Разработка моделей прогнозирования банкротства в современных российских условиях
Рассматриваются проблемы прогнозирования банкротства в России. Обзор отечественной литературы по прогнозированию банкротства. Предложено использовать анализ по закону Бенфорда для выявления групп предприятий, осуществляющих манипуляции с отчетностью.
Рубрика | Экономика и экономическая теория |
Вид | статья |
Язык | русский |
Дата добавления | 27.02.2020 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Разработка моделей прогнозирования банкротства в современных российских условиях
А.В. Казаков1, А.В. Колышкин2
1 Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9
2 Российский государственный педагогический университет им. А.И. Герцена, Российская Федерация, 191186, Санкт-Петербург, наб. реки Мойки, 48
В статье рассматриваются проблемы прогнозирования банкротства в России. Данный вопрос приобретает все большую актуальность в последние годы в связи с падением доходов населения. Для прогнозирования банкротства предприятий широко применяются модели прогнозирования банкротства, однако в силу ряда ограничений они могут иметь низкую точность. Поэтому в зарубежной литературе идет активное обсуждение путей улучшения качества данного метода. В России наблюдается рост числа созданных моделей, но на данный момент не было обширных исследований, оценивающих их эффективность. Среди целей исследования были поставлены: детальный обзор отечественной литературы по прогнозированию банкротства с целью оценить точность и выявить недостатки существующих моделей; построение нового набора моделей с учетом проанализированных недостатков; выдвижение предложений по дальнейшему усовершенствованию моделей для будущих исследований. Проведенный анализ моделей выявил их неэффективность. В качестве причин этого были выделены: проблема стационарности данных, низкое качество бухгалтерской отчетности и недостаточный объем данных, используемых для построения моделей, а также негативное влияние практики манипуляций с бухгалтерской отчетностью и криминальных банкротств. Был создан набор моделей, который оказался эффективным (точность предсказаний около 70 %) и устойчивым во времени. Кроме того, был предложен способ повышения качества моделей прогнозирования путем учета всех возможных сценариев несостоятельности предприятия (включая ликвидацию, продажу и приостановку деятельности) методами статистической классификации. В завершение предлагается использовать анализ по закону Бенфорда для выявления групп предприятий, осуществляющих манипуляции с отчетностью. Проведенная оценка данного метода показала его пригодность для этих целей.
Ключевые слова: прогнозирование банкротства, финансовая несостоятельность, логит-регрессия, антикризисное управление.
Деятельность любого предприятия -- это сложный и многогранный процесс, в ходе которого компания взаимодействует с субъектами на разных уровнях -- от поставщиков до отношений с государством, при этом на протяжении всего времени функционирования предприятия как внешние, так и внутренние условия его работы непрерывно меняются. В такой во многом нестабильной и непредсказуемой обстановке несомненно важным представляется прогнозирование будущих состояний того или иного предприятия для принятия управленческих решений и оптимизации его работы. Не менее важным является и прогнозирование вероятности наступления кризисных ситуаций для их своевременного устранения. Особенно это стало актуальным в период мирового экономического кризиса.
Так, согласно данным Центра макроэкономического анализа и краткосрочного прогнозирования (ЦМАКП) за третий квартал 2016 г., рост интенсивности банкротств в России стабилизировался (после сильного роста в течение 2014 и 2015 гг. -- более чем на 30 %), однако остается на довольно высоком уровне -- примерно на 13 % выше, чем в 2013 г., а объем просроченной задолженности крупных и средних организаций в январе -- августе 2016 г. оказался на 14 % выше, чем в аналогичный период 2015 г. (и на 70 % выше, чем в 2014 г.) [Рыбалка, Сальников, 2016].
При этом, однако, в некоторых отраслях рост числа банкротств продолжается ввиду значительного ухудшения их финансового состояния. Так, на фоне снижения потребительского спроса (по данным на третий квартал 2016 г. падение располагаемых доходов населения продолжалось в течение восьми кварталов подряд, составив 11 % относительно аналогичного периода в 2014 г.) наиболее сильно пострадали строительная отрасль, услуги и торговля, в которых наблюдается существенное снижение продаж (так, по данным Росстата, оборот розничной торговли и строительства на начало 2016 г. падал в течение семи кварталов подряд).
Таким образом, проблема своевременного обнаружения кризисных тенденций на предприятии и прогнозирования банкротства является актуальной. Целью настоящей статьи стало детальное рассмотрение существующих на данный момент как отечественных, так и зарубежных моделей для выявления их недостатков и ограничений, связанных с российскими реалиями. Кроме того, на основе полученных выводов предполагается построить набор моделей для оценки их эффективности. В завершение проводится анализ перспектив усовершенствования методов создания моделей прогнозирования.
Одним из способов прогнозирования несостоятельности предприятия является применение так называемых моделей прогнозирования банкротства. Первые опыты по оценке состояния компании были предприняты еще в ХК в. Особенно активными в этой области были купцы, особенно заинтересованные в определении потенциальной платежеспособности своих клиентов. Однако только в ХХ в. финансовые и экономические показатели стали широко использоваться, причем не только для прогнозирования банкротства как такового, но и для прогнозирования различных финансовых затруднений. В первой половине XX в. было опубликовано множество работ, посвященных данной тематике. Среди авторов можно отметить У Б. Хикмана, Ч. Мервина, И. Фишера, А. Вожинловера и многих других. Новый толчок проблема прогнозирования несостоятельности получила после Второй мировой войны в связи с повышением интереса к прогнозированию неплатежеспособности предприятий из-за возросшего числа банкротств.
В качестве основной работы на данном этапе следует указать статью У. Бивера[Beaver, 1966], который выделил ряд финансовых показателей, наиболее различающихся у действующих предприятий и банкротов, при этом были использованы данные финансовой отчетности 158 американских компаний. Однако подход Бивера еще не был статистическим прогнозированием банкротства, исследователю не удалось предложить единый показатель для оценки его вероятности.
Первым, кто применил статистические методы (а именно дискриминантный анализ) для прогнозирования банкротства предприятий, стал Э. Альтман [Altman, 1968]. Он использовал данные по 66 компаниям и предложил регрессионное уравнение, позволявшее отнести анализируемое предприятие либо к категории потенциальных банкротов, либо к финансово стабильным компаниям, либо к «серой зоне», в случае попадания в которую нельзя было сделать однозначного вывода о финансовом положении предприятия. Данная работа дала возможность лицам, принимающим решение, исходя из финансовых данных компаний оценивать состояние своей компании или же компаний-контрагентов. Вслед за Э. Альтманом в 1970 -- начале 1980-х годов вышел ряд аналогичных работ (основанных на других выборках для США и разных стран) таких исследователей, как Р. Эдмистер, М. Блам, Э. Дикин, Э. Таффлер, К. Завгрен.
Следующим шагом в развитии методов создания моделей прогнозирования банкротства стало применение логистической регрессии, впервые предложенное Джеймсом Олсоном[Ohlson, 1980]. Данный метод имеет ряд статистических преимуществ по сравнению с дискриминантным анализом и является интуитивно понятным, при его использовании результатом регрессии является оцененная вероятность предприятия входить в группу банкротов или здоровых. Работа Олсона положила начало массовому применению данного метода другими авторами, вплоть до последнего времени, когда стали набирать популярность методы машинного обучения.
В последнюю декаду число работ, посвященных прогнозированию банкротства, в зарубежной литературе значительно увеличилось, что хорошо иллюстрирует статистика публикаций базы Scopus(рис. 1).
Этот результат можно объяснить повышением доступности данных и развитием новых статистических методов. Так, если в обзоре литературы, сделанном Дж. Белловэри в 2007 г. [Bellovaryetal., 2007], было найдено более 150 англоязычных работ и в большинстве из них использовались классические методы -- МДА и логистическая регрессия, то в 2013 г. Х. Алака и соавторы [Alakaetal., 2016] обнаружили только за период 2007-2013 гг. 70 работ, в которых уже применялись те или иные методы машинного обучения.
Рис. 1. Количество англоязычных публикаций по теме прогнозирования банкротства в базе Scopus
прогнозирование банкротство отчетность
Упомянутые модели относятся к классу так называемых балансовых моделей, использующих в качестве объясняющих переменных те или иные финансовые (балансовые) показатели предприятий наряду с некоторыми небалансовыми переменными, такими как возраст предприятия, доля на рынке и т. д.
Помимо балансовых, была разработана так называемая модель КМВ-Мертона, за ней последовал целый ряд моделей (см., напр.: [НіПедеМеіа1., 2004; ВЬагаіЬ, Shumway, 2004], в которых представлен альтернативный подход к прогнозированию несостоятельности предприятия. Эти модели активно применяются банками и финансовыми институтами.
При построении данного класса моделей в расчетах применяется рыночная стоимость акций компании, что при условии эффективных рынков позволяет учитывать информацию, не содержащуюся в балансовых данных. Кроме того, как отмечают В. Агарвал и Р. Таффлер (см.: [Адата1, Taffler, 2008]), данный метод более подходит для прогнозирования, так как в цене за акцию учитываются будущие денежные потоки. При этом, в отличие от балансовых моделей, модель Мертона имеет теоретическое обоснование.
Однако среди исследований, оценивавших результативность рыночных моделей в предсказании банкротства, не было обнаружено единого тренда. Так, в работах [КеаШОег, 2003; Оёегёаеіа1., 2003] показано, что рыночные модели точнее кредитных рейтингов, а в статье [НіПедеМеіа1., 2004] утверждается, что рыночные модели охватывают больший объем факторов несостоятельности, нежели балансовые.
В то же время в исследовании [СатрЬеІІеіа1., 2008] установлено, что при учете контрольных переменных рыночные модели показывают слабую предсказательную силу. Кроме того, в работе [Ие^, РегНеЬ, 2007] отмечено, что классическая модель Альтмана оказалась точнее рыночных моделей на горизонте в один год, однако на большем отдалении рыночные модели оказались лучше. Это можно объяснить наличием теоретического обоснования данного класса моделей, что делает их более устойчивыми во времени, нежели балансовые модели прогнозирования банкротства, строящиеся по историческим данным. В. Агарвал и Р. Таффлер [Адата, Taffler, 2008] на основе данных по Великобритании сделали заключение о том, что нет существенной разницы в предсказательной силе между рыночными и балансовыми моделями.
Однако, несмотря на неоднозначные данные о точности рыночных моделей в современной литературе, они могут быть полезным инструментом предсказания несостоятельности, потому что, как отмечают В. Агарвал и Р. Таффлер[Agarwal, Taffler, 2008], два класса моделей охватывают различные факторы риска банкротства и предполагается их совместное использование.
Главным ограничением для использования рыночных моделей в России является слаборазвитый финансовый рынок, вследствие чего балансовые модели выступают единственным возможным инструментом в данном случае. Таким образом, настоящее исследование будет сфокусировано на балансовых моделях.
В России же данная тема только начинает привлекать интерес широкого круга исследователей, в то время как в течение 1990-х и первой половины 2000-х годов было создано лишь несколько отечественных моделей прогнозирования. Это можно отчасти объяснить особенностями экономической ситуации в стране в те годы. Среди авторов первых моделей следует назвать О. П. Зайцеву, Р. С. Сайфуллину, одна из первых моделей была разработана в Иркутской государственной экономической академии (ИГЭА), однако дальнейшие исследования показали их неэффективность [Демешев, Тихонова, 2014].
Значительное повышение интереса к данной теме в России можно проследить начиная с 2007 г., когда многие ученые обратились к данной теме.
Авторами данной статьи была предпринята попытка систематизировать результаты, полученные отечественными исследователями темы прогнозирования банкротства. Был произведен систематический анализ литературы, который показал наличие свыше 40 созданных моделей прогнозирования банкротства (учитывались как модели, упомянутые в статьях, так и магистерские и кандидатские диссертации). Однако авторам удалось получить доступ лишь к 35 работам.
Указанные работы были систематизированы по следующим критериям, связанным с построением моделей прогнозирования:
• отраслевая специализация моделей (создавалась ли модель на смешанной выборке предприятий разных отраслей, или же специализируется на одной конкретной отрасли);
• критерий выбора переменных для моделей;
• выдвинутые гипотезы;
• типы включенных переменных: финансовые, размера, возраста, связанные с внешней средой предприятия;
• статистический метод построения модели: МДА, ЛДА, логистическая регрессия и т. д.;
• размер обучающей выборки;
• факт использования тестовой выборки.
Обзор литературы показал низкий средний уровень работ по данному направлению: так, лишь в пятнадцати работах использовалась тестовая выборка, однако данные выборки сложно назвать репрезентативными в силу малого размера; большая часть моделей была построена на выборке меньше 1000 предприятий, а ряд авторов и вовсе не указывали формулы полученной модели.
В табл. 1 представлены 25 наиболее упоминаемых моделей.
Таким образом, точность данных моделей за пределами обучающих выборок остается неизвестной. При этом важно отметить, что классические модели прогнозирования банкротства (включающие МДА и логистические) создаются на основе предположения о стационарности данных, которое означает, что связи между объясняющими переменными и независимой переменной остаются неизменными с течением времени [Edmister, 1972; Zavgren, 1983; Mensah, 1984; Jones, 1987]. Однако на практике это предположение не реализуется [Barnes, 1982; Richardson, Davidson, 1984;Zmijewski, 1984] в силу многих причин, в том числе и макроэкономических и рыночных изменений [Mensah, 1984], что приводит к тому, что модели прогнозирования банкротства, как правило, показывают меньшую точность на данных будущих периодов, а ряд авторов считают, что модели должны периодически переоцениваться на новых наборах данных [Taffler, 1982; Mensah, 1984; Keasey, Watson, 1991; Dirickx, Van Landeghem, 1994].
В соответствии с этим в данной работе подлежит проверке гипотеза Н1: существующие модели оценивают вероятность банкротства с удовлетворительной точностью.
Анализ табл. 1 показывает: отечественные авторы предполагают, что к предприятиям разных отраслей следует применять разный подход. Однако необходимость такого подхода нигде не обосновывается. Таким образом, можно сформировать подлежащую проверке гипотезу Н2: существует разница в показателях при оценке предприятий различных отраслей.
Таблица 1. Российские модели прогнозирования банкротства
Авторы моделей |
Метод |
Год создания |
Специализация |
Размер выборки |
Точность на обучающей выборке |
|||
Б |
З |
Б |
З |
|||||
Ю. Д. Шмидт |
LDA |
2007 |
Промышленность |
- |
- |
- |
- |
|
Т. К. Богданова |
Logit |
2008 |
Авиапредприятия |
22 |
68 |
77.3 |
95.6 |
|
В. Г. Гурлев |
MDA |
2008 |
Металлургия |
10 |
10 |
- |
- |
|
М. В. Евстропов (первая модель) |
Logit |
2008 |
Обрабатывающая промышленность |
10 |
10 |
88.5 |
88.5 |
|
М. В. Евстропов (вторая модель) |
Logit |
2008 |
Обрабатывающая промышленность |
10 |
10 |
90.5 |
90.5 |
|
А. В. Курапов |
Рейтинговая модель |
2010 |
Разные |
1308 |
2778 |
- |
- |
|
Е. С. Лютова |
MDA |
2011 |
Металлургия |
10 |
10 |
- |
- |
|
Ю. А. Алексеева |
Logit |
2011 |
Обрабатывающая промышленность |
173 |
1184 |
87.2 |
93.5 |
|
Д. А. Мурадов |
Другие модели |
2011 |
Нефтегазовый сектор |
|||||
В. Ю. Жданов |
Logit |
2011 |
Авиапредприятия |
21 |
21 |
86 |
- |
|
Ю. Д. Шмидт и Л. С. Мазелис |
LDA |
2012 |
Промышленность |
14 |
28 |
- |
- |
|
В. Е. Рыгин (для малых предприятий) |
Logit |
2013 |
Металлургия |
64 |
78 |
- |
- |
|
В. Е. Рыгин (для крупных предприятий) |
Logit |
2013 |
Металлургия |
22 |
110 |
- |
- |
|
Е. А. Федорова и Е. В. Гиленко (первая модель) |
Logit |
2013 |
Обрабатывающая промышленность |
444 |
2612 |
87.14 |
87.14 |
|
Е. А. Федорова и Е. В. Гиленко (вторая модель) |
Logit |
2013 |
Обрабатывающая промышленность |
444 |
2612 |
79.57 |
79.57 |
|
Е. А. Федорова и С. Е. Довженко |
Рейтинговая модель |
2015 |
Обрабатывающая промышленность |
500 |
3000 |
- |
- |
|
Е. А. Федорова и Я. В. Тимофеев (для строительства) |
Logit |
2015 |
Строительство |
378 |
1000 |
80 |
91.4 |
|
Е. А. Федорова и Я. В. Тимофеев (для сельского хозяйства) |
Logit |
2015 |
Сельское хозяйство |
412 |
1000 |
77.2 |
88.6 |
|
Е. В. Ширинкина |
Другие модели |
2015 |
Разные |
11 |
17 |
- |
- |
Если эта гипотеза подтвердится, необходимо будет создание набора моделей для различных отраслей.
Для проверки первой гипотезы в настоящей работе были использованы данные по здоровым предприятиям, функционировавшим в 2016 г., и компаниям, обанкротившимся в этот период. Для проверки второй гипотезы были взяты данные по предприятиям, обанкротившимся в 2014-2015 гг., и компаниям, продолжавшим работать в указанное время.
Такие периоды были определены в связи с упомянутой проблемой стационарности данных: ограничение в диапазоне 2014-2015 гг. было выбрано, чтобы исключить искажающее влияние изменившихся макроэкономических условий в 2014 г., а оценочная выборка за 2016 г. -- для более адекватной оценки точности моделей (на данных следующего периода).
При этом следует отметить, что оценка точности моделей прогнозирования банкротства заключается в расчете значений выбранных моделей по выборке предприятий с последующим сравнением полученного согласно модели прогноза с реальным состоянием предприятия.
Указанная процедура является так называемой проверкой статистических гипотез, т. е. соответствия между выборочными данными и гипотезами об их вероятностной природе.
Традиционно решение такой задачи начинается с постановки вопроса (предположения), ответ на который будет заключаться в выборе между двумя утверждениями -- статистическими гипотезами [Аббакумов, Лезина, 2009, с. 136]: согласно одной из них, предположение верно, согласно другой -- нет. В данном случае вопрос, на который требуется найти ответ, заключается в следующем: «Является ли предприятие банкротом?», а нулевой гипотезой, соответственно, утверждение: «Предприятие является банкротом».
При этом при проверке статистических гипотез существует вероятность допустить ошибки первого и второго родов. Ошибка первого рода состоит в том, что отвергается нулевая гипотеза, хотя на самом деле она верна; ошибка второго рода -- в том, что нулевая гипотеза не отклоняется, хотя в действительности она неверна.
Таким образом, если предприятие-банкрот классифицируется моделью как здоровое, то имеет место ошибка первого рода; если же здоровое предприятие оценивается как потенциальный банкрот, то речь идет об ошибке второго рода.
Очевидно, что с экономической точки зрения ошибки первого рода значительно опаснее; ведь потери в случае, когда потенциальный банкрот был признан здоровым, очевидны, а вторая ситуация говорит лишь о лишней «перестраховке», и упущенной инвестиционной выгоде. Отсюда следует вывод о том, что значимость ошибок первого и второго рода неравнозначна, и в процессе оценки точности моделей приоритетной должна быть выделена точность верной классификации пред- приятий-банкротов.
Создание выборки предприятий как для оценки точности моделей, так и для создания новой модели предполагает отбор предприятий согласно определенному принципу. При этом главной целью является обеспечение репрезентативности полученной выборки, которая имеет такое же распределение относительных характеристик, что и генеральная совокупность, т. е. отражает ее свойства. Для реализации указанной цели возможен отбор предприятий рядом способов: простой случайный отбор, стратифицированный, систематический и др.
Наиболее объективным способом является случайный бесповторный отбор, поэтому он и был определен для формирования выборочной совокупности. Главный недостаток данного метода заключается в необходимости наличия реестра генеральной совокупности, при этом важен вопрос репрезентативности источников для построения статистических моделей. В качестве такого реестра была выбрана база данных СПАРК-Интерфакс, предоставляющая финансовые показатели предприятий РФ в разрезе всех отраслей. Для оценки ее репрезентативности была проведена оценка доли предприятий, представленных в базе от общего числа предприятий в экономике страны.
Так, в 2010 г. средняя численность малых предприятий, осуществляющих экономическую деятельность в России, примерно равнялась 1 млн 260 тыс., а среднее число предприятий в российской экономике в целом за последние годы составляло примерно 4 800 000 (согласно данным Российского статистического ежегодника); в то же время среднее число активных предприятий в базе СПАРК за период 20062010 гг. равнялось в среднем 750 тыс., или около 15 % от общего числа фирм, что не позволяет считать эту базу реестром генеральной совокупности, однако отобранную из нее выборку можно рассматривать как репрезентативную.
Кроме того, анализ данных, представленных в базе, выявил значительную долю в российской экономике фирм-однодневок: число предприятий, осуществлявших деятельность в течение двух лет (2009-2010 гг.), составило примерно 560 тыс., т.е. из 750 тыс. активных компаний, представленных в базе, около 190 тыс. (или 25 %) существовали первый год. Схожая картина наблюдалась и в период с 2006 по 2009 г.
Интересно сопоставить полученные цифры с данными ЦБ РФ, согласно которым в 2012 г. число фирм с долей налоговых платежей в платежном обороте менее 0,5 % (установленное ЦБ условие для оценки предприятия как однодневки) составило примерно 550 тыс. (или также около 25 % от всех рассмотренных объектов). Таким образом, есть основания полагать, что около четверти российских предприятий являются однодневками, что может стать серьезной проблемой при создании моделей прогнозирования, так как в подобных случаях предоставляются нерелевантные показатели, что может сказаться на точности создаваемых моделей.
Другой проблемой, связанной с нелегальной деятельностью российских предприятий, которая может негативно повлиять на создание моделей, является распространенная практика криминальных банкротств, по причине которой в 1997 г. была введена уголовная ответственность за криминальное банкротство, однако данная мера остается малоэффективной, так как, к примеру, эффективность процедур банкротства по уплате налоговой задолженности в 2013 г. (в третьей очереди требований) составляла всего 5,4 % а из 10 877 компаний, признанных банкротами в этом периоде, только в 426 случаях было выявлено криминальное банкротство [Епишин, 2015]. При этом число выявленных случаев снижается с каждым годом, что позволяет говорить о том, что проблема криминального банкротства в России имеет больший размах, чем это отражает статистика.
Кроме того, следует отметить еще один факт, связанный непосредственно с отчетностью российских предприятий, а именно незначительную долю предприятий, предоставляющих отчетность по форме № 5 с данными по амортизации (Приложение к бухгалтерскому балансу с обоснованием его разделов по группам активов, которые классифицируются по критерию финансовой принадлежности), что делает невозможным использование в статистических моделях широко применяемого в западных моделях показателя денежного потока. Так, по данным за 2010 г., только около 8 % из всех находящихся в базе предприятий предоставили данные по величине амортизации. При этом более крупные предприятия намного чаще могут отразить такие показатели в отчетности -- 40 % предприятий с активами больше 100млн руб. против 2 % предприятий с активами до 10 млн руб.
Таким образом, можно сделать вывод о том, что особенности ведения бизнеса в России вкупе с проблемами предоставления статистических данных обусловливают определенные ограничения, которые отсутствуют в зарубежной практике, для создания моделей прогнозирования банкротства.
Для построения модели выбран метод логистической регрессии, который на данный момент является одним из наиболее распространенных в литературе.
Создание модели предусматривает деление всей совокупности предприятий на две части -- обучающую выборку, необходимую для непосредственных расчетов и создания моделей, и тестовую, на данных которой можно произвести валидацию полученных моделей.
Для формирования исходного массива данных из информационной базы СПАРК были отобраны предприятия, обанкротившиеся в период 2014-2015 гг., а также осуществлявшие деятельность в указанный период и имеющие активы на сумму не менее 300 000 руб. и выручку не менее 2 000 000 руб., в количестве 65 243 предприятий, из числа которых были исключены компании с нелогичными значениями показателей баланса. Все предприятия были разбиты на четыре отрасли: 1) сельское хозяйство; 2) строительство; 3) торговля и 4) сфера услуг. Разделение предприятий по отраслям осуществлялось на основе данных ОКВЭД, представленных в базе, что делает его в некоторой мере условным в силу несовершенства отраслевой классификации предприятий.
В результате была сформирована оценочная выборка, необходимая для оценки точности существующих моделей прогнозирования на предприятиях российской экономики. Структура данной выборки представлена в табл. 2.
Таблица 2. Структура оценочной выборки
Отрасль |
Здоровые предприятия |
Банкроты |
|
Сельское хозяйство |
7244 |
1335 |
|
Строительство |
4725 |
1776 |
|
Торговля |
6470 |
1153 |
|
Услуги |
7432 |
1242 |
Для выбранных предприятий были рассчитаны 68 показателей, применяющихся в выбранных моделях. При этом была проанализирована частота использования тех или иных показателей в существующих моделях на основе данных по 38 моделям прогнозирования банкротства (табл. 3).
Таблица 3. Наиболее часто встречающиеся в моделях показатели
Показатели |
Частота использования |
Значения, % |
|
Чистая прибыль к активам |
13 |
7,1 |
|
Оборотные активы к краткосрочным обязательствам |
13 |
7,1 |
|
Собственный капитал к обязательствам |
10 |
5,5 |
|
Рабочий капитал к активам |
10 |
5,5 |
|
Чистая прибыль к обязательствам |
9 |
4,9 |
|
Выручка к активам |
9 |
4,9 |
|
Обязательства к активам |
7 |
3,8 |
|
Обязательства к собственному капиталу |
6 |
3,3 |
|
Прибыль до вычета налогов и процентов к активам |
5 |
2,7 |
|
Прибыль до налогообложения к активам |
5 |
2,7 |
Таким образом, видно, что наиболее часто применяемыми в моделях показателями являются основные финансовые коэффициенты, характеризующие рентабельность, ликвидность и структуру капитала. При этом одной из целей данной работы являлась проверка гипотезы о наличии специфических показателей для конкретных отраслей.
Затем имеющиеся данные были проанализированы графически, путем построения гистограмм распределения и ящиковых диаграмм для каждой переменной. Анализ выявил наличие среди показателей большого числа переменных, распределенных не по нормальному закону.
После этого из данной совокупности были исключены выбросы. Ликвидация выбросов была осуществлена в системе Statistica методом удаления наблюдений, лежащих на расстоянии более двух стандартных отклонений от среднего. Для повышения точности применялись как двухсторонний, так и односторонние тесты, в случае наличия асимметрии распределения. Затем была проведена балансировка данных с использованием генератора случайных чисел. В итоге были сформированы обучающие выборки следующего размера (табл. 4).
Таблица 4. Численность сформированных обучающих выборок
Отрасль |
Количество |
||
банкротов |
здоровых предприятий |
||
Сельское хозяйство |
1335 |
1335 |
|
Строительство |
1776 |
1776 |
|
Торговля |
1153 |
1153 |
|
Услуги |
1242 |
1242 |
Тестовая выборка была собрана из предприятий, обанкротившихся в первой половине 2016 г., для проверки прогностической способности созданных моделей за временными рамками обучающей выборки.
Оценка точности существующих моделей
Для наиболее полной оценки применимости существующих моделей на собранной оценочной выборке было отобрано 35 моделей, включающих в себя как зарубежные (классические и наиболее востребованные модели последних лет), так и отечественные методики (выделенные по критерию цитируемости и проработанности). Модели представлены ниже (табл. 5; уравнения для расчета соответствующих коэффициентов см. в Приложении).
Точность предсказаний описанных моделей, определенная нами, оказалась крайне низкой для всех отраслей (табл. 6).
Для упрощения восприятия точность моделей была разделена на три группы: 1) меньше 50 % (группа 0); 2) от 50 до 70 % (группа 1); 3) выше 70 % (группа 2). Значения показателей табл. 6 следует понимать так: например, семь моделей показали точность выше 70 % для банкротов, но менее 50 % для здоровых предприятий. Точность в 70 % была выбрана в качестве порога адекватности модели, так как данное значение считается в литературе минимальной приемлемой точностью для моделей прогнозирования [Хайдаршина, 2007], и, как видно из табл. 6, ни одна модель не показала приемлемой точности ни в одной из представленных отраслей. Таким образом, можно сказать, что существующие российские модели, созданные для отрасли обрабатывающей промышленности, оказались неэффективными.
Таблица 5. Модели прогнозирования банкротства
Годы |
Авторы моделей |
||
зарубежные |
российские |
||
1960-е |
Альтман |
- |
|
1970-е |
Лиса, Таффлер, Спрингейт |
- |
|
1980-е |
Змиевский, Олсон, Чессер |
- |
|
1990-е |
Бигли, Альтман |
ИГЭА, Р. С. Сайфуллин |
|
2000-е |
Гиноглу, Грушсински, Лин, Альтман и Сабато |
М. В. Евстропов, Ю. Д. Шмидт, Т. К. Богданова, А. В. Колышкин, Г. В. Савицкая, В. В. Ковалев |
|
2010-е |
Е. В. Ширинкина, Д. А. Мурадов, Е. А. Федорова и Е. В. Гиленко, Е. А. Федорова и Я. В. Тимофеев, Ю. Д. Шмидт и Л. С. Мазелис, Ю. А. Алексеева, В. Ю. Жданов |
Одним из объяснений такого результата может быть тот факт, что существующие в обрабатывающей промышленности подотрасли довольно разнообразны и могут существенно отличаться друг от друга по специфике деятельности и особенностям ведения бизнеса, что, в свою очередь, отражается на структуре финансовых показателей. Таким образом, прогнозирование несостоятельности компаний обрабатывающей промышленности требует более глубокого отраслевого деления, которое невозможно по причине малого числа банкротов.
Таблица 6. Распределение моделей в зависимости от точности предсказаний
Точность прогнозирования |
Обрабатывающая промышленность |
Сельское хозяйство |
Строительство |
Торговля |
Услуги |
||
банкротов |
здоровых предприятий |
||||||
Менее 50 % |
Менее 50 % |
11 |
9 |
16 |
17 |
11 |
|
Менее 50 % |
От 50 до 70 % |
3 |
10 |
5 |
9 |
8 |
|
От 50 до 70 % |
Менее 50 % |
2 |
7 |
9 |
6 |
6 |
|
Менее 50 % |
Выше 70 % |
5 |
6 |
5 |
3 |
5 |
|
Выше 70 % |
Менее 50 % |
7 |
1 |
0 |
0 |
2 |
|
Итого моделей, точность прогноза которых хотя бы по одной из позиций меньше 50 % |
28 |
33 |
35 |
35 |
32 |
||
От 50 до 70 % |
От 50 до 70 % |
4 |
1 |
0 |
0 |
3 |
|
От 50 до 70 % |
Выше 70 % |
2 |
1 |
0 |
0 |
0 |
|
Выше 70 % |
От 50 до 70 % |
1 |
0 |
0 |
0 |
0 |
|
Итого моделей, точность прогноза которых хотя бы по одной из позиций от 50 до 70 % |
7 |
2 |
0 |
0 |
3 |
||
Выше 70 % |
Выше 70 % |
0 |
0 |
0 |
0 |
0 |
Построение моделей. Первым шагом при построении являлся выбор предикторов для нее. Важность этого шага определяется тем фактом, что от того, насколько коррелируют показатели, включенные в модель с банкротством предприятий, и будет в наибольшей степени зависеть ее прогностическая способность. При этом набор показателей должен наиболее полно описывать все возможные аспекты деятельности предприятия.
Основными показателями в прогнозировании несостоятельности по финансовым данным являются показатели ликвидности, рентабельности, финансовой устойчивости и оборачиваемости [Bellovary et al., 2007].
Однако ряд авторов отмечают, что применения одних лишь финансовых коэффициентов недостаточно. Так, в нескольких работах подчеркивалась важность учета динамики показателей при создании моделей (см.: [Tamari, 1966; Chalos, 1985; Betts, Belhoul, 1987]), а также учета внешних факторов -- коэффициентов, связанных с отраслью предприятия. В то же время на основе эмпирических результатов становится очевидным, что внешние показатели не являются информативными при отнесении предприятия к группе банкротов или здоровых (на зарубежных данных -- в работе Х. Платта[Platt H.D., Platt M. B., 1991], в России -- в работе Г. А. Хайдаршиной [Хайдаршина, 2007].
В соответствии с этим для анализа в данной работе были отобраны финансовые коэффициенты, динамические показатели, а также показатели масштаба (так как размер предприятия играет большую роль при учете его выживаемости и перспектив роста) (см.: [Serrasqueiro et al., 2010; Hoffmann, Bertin, 2014]).
Расчет же таких качественных показателей, как возраст, кредитная история и отраслевая специфика невозможен в силу отсутствия подобных данных в информационной базе СПАРК. При этом важность таких показателей может быть высокой, и их включение в модель позволило бы значительно повысить ее точность.
Всего было рассчитано 77 показателей. Отобранные в ходе данного анализа наиболее коррелирующие показатели и должны были стать основой новой модели, однако перед этим необходимо из наиболее коррелирующих предикторов убрать те из них, которые значительно коррелируют с другими, чтобы устранить явление мультиколлинеарности, так как оно может негативно сказаться на точности модели.
С этой целью для каждой отрасли были отобраны по 15 наиболее коррелирующих с банкротством показателей, которые были определены путем проведения однофакторного дисперсионного анализа (так как коэффициент Пирсона не применим в данном случае в силу ненормального распределения показателей, а также дихотомичной зависимой переменной), и из данного набора предикторов и были созданы наборы для моделей с расчетом на то, чтобы корреляция между факторами была минимальной.
Затем для проверки разграничительной способности данных показателей были проведены расчеты средних значений с 95 %-м доверительным интервалом на основе данных обучающей выборки, которые подтвердили их хорошую разграничительную способность.
После отбора наиболее статистически значимых предикторов (см. переменные в моделях) настал финальный этап -- непосредственное создание модели. Для этого было использовано программное решение IBMSPSSStatistics20, а именно раздел логистической регрессии с методом принудительного включения переменных в анализ.
В результате расчетов были получены значения коэффициентов при показателях для каждой из моделей. Все показатели меньше 0,01, что говорит об их статистической значимости. Полученные модели имеют следующий вид:
где
Pi-- оцененная вероятность банкротства предприятия для г-й отрасли;
Yi -- так называемая скрытая переменная регрессии для г-й отрасли.
Значения скрытых переменных (У) для каждой из отраслей представлены ниже.
Сельскоехозяйство:
Строительство:
Торговля:
Услуги:
-- отношение денежных средств к краткосрочным обязательствам;
- отношение собственного капитала к общей задолженности;
- отношение собственного капитала к оборотным активам;
-- отношение общей задолженности к выручке;
-- отношение прибыли до налогообложения к активам;
- отношение чистой прибыли к общей задолженности;
- отношение чистой прибыли к себестоимости;
lnAAR-- натуральный логарифм от разности между величиной активов и дебиторской задолженностью;
lnS-- натуральный логарифм от величины выручки;
lnL-- натуральный логарифм от величины общей задолженности.
Оцененная вероятность банкротства Piможет принимать значения от 0 до 1, что говорит о том, что в модели классифицировано данное предприятие как банкрот соответственно с вероятностью 0 или 100 %. При этом следует отметить, что выбор критерия отнесения предприятия к банкротам или здоровым на основании значения Piможет быть осуществлен пользователем модели в зависимости от требуемой ему однозначности классификации. Обычно же в качестве порога классификации (так называемого threshold) берется значение Pi,равное 0,5. Данное пороговое значение использовалось и в настоящей статье при оценке точности классификации полученных моделей.
Точность полученных моделей на обучающей выборке оказалась следующей (табл. 7).
Финальным этапом данной работы стала оценка полученных моделей на тестовой выборке, для проверки их точности вне обучающей совокупности (табл. 8).
Таблица 7. Точность полученных моделей применительно к обучающей выборке
Отрасль |
Верные предсказания, % |
||
банкроты |
здоровые предприятия |
||
Сельское хозяйство |
73,3 |
72,4 |
|
Строительство |
88,5 |
79,9 |
|
Торговля |
83,0 |
79,0 |
|
Услуги |
78,8 |
74,4 |
Таблица 8. Точность полученных моделей применительно к тестовой выборке
Отрасль |
Верные предсказания, % |
||
банкроты |
здоровые предприятия |
||
Сельское хозяйство |
66,8 |
65,2 |
|
Строительство |
76,4 |
77,1 |
|
Торговля |
68,3 |
72,8 |
|
Услуги |
74,5 |
73,9 |
Точность полученных моделей оказалась в среднем равна примерно 70 % верно классифицированных банкротов и здоровых предприятий, что позволяет говорить о том, что увеличение обучающей выборки и отраслевая специализация позволили добиться более высокой точности прогнозирования.
Анализ результатов исследования. Таким образом, полученные результаты позволяют сделать вывод о том, что подтверждений первой гипотезе не было найдено, потому что из 35 протестированных моделей ни одна не показала точности на уровне, считающемся приемлемым (более 70 %), как на данных отраслей, для которых они создавались, так и на данных других отраслей. При этом следует отметить, что на обучающей выборке все модели, по которым имелась такая информация, показали точность не ниже 75 % (см. табл. 1). В русле обсуждения проблемы стационарности данных (и того факта, что некоторые из моделей имели точность на обучающей выборке более высокую, чем созданные в данном исследовании) очевидно, что разработанные нами модели оказались более устойчивы во времени.
При этом на основе полученных моделей можно сделать вывод о том, что одним из главных индикаторов наступления банкротства для предприятий всех отраслей является показатель абсолютной величины задолженности, следом же за ним идет коэффициент абсолютной ликвидности, представленный в моделях для трех из четырех отраслей. В силу крайне малого привлечения долгосрочного заемного капитала малыми и средними предприятиями России не было обнаружено статистической разницы между показателем отношения денежных средств к общей задолженности и показателем абсолютной ликвидности. Помимо же указанных двух, остальные показатели в моделях различаются, и очевидно, что модели для некоторых отраслей содержат очень специфичные коэффициенты (редко встречающиеся в существующих методиках, такие как натуральные логарифмы от величины выручки и разницы между величиной активов и дебиторской задолженностью для отрасли торговли). Присутствие указанных коэффициентов в модели является логичным в силу специфики каждой из отраслей. Таким образом, вторая гипотеза получила свое подтверждение.
Следует отметить, что отраслевая специализация моделей позволила добиться более высокой точности предсказаний на тестовой выборке по сравнению с предыдущими работами. Другой причиной могло стать повышение статистической силы моделей ввиду увеличения выборки предприятий-банкротов.
При этом меньшая точность моделей на данных тестовой выборки согласуется с другими результатами в литературе по рассматриваемому вопросу в связи с проблемой стационарности данных, что вносит определенные ограничения в применение моделей.
Одним из решений данной проблемы может быть ежегодная корректировка коэффициентов моделей [Ooghe, Balcaen, 2002]. Кроме того, улучшить качество моделей можно за счет еще более узкой отраслевой специализации, однако данное решение затруднительно в силу малого числа банкротов.
По нашему мнению, одним из решений для дальнейшего увеличения точности моделей прогнозирования банкротства является более четкое разделение между сценариями несостоятельности предприятий.
Прежде всего, необходимо определиться с тем, что рассматривать под несостоятельностью. Так, модели прогнозирования банкротства в основной массе направлены на предсказание именно банкротства, т. е. в группе несостоятельных предприятий используются данные по компаниям, которые были признаны несостоятельными юридически -- стали банкротами. Однако не все компании, сталкивающиеся с трудностями, становятся банкротами: некоторые, благодаря успешным антикризисным мерам, продолжают свою деятельность, другие же (преимущественно мелкие компании), в условиях кризиса вовсе прекращают свою деятельность. В зарубежной литературе также выделяют прекращение деятельности предприятия в связи с поглощением другим предприятием (mergerandacquisition) [Balcaen et al., 2011], а исследователи деятельности мелких предприятий (в том числе «стартапов») и предпринимательства выделяют также продажу предприятия собственником (предпринимателем) в качестве одного из видов прекращения деятельности [Wiklund, Shepherd, 2011]. Нередки ситуации, когда предприятие, которое не смогло справиться с возникшими трудностями, не дошло при этом до процедуры банкротства («ошибка выжившего»). Такие предприятия не будут учтены при создании модели на основе данных только по банкротам, что в значительной мере снижает ее качество.
На наш взгляд, более объективно вместо понятия «предприятие-банкрот» использовать более широкое понятие «несостоятельность» (по аналогии с существующим в англоязычной литературе термином «failure»), которое включает в себя все указанные варианты прекращения деятельности предприятия из-за того или иного кризиса (в том числе неплатежеспособности, приведшей к банкротству).
Ряд авторов пытались решить данную проблему и использовали в построении моделей такие критерии несостоятельности, как «финансовые проблемы» («financialdistress»), которые определялись наличием убытка в течение 3 лет подряд (см.: [Doumpos, Zopoudinis, 1999; Kahya, Theodossiou, 1999; Platt H. D., Platt M. B., 2002]) или «неплатежеспособность» [Ward, Foster, 1997], однако в большинстве работ используется классическое деление обучающей выборки на здоровые предприятия и банкроты [Balcaen, Ooghe, 2006], так как до последнего времени указанный подход был единственным доступным подходом для исследователей в силу отсутствия баз данных с финансовыми показателями предприятий.
В настоящее время такие базы доступны и позволяют работать с гораздо большим объемом информации, который можно изучать и применять с помощью современных методов машинного обучения, таких как метод опорных векторов, метод случайного леса и ряд других алгоритмов. Правда, следует отметить, что данные методы, несмотря на их более высокую прогнозную силу по сравнению с классическими методами регрессионного анализа, малопригодны для прогнозирования банкротства, так как они не могут быть интерпретированы (см.: [Колышкин и др., 2014; du Jardin, 2017]).
Однако они с успехом применяются для других целей, в том числе и для выделения различных сценариев прекращения деятельности предприятия, описанных выше. Так, для этих целей можно использовать различные машинные алгоритмы классификации, о чем упоминают некоторые авторы (см.: [Колышкин и др., 2014; Kovalenko, Urtenov, 2010]), что может стать направлением для будущих исследований по теме прогнозирования банкротства.
В завершение следует отметить еще два негативных момента, связанных с российскими экономическими реалиями, которые могут существенно исказить исходные данные при создании модели и которые также необходимо выделить в отдельный сценарий: во-первых, особенности бизнеса в России, связанные с ведением черной бухгалтерии, и, во-вторых, практика криминальных банкротств.
Из-за первого указанного недостатка возможно снижение релевантности данных общей выборки в случае включения в нее предприятий, ведущих черную бухгалтерию; второй негативный момент приводит к тому, что в выборку несостоятельных предприятий будут включены и те, которые не имели реальных причин для банкротства и намеренно спровоцировали его и, соответственно, также являются нерелевантными с точки зрения реальной ситуации.
Одним из способов проверки наличия в выборке таких предприятий может быть так называемый анализ распределения первой цифры («firstdigitanalysis») в соответствии с законом Бенфорда[Benford, 1938], согласно которому распределение первой цифры в больших наборах данных должно подчиняться распределению Бенфорда
Данный метод получил в последнее время довольно широкое распространение в различных сферах (к примеру, при анализе данных статистических опросов). Он нашел также применение в выявлении манипуляций с отчетностью в аудите и финансовом анализе (см.: [Tsenzharik, 2013; TamCho, Gaines, 2007; Durtschi, Hillison, 2004]). В данной статье была предпринята попытка оценить возможность применения данного метода для решения поставленной выше задачи выделения из обучающей выборки группы криминальных банкротов. Для этого на основе имеющейся выборки предприятий были рассчитаны частоты появления цифр для таких показателей, как активы, себестоимость, денежные средства, кредиторская и дебиторская задолженность. Данные показатели были отобраны для анализа в соответствии с предположением о том, что они в первую очередь подвержены манипуляциям (к примеру, в рамках схем вывода активов при преднамеренном банкротстве или же ведении черной бухгалтерии по схеме завышения затрат, путем перекладывания части выручки на компании-однодневки для вывода наличных средств).
Полученные частоты были сравнены с аналогичными по Бенфорду, а также был рассчитан показатель хи-квадрат для оценки статистической значимости соответствия наблюдаемого распределения распределению Бенфорда (см.: [TamCho, Gaines, 2007]).
Расчеты показали, что расхождение наблюдаемых распределений и в группе банкротов, и в группе здоровых оказалось статистически незначимым, однако в группе банкротов расхождение было значительно выше, чем в группе здоровых предприятий. Данное отклонение можно объяснить тем, что среди банкротов концентрация предприятий, тем или иным образом манипулирующих отчетностью, может быть выше, чем в группе здоровых компаний. Кроме того, частота отдельных цифр довольно существенно отличается от распределения Бенфорда в каждой из отраслей. Можно сделать вывод о том, что метод анализа распределения по первой цифре позволил обнаружить определенные несоответствия в данных российских предприятий, и есть основания полагать, что применительно к более узким выборкам, сформированным с помощью предложенного выше метода кластеризации, данный метод сможет послужить проверочным критерием при выделении группы криминальных банкротов и компаний, фальсифицирующих отчетность.
Литература
1. Аббакумов В. Л., Лезина Т. А. Бизнес-анализ информации. Статистические методы. СПб.: Экономика, 2009. 374 с.
2. Демешев Б. Б., Тихонова А. С. Прогнозирование банкротства российских компаний: межотраслевое сравнение // Экономический журнал Высшей школы экономики. 2014. Т. 18, № 3. С. 359-386. Епишин В. В. Криминальное банкротство -- почему не работает уголовный закон? // Вестник Академии Генеральной прокуратуры Российской Федерации. 2015. Т. 46, № 2. С. 91-98.
3. Колышкин А. В., Гиленко Е. В., Довженко С. Е., Жилкин С. А., Чое С. Е. Прогнозирование финансовой несостоятельности предприятий // Вестник Санкт-Петербургского университета. Серия 5. Экономика. 2014. Вып. 2. С. 122-142.
4. Рыбалка А., Сальников В. Банкротства юридических лиц в России: основные тенденции. III квартал 2016 // Мониторинг. Банкротства юридических лиц в России. Центр макроэкономического анализа и краткосрочного прогнозирования (ЦМАКП), 2016. URL: http://www.forecast.ru/_ARCHIVE/Analitics/PROM/2016/Bnkrpc-3-16.pdf (датаобращения: 20.04.2017).
5. Хайдаршина Г. А. Количественные методы оценки риска банкротства предприятий: классификация и практическое применение // Вестн. Финансовогоун-та. 2007. № 4. С. 169-178.
6. Agarwal V., Taffler R. Comparing the performance of market-based and accounting-based bankruptcy prediction models // Journal of Banking and Finance. 2008. Vol. 32, iss. 8. P. 1541-1551.
7. Alaka H. A., Oyedele L. O., Owolabi H. A. Methodological approach of construction business // Construction Management and Economics. 2016. Iss. 34, no. 11. P. 808-842.
8. Altman E. I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy // The Journal of Finance. 1968. Vol. 23, no. 4. P. 589-609.
9. Balcaen S., ManigartS.,Ooghe H. From distress to exit: determinants of the time to exit // Journal of Evolutionary Economics. 2011. P. 407-446.
10. Balcaen S., Ooghe H. 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems // The British Accounting Review. 2006. Vol. 38. P. 63-93.
11. Barnes P Methodological implications of non-normality distributed financial ratios // Journal of Business Finance and Accounting. 1982. Vol. 9, no. 1. 1982. P. 51-62.
12. Beaver W. H. Financial ratios as predictors of failure // Journal of Accounting Research. 1966. No. 4. P. 71-111. Bellovary J., Giacomino D., Akers M. A Review of Bankruptcy Prediction Studies: 1930 to Present // Journal of Financial Education. 2007. Vol. 33. P. 34-56.
13. Benford F. The Law of Anomalous Numbers // Proceedings of the American Philosophical Society. 1938. Vol. 78. P. 551-572.
14. Betts J., Belhoul D. The effectiveness of incorporating stability measures in company failure models // Journal of Business Finance and Accounting. 1987. Vol. 14, iss. 3. P. 323-334.
15. Bharath S., Shumway T. Forecasting default with the KMV-Merton model (December 17, 2004) // AFA 2006 Boston Meetings Paper. 36 p. URL: https://ssrn.com/abstractTh37342(датаобращения: 22.03.2017).
16. Blum M. Failing company discriminant analysis //...
Подобные документы
Понятие банкротства, его основные причины и необходимость прогнозирования. Отечественные и зарубежные модели экспресс-прогнозирования возможности наступления банкротства. Сущность модели О.П. Зайцевой и расчет вероятности наступления банкротства.
курсовая работа [98,7 K], добавлен 30.09.2009Определение возможности банкротства субъектов хозяйствования. Характеристика моделей экспресс-прогнозирования вероятности наступления банкротства Давыдовой-Беликова и Сайфулина-Кадыкова. Юридические аспекты и акты регулирования процедуры банкротства.
курсовая работа [84,1 K], добавлен 30.09.2009Проблема прогнозирования банкротства предприятий в Российской Федерации. Организационно-экономическая характеристика ООО "Мана", анализ его финансовой устойчивости, платежеспособности и кредитоспособности. Диагностика банкротства по модели Альтмана.
реферат [101,5 K], добавлен 08.06.2013Два подхода к прогнозированию банкротства. Три модели Альтмана. Методика О.П. Зайцевой. Методика ФСФО РФ. Методика определения класса кредитоспособности. Методика балльных оценок. Критерии А.И. Ковалева, В.П. Привалова. Методика А.О. Недосекина.
реферат [19,8 K], добавлен 10.05.2007Понятие и сущность финансового прогнозирования. Предпосылки возникновения банкротства предприятий, методы его прогнозирования, оценка эффективности. Анализ финансового состояния ЗАО Торговый дом "Радуга": показатели, рентабельность, деловая активность.
дипломная работа [250,4 K], добавлен 05.08.2013Основные понятия финансовой несостоятельности предприятий. Создание математической модели прогнозирования банкротства компании. Выявление факторов финансового состояния ЗАО "Управление механизации №276", информационная база анализа угрозы банкротства.
курсовая работа [388,7 K], добавлен 18.05.2014- Анализ прогнозирования банкротства предприятия и пути его оздоровления на примере ОАО "Техно-Мастер"
Экономическое содержание несостоятельности и банкротства предприятия, анализ его прогнозирования по зарубежным и отечественным методикам. Анализ финансового состояния предприятия с целью предотвращения его банкротства на примере ОАО "Техно-Мастер".
дипломная работа [226,3 K], добавлен 24.10.2011 Модели дискриминантного анализа. Эффективность классических западных и российских моделей предсказания банкротства. Отраслевая специфика. Описание статей, включающее характеристики выборки, метод, список факторов и прогнозную силу метода анализа.
реферат [68,6 K], добавлен 24.07.2016Рассмотрение теоретических основ диагностики банкротства. Исследование методик прогнозирования несостоятельности. Анализ финансового состояния ООО "Отчизна". Изучение мероприятий по повышению финансовой устойчивости для уменьшения риска банкротства.
курсовая работа [302,1 K], добавлен 12.10.2010Финансовое состояние предприятия. Место и роль банкротства в Российской экономике. Механизм реализации банкротства в современной России. Экономическая сущность банкротства. Меры по финансовому оздоровлению российских предприятий.
дипломная работа [93,4 K], добавлен 04.02.2005Термины "банкротство" и "несостоятельность". История развития института банкротства в России. Российское законодательство о банкротстве. Методические основы банкротства предприятий. Выявление сущности банкротства в условиях рыночного хозяйства.
курсовая работа [43,8 K], добавлен 15.02.2007Методы прогнозирования банкротства, особенности их использования в России и за рубежом. Организационно-экономическая характеристимка и анализ потенциального банкротства ОАО "Живая вода". Пути повышения финансовой устойчивости исследуемого предприятия.
курсовая работа [498,3 K], добавлен 02.12.2009Развитие конкурсного права в дореволюционной России, система норм о банкротстве. Появление конкуренции и как следствие – банкротства в условиях рыночной экономики, возрождение института несостоятельности. Актуальность современных проблем банкротства.
реферат [20,8 K], добавлен 17.03.2010Изучение признаков несостоятельности предприятия. Сравнительный анализ систем правового регулирования банкротства в Европе, Америке, России. Выявление уровня платежеспособности компании на примере ОАО "Альбатрос". Рассмотрение модели банкротства Альтмана.
курсовая работа [62,7 K], добавлен 29.07.2010Понятие банкротства и его предпосылки. Социально экономические последствия банкротства. Развитие института банкротства в России и за рубежом. Банкротство физического лица и его особенности в РФ. Правовое регулирование порядка банкротства юридических лиц.
курсовая работа [57,3 K], добавлен 26.05.2015Экономическая сущность банкротства предприятия, его основные критерии в мировой хозяйственной практике. Методы диагностики финансовой несостоятельности хозяйствующих субъектов. Разработка мероприятий по прогнозированию банкротства конкретного предприятия.
курсовая работа [69,8 K], добавлен 12.04.2012Институт банкротства как социально-экономическое явление, как неотъемлемая часть рыночных отношений. Особенности антикризисного управления. Специфические черты банкротства предприятий в России. Характеристика схем банкротства, методы его предупреждения.
курсовая работа [1,4 M], добавлен 20.12.2010Определение понятия "банкротство". Рассмотрение роли бухгалтерской финансовой отчетности в оценке вероятности банкротства; изучение методик оценки. Исследование риска наступления банкротства. Описание мероприятий по укреплению финансовой устойчивости.
курсовая работа [366,6 K], добавлен 08.12.2014Характеристика основных видов деятельности ЗАО "Строй-Сити", анализ организационной структуры и финансового состояния. Рассмотрение методов прогнозирования банкротства, особенности разработки и этапов формирования антикризисной программы предприятия.
дипломная работа [3,4 M], добавлен 02.12.2012Причины банкротства. Процедура банкротства в целях финансового оздоровления предприятия. Финансовый анализ как способ предотвращения кризисных ситуаций. Банкротство как механизм оздоровления экономики. Процедура банкротства в России.
реферат [19,7 K], добавлен 10.05.2007