp.actual))
MAPPE[111,(j+1)] <- mean(abs(1-gdp111.predict/gdp.actual))
MAPPE[112,(j+1)] <- mean(abs(1-gdp112.predict/gdp.actual))
MAPPE[113,(j+1)] <- mean(abs(1-gdp113.predict/gdp.actual))
MAPPE[114,(j+1)] <- mean(abs(1-gdp114.predict/gdp.actual))
MAPPE[115,(j+1)] <- mean(abs(1-gdp115.predict/gdp.actual))
MAPPE[116,(j+1)] <- mean(abs(1-gdp116.predict/gdp.actual))
MAPPE[117,(j+1)] <- mean(abs(1-gdp117.predict/gdp.actual))
MAPPE[118,(j+1)] <- mean(abs(1-gdp118.predict/gdp.actual))
MAPPE[119,(j+1)] <- mean(abs(1-gdp119.predict/gdp.actual))
sPPE[1,(j+1)] <- 1-sum(gdp01.predict)/sum(gdp.actual)
sPPE[2,(j+1)] <- 1-sum(gdp02.predict)/sum(gdp.actual)
sPPE[3,(j+1)] <- 1-sum(gdp03.predict)/sum(gdp.actual)
sPPE[4,(j+1)] <- 1-sum(gdp04.predict)/sum(gdp.actual)
sPPE[5,(j+1)] <- 1-sum(gdp05.predict)/sum(gdp.actual)
sPPE[6,(j+1)] <- 1-sum(gdp06.predict)/sum(gdp.actual)
sPPE[7,(j+1)] <- 1-sum(gdp07.predict)/sum(gdp.actual)
sPPE[8,(j+1)] <- 1-sum(gdp08.predict)/sum(gdp.actual)
sPPE[9,(j+1)] <- 1-sum(gdp09.predict)/sum(gdp.actual)
sPPE[10,(j+1)] <- 1-sum(gdp10.predict)/sum(gdp.actual)
sPPE[11,(j+1)] <- 1-sum(gdp11.predict)/sum(gdp.actual)
sPPE[12,(j+1)] <- 1-sum(gdp12.predict)/sum(gdp.actual)
...Подобные документы
Дефлятор ВВП в процентах к предыдущему году. Соотношение величин номинального и реального валового внутреннего продукта и дефлятора ВВП в России за период с 1999–2010 гг. Расчет темпа роста реального ВВП. Темп прироста национального дохода страны.
контрольная работа [595,4 K], добавлен 28.03.2012Необходимость применения достоверного прогноза на базе методов и моделей научного прогнозирования для эффективного регулирования экономики. Описание основных методов и моделей экономического прогнозирования, представляющих экономико-политический интерес.
реферат [13,0 K], добавлен 11.04.2010Прогноз как форма научного предвидения и основные подходы к исследованию объекта прогнозирования. Наука о принципах, методах и средствах научного прогнозирования – прогностика. Методология прогнозирования развития социально-экономической системы страны.
реферат [54,0 K], добавлен 26.02.2009Уровень жизни населения как объект прогнозирования, современные подходы и критерии его оценки, используемые методы и модели. Анализ динамики экономических показателей населения РФ и этапы их прогнозирования, экономическое обоснование и значение.
контрольная работа [63,3 K], добавлен 15.04.2015Методы экстраполяции и моделирования как формализованные методы прогнозирования. Прогноз динамики изменения объема выпускаемой продукции предприятия за счет получения краткосрочного кредита под оборотные активы, финансовой устойчивости предприятия.
контрольная работа [106,3 K], добавлен 24.02.2010Рассмотрение прогноза показателей социально-экономического развития России. Обобщение методов планирования и прогнозирования в экономике. Изучение применения методов планирования и прогнозирования на макроуровне. Прогноз развития сектора экономики.
курсовая работа [44,5 K], добавлен 26.08.2017Классификация методов прогнозирования. Характеристика поискового и нормативного прогнозов. Сущность и цель методов экстраполяции и методов информационного моделирования. Сущность интуитивных методов прогнозирования и особенности экспертных оценок.
реферат [20,4 K], добавлен 10.01.2012Роль прогнозирования в США. Процесс разработки макроэкономических прогнозов в Соединенных Штатах. Антикризисная программа США. Основные методы прогнозирования, используемые на государственном уровне в США. Модель круговых потоков в закрытой экономике.
реферат [42,7 K], добавлен 15.05.2010Теоретические аспекты прогнозирования и планирования на предприятии. Классификация прогнозов и планов на предприятии, основных методов осуществления прогнозирования и планирования. Практическая реализация выбранного метода планирования и прогнозирования.
курсовая работа [234,6 K], добавлен 07.10.2014Сущность моделирования развития и функционирования национальной экономики. Системный подход как методологическая основа моделирования и прогнозирования национальной экономики. Методология построения межотраслевого баланса в системе национальных счетов.
курсовая работа [74,2 K], добавлен 25.04.2016Место прогнозирования в системе государственного регулирования экономики. Объекты и виды прогнозов. Методика экономического прогнозирования. Разработка концепции социально-экономического развития страны. Стратегическое и индикативное планирование.
лекция [30,2 K], добавлен 03.12.2007Расчет основных характеристик рядов динамики показателей денежного обращения в России. Выявление тенденций показателей денежного обращения на основе метода аналитического выравнивания и прогнозирования. Построение динамических регрессионных моделей.
курсовая работа [322,9 K], добавлен 23.10.2014Сущность прогнозирования на основе временных рядов. Общий вид линии тренда. Расчет количества туристов за год. Метод сезонной компоненты, расчет средних значений. Аналитические уравнения Фурье, динамический ряд. Прогноз количества туристов на будущий год.
контрольная работа [194,3 K], добавлен 18.12.2011Характеристика понятий экономического роста и динамики общественного производства. Анализ объектов прогнозирования экономического роста: макроэкономические цели, показатели и счета. Изучение методики и системы прогнозирования национальной экономики в РФ.
курсовая работа [55,5 K], добавлен 04.04.2011Обзор математических моделей финансовых пирамид. Анализ модели динамики финансовых пузырей Чернавского. Обзор модели долгосрочного социально-экономического прогнозирования. Оценка приоритета простых моделей. Вывод математической модели макроэкономики.
курсовая работа [1,7 M], добавлен 27.11.2017Теоретические основы прогнозирования структуры доходов населения: основные подходы к прогнозированию и обоснование выбранного метода ислледования. Ретроспективный анализ и сценарии развития доходов в Тюменской области: составление и верифакация прогноза.
курсовая работа [787,3 K], добавлен 26.01.2011Анализ необходимости установления паритетного экономического отношения между контрагентами. Пути решения проблем по обеспечению населения товарами народного потребления. Технологии прогнозирования регионального развития в Узбекистане, их улучшение.
реферат [24,5 K], добавлен 03.07.2015Проблема экономического роста и его темпов. Точный показатель благополучия страны, уровня благосостояния - величина реального валового внутреннего продукта на душу населения. Два типа экономического роста и факторы, влияющие на качество ресурсов.
учебное пособие [38,6 K], добавлен 10.05.2009Задачи статистики населения. Назначение демографического прогнозирования. Расчёт и анализ показателей динамики численности населения России за 2000-2005 года. Методы исследования, применяемые в статистике населения. Показатели численности населения.
курсовая работа [1,1 M], добавлен 08.01.2010Определение методических задач и основных принципов социально-экономического анализа. Изучение структуры и классификации прогнозных моделей национальной экономики. Организация государственного прогнозирования социально-экономического развития России.
курсовая работа [68,0 K], добавлен 17.10.2014