Математичні моделі й процедури багатофакторного оцінювання і ранжування альтернатив у системах організаційного управління
Розвиток конструктивного підходу до багатофакторного оцінювання й ранжування рішень, який грунтується на адитивній теорії корисності. Виділення основних типових ситуацій прийняття рішень за ступенем інформованості ОПР про перевагу локальних критеріїв.
Рубрика | Экономико-математическое моделирование |
Вид | автореферат |
Язык | украинский |
Дата добавления | 23.11.2013 |
Размер файла | 129,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Міністерство освіти України
Харківський державний технічний університет радіоелектроніки
01.05.04 Системний аналіз і теорія оптимальних рішень
Автореферат
дисертації на здобуття наукового ступеня
доктора технічних наук
Математичні моделі й процедури багатофакторного оцінювання і ранжування альтернатив у системах організаційного управління
Овезгельдиєв Атагельди Оразгельдийович
Харків-1999
Дисертацією є рукопис.
Робота виконана в Харківському державному технічному університеті радіоелектроніки
Науковий консультант: доктортехнічних наук, професор Петров Едуард Георгійович,
Харківський державний технічний університет радіоелектроніки,
завідуючий кафедрою системотехніки.
Офіційні опоненти: доктор технічних наук, професор Бушуєв Сергій Дмитрович,
Київський національний університет будівництва і архітектури,
завідуючий кафедрою автоматизації будівельного виробництва;
доктор технічних наук, професор Тевяшев Андрій Дмитрович,
Харківський державний технічний університет радіоелектроніки,
завідуючий кафедрою прикладної математики;
доктор технічних наук, професор Федорович Олег Євгенович,
Державний аерокосмічний університет ім.М.Є.Жуковського (ХАІ),
завідуючий кафедрою автоматизованих систем управління.
Провідна установа: Національний технічний університет України «Київський політехнічний
інститут», кафедра автоматизованих систем інформації і управління.
Захист відбудеться «03» червня 1999 р. о 13 годині на засіданні спеціалізованої вченої ради Д 64.052.01 в Харківському державному технічному університеті радіоелектороніки за адресою: 310166, м.Харків, пр.Леніна, 14.
З дисертацією можна ознаймитись в бібліотеці університету.
Автореферат розісланий «21» квітня 1999р.
Вчений секретар
спеціалізованої вченої ради В.М.Левикін
ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ
Актуальність проблеми. Ефективність використання електронних обчислювальних машин (ЕОМ) у всіх галузях виробництва, економіці, медицині, соціальній та інших сферах як засобу автоматизації інтелектуальних процесів визначається глибиною формалізації та алгоритмізації таких процесів. Саме цим пояснюється висока інтенсивність наукових досліджень в даній області, серед яких можна виокремити два такі головні напрямки:
1) загальнометодологічний, зорієнтований на формування і дослідження загальнотеоретичного базису формалізації та алгоритмізації інтелектуальних процесів. На сьогодні цей напрямок сформувався як загальна теорія штучного інтелекту;
2) більш вузький, проблемно-орієнтований на конкретні предметні області досліджень, особливості котрих полягають в урахуванні специфіки та деталізації ситуації і розробці конкретних моделей.
Обидва напрямки наукових досліджень є багатоаспектними та широкорозгалуженими, але центральною в них є проблема формалізації процесів прийняття рішень, яка включає такі основні етапи:
визначення мети;
виділення множини альтернативних шляхів досягнення мети (множини допустимих рішень) X;
формування метрики, яка дозволила б порівнювати якість рішень та ранжувати їх (задача оцінювання);
вибір найкращого рішення (задача оптимізації).
Концептуальною серед названих етапів є задача оцінювання. Її реалізація вимагає формалізації лінгвістичних змінних типу «кращий», «переважний», «найбільш ефективний» варіант рішення. Це пов'язано з виділенням деякої кількості окремих (локальних) властивостей системи, яких досить для її характеристики як цілого, їх формалізації та визначення на них певної метрики, яка дозволила б порівнювати якість рішень .
Складність вирішення цієї задачі полягає в принципіальній суб'єктивності поняття «краще рішення», що вимагає необхідності урахування людського фактору - переваг, які визначає особа, що приймає рішення (ОПР). Це в свою чергу пов'язано з формалізацією одного з найважливіших аспектів інтелектуальної діяльності людини - процесу прийняття рішень. Виявлення загальних закономірностей цього процесу є предметом теорії штучного інтелекту, а прийняття рішень в конкретних предметних галузях вимагає розробки предметно-орієнтованих методів та алгоритмів. Отже, ця проблема має загальнотеоретичне і велике прикладне значення.
Важливість проблеми оцінювання зумовила високий та постійний інтерес до цієї галузі досліджень, де було отримано ряд фундаментальних результатів, серед яких в першу чергу слід відзначити теорію корисності Дж. Неймана і О. Моргенштерна, поняття області компромісів і Парето-оптимальності, теорію розмитих множин Л. Заде. Значний вклад у створення та розвиток сучасної теорії прийняття рішень внесли вітчизняні та зарубіжні вчені В. М. Глушков, В. С. Михалевич, В. Л. Волкович, І. В. Сергієнко, М. З. Згуровский, А. А. Морозов, М. Ф. Бондаренко, Ю. П. Шабанов-Кушнаренко, Е. Г. Петров, В. В. Подиновский, В. І. Борисов, О. І. Ларичев, С. В. Ємельянов, В. Г. Міркін, Ю. В. Гермейєр, П. Фішберн, Р. Беллман, Г. Райфа, Р. Кіні, Б. Руа і інші. Разом з тим, загальна теорія прийняття рішень взагалі та багатофакторного оцінювання зокрема, потребує подальшого розвитку, що й визначило тему досліджень даної дисертаційної роботи.
Зв'язок роботи з науковими програмами та планами. Дисертація виконана в межах державної науково-технічної програми України по пріоритетному напрямку науково-технічного прогресу 6.«Інформатика, автоматизація та приладобудування»; розділ 6.2.«Перспективні інформаційні технології для інтелектуалізації процесів прийняття рішень та управління в технічних, біологічних та соціальних системах»; підрозділ 6.2.1. «Інтелектуалізація процесів прийняття рішень». Дослідження проведено згідно з координаційним тематичним планом Міністерства освіти України в Харківському державному технічному університеті радіоелектроніки за темою 460-1.
Мета і задачі дослідження. Метою дисертаційної роботи є узагальнення та розвиток теорії багатофакторного оцінювання, розробка методів, математичних моделей, процедур та алгоритмів проблемно-зорієнтованих на задачі організаційного управління та вирішення на їх основі важливої науково-технічної проблеми - удосконалення та підвищення ефективності управління організаційними системами.
Досягнення мети роботи пов'язано з розробкою універсальної моделі багатофакторного оцінювання й ранжування рішень, що легко адаптується до конкретних ситуацій прийняття рішень і переваг ОПР, та методів її структурної і параметричної ідентифікації, і вимагає вирішення наступних задач:
розвиток конструктивного підходу до багатофакторного оцінювання й ранжування рішень, який грунтується на аддитивній теорії корисності;
узагальнення й розвиток теорії корисності на основі введення нелінійних функцій корисності локальних факторів;
виділення типових ситуацій прийняття рішень за ступенем інформованості ОПР про перевагу локальних критеріїв;
вирішення задачі структурної ідентифікації моделей, що пов'язано з обгрунтуванням виду математичних моделей оцінювання й ранжування для кожної типової ситуації, а також синтезом універсальної адаптивної моделі;
розробка нових методів параметричної ідентифікації моделей оцінювання, відмінних від експертних оцінок;
апробація розроблених методів при вирішенні прикладних задач.
Дослідження базуються на методах системного аналізу, теорії корисності, багатокритеріальної оптимізації, математичного моделювання, теорії вимірювань та оцінювання, компараторної ідентифікації параметрів математичних моделей. багатофакторне оцінювання ранжування рішення
Наукова новизна результатів дослідження полягає в наступному.
Проведено системний аналіз сучасного стану теорії прийняття рішень і сформульовано проблему ідентифікації загальної математичної моделі багатофакторного оцінювання й ранжування альтернатив у межах аддитивної теорії корисності. Вирішення зазначеної проблеми викликало необхідність дослідження задач структурної та параметричної ідентифікації моделі.
В рамках рішення задачі структурної ідентифікації отримані наступні нові результати.
1) Проведено узагальнення теорії корисності на випадок нелінійних функцій корисності локальних факторів. Запропоновано універсальну математичну модель функції корисності локальних критеріїв, котра дозволяє реалізувати, нарівні з лінійними, гладкі випуклі вгору та вниз нелінійні залежності, що в цілому дозволяє більш повно враховувати особливості ситуації та формувати коректні моделі оцінювання.
2) Виділено основні типи ситуацій багатофакторного оцінювання та ранжування альтернатив. В основу типізації закладено ступінь інформованості ОПР про перевагу локальних факторів та форму подання цієї інформації. Для кожної ситуації запропоновано проблемно-орієнтовану модель прийняття рішень та процедуру її реалізації.
3) Здійснено узагальнення часткових моделей та синтезовано універсальну адаптивну модель, котра дозволяє реалізувати всі відомі схеми оцінювання й ранжування як часткові випадки.
При вирішенні задачі параметричної ідентифікації отримано наступні нові результати.
1) Сформульовано новий підхід до вирішення задачі параметричної ідентифікації моделі оцінювання, який полягає у визначенні кількісних переваг ОПР (вагових коефіцієнтів факторів) за вже прийнятими ОПР рішеннями, що дозволяє підвищити об'єктивність та достовірність моделі.
2) Розроблено теорію параметричної ідентифікації моделей оцінювання на основі прийнятих рішень, яка розвиває ідеї компараторної ідентифікації і дозволяє отримати об'єктивну інформацію про переваги ОПР.
3) Синтезовано математичні моделі та процедури ідентифікації переваг ОПР для різних класів ситуацій.
Практична цінність отриманих результатів полягає в наступному:
- класифіковані можливі ситуації оцінювання в залежності від поінформованості ОПР та форми подання інформації про коефіцієнти важливості локальних факторів, і для кожної з них створені конструктивні проблемно-орієнтовані моделі та процедури оцінювання й ранжування;
- запропоновано універсальну модель, що адаптується до переваг ОПР з урахуванням ступеню його поінформованості та дозволяє реалізувати усі можливі часткові моделі;
- розроблено методи підвищення об'єктивності визначення переваг ОПР за вже прийнятими рішеннями.
У сукупності отримані результати узагальнюють та розвивають теорію багатофакторного оцінювання й ранжування як частини загальної теорії оптимальних рішень; вони являють собою суттєвий внесок у вирішення важливої науково-практичної проблеми створення науково-обгрунтованого універсального інструментарію аналізу, підготовки і прийняття рішень як типового модуля систем підтримки прийняття рішень в організаційних системах.
Конструктивний характер та практична цінність отриманих результатів підтверджуються вирішенням комплексу задач розподілу ресурсів у ієрархічних організаційних системах з різним ступенем координованості; створенням методики підготовки та прийняття рішень у нестаціонарних системах, оцінки тендерних пропозицій, формування моделі спеціаліста і т. інш.
Основні результати досліджень включено до учбових курсів “Вступ в теорію систем”, “Методи оптимізації в САПР”, “Методи прийняття рішень”, які викладаються у Харківському державному технічному університеті радіоелектроніки на кафедрі системотехніки, а також використано при виконанні наукових досліджень у межах госпдоговірної тематики університету.
Реалізація результатів роботи. Основні моделі та алгоритми багатофакторного оцінювання, ранжування альтернатив в умовах невизначеності та ризику, проведення експертних оцінок були використані при вирішенні практичних задач організаційного управління і при створенні систем підтримки прийняття рішень. В роботі наведені документи, що підтверджують використання результатів дослідження Дніпропетровським металургійним заводом ім. Петровського, Об'єднанням "Укрвтормет", м. Дніпропетровськ, Дніпровським металургійним комбінатом ім. Ф.Е. Дзержинського, м. Дніпродзержинськ для розв'язання задач сегментації ринку, вибора постачальників, маркетингу і т. інш. Використання дисертаційних результатів дало змогу підвищити оперативність, ефективність та наукову обгрунтованість рішень, що приймаються.
Апробація результатів дослідження. Основні положення та результати доповідались та отримали схвалення :
на семінарі “Системний аналіз, математичне моделювання і прийняття рішень у соціально-економічних та технічних системах” наукової ради НАН України з проблеми “Кібернетика”, м. Харків, ХТУРЕ, 1994-1998 рр.; на 8-му Міжнародному симпозіумі з методології математичного моделювання (МММ), Болгарія, м. Варна, 1996 р.; на 3-й та 4-й Міжнародних конференціях "Теорія і техніка передачі, прийому і обробки інформації", м. Туапсе, 1997, 1998 рр.; на 5-й Українській конференції з автоматичного управління "Автоматика-98", м. Київ, 1998 р.; на 2-й науково-методичній конференції "Використання комп'ютерних технологій у навчальному процесі", м. Харків, 1998 р.; на 5-й Міжнародній науково-технічній конференції “Контроль та управління в складних системах”, м. Вінниця, 1999 р.
Публікації. Основні результати дисертаційної роботи опубліковано в 20 наукових працях, серед яких: 3 монографії (всі у співавторстві); 14 статей у наукових виданнях (журналах та збірниках наукових праць), з яких 5 статей без співавторів; 3 публікації у працях конференцій (2 без співавторів).
Особистий вклад здобувача. Всі наукові результати, які винесено на захист, отримано здобувачем особисто. В наукових роботах, опублікованих у співавторстві, особисто здобувачеві належать наступні матеріали.
В монографії [1] - розділи 2.3-3.3 (стор. 56-96); в монографії [2] - розділи 2.2-2.3 (стор. 63-86); в монографії [3] - розділ 2 (стор. 44-84) загальним обсягом 6,5 друк. арк.
В статті [4] - постановка задачі та розробка математичних моделей; в статтях [5, 8, 9, 11] - постановка задачі, виділення проблемно-орієнтованих ситуацій, розробка моделі компараторної ідентифікації; в статтях [13,14] - моделі багатофакторного оцінювання; в статті [15] - формулювання задачі стосовно соціально-економічних об'єктів; в статті [17] - розробка моделей та процедур експертного оцінювання; в статті [18] - формування сценаріїв методом Монте-Карло.
Структура і обсяг роботи. Дисертація складається із вступу, шести розділів, загальних висновків, 138 джерел літератури та додатків. Текст викладено на 308 сторінках машинописного тексту, в числі котрих 17 рисунків та 7 таблиць.
ОСНОВНИЙ ЗМІСТ РОБОТИ
У вступі обгрунтована актуальність теми дисертації, показана її наукова та прикладна спрямованість, сформульована мета роботи та задачі дослідження, які потрібно вирішити для її досягнення. Подана коротка характеристика результатів дослідження, ступеню їх апробації та опублікування.
Перший розділ дисертації присвячено системологічному аналізу фундаментальної проблеми формалізації процесу прийняття рішень особою, якій такі рішення належить приймати (ОПР), окресленню меж дослідження, визначенню мети і задач, котрі потрібно вирішити.
Прийняття рішення є обов'язковим і центральним етапом цілеспрямованої діяльності людини, тому конструктивне використання ЕОМ як інструменту автоматизації інтелектуальної діяльності пов'язано з проблемою формалізації процесу прийняття рішень.
Цей процес у загальному випадку структурується на такі етапи: формування мети; визначення можливих (допустимих) альтернативних шляхів її досягнення (множини допустимих рішень) Х; формування оцінки якості, яка дозволяє порівнювати та визначати відношення порядку на множині Х (етап оцінювання); і, нарешті, вибір найкращого рішення, яке екстремізує показник якості (етап оптимізації).
Для автоматизації процесу його слід формалізувати, тобто сформулювати математичні моделі й алгоритми їх реалізації на ЕОМ. На сьогодні цю проблему вирішено тільки для етапу оптимізації.
Формалізація перших трьох із перелічених етапів є однією з центральних проблем теорії штучного інтелекту як загальнотеоретичної бази автоматизації процесів інтелектуальної діяльності. Не принижуючи ролі жодного з етапів прийняття рішень, підкреслимо концептуальну роль процедури оцінювання, оскільки вона визначає потенційний результат вибору. Тому ця задача стала областю дисертаційних досліджень.
Формування оцінки якості альтернатив пов'язано з формалізацією поняття «найкраще рішення». Складність вирішення цієї проблеми обумовлена наступним. У нетривіальному випадку кожне рішення характеризується деякою множиною показників (властивостей, якостей, критеріїв, факторів), які мають різні смисл, розмірність, інтервал змінювання і вимірюються в різних шкалах. Конструктивне, тобто не суб'єктивне визначення відношення порядку на множині Х і наступне використання формальних методів оптимізації вимагає наявності скалярної узагальненої оцінки якості рішення х Х, яке в теорії оптимізації має назву цільової функції.
Синтез такої оцінки є предметом задачі багатофакторного оцінювання. Задача полягає в побудові деякої моделі оцінювання
(1)
де - узагальнена скалярна оцінка якості рішень х; , - часткові характеристики рішення; - коефіцієнти ізоморфізму, що приводять до однієї розмірності і враховують відносну важливість кожного з них.
У загальній постановці проблема синтезу оцінки (1) полягає в ідентифікації структури і кількісних значень параметрів моделі.
На сьогодні інтенсивно розвивається загальнотеоретичний базис вирішення цієї проблеми. До важливих результатів, які вже досягнено, слід віднести теорію корисності Дж. Неймана та О. Моргенштерна, принцип Парето-оптимальності, теорію розмитих множин (лінгвістичних змінних) Л. Заде. Проте ці фундаментальні результати не вичерпують проблему, оскільки визначають тільки можливі підходи до її вирішення, але не вид конкретних моделей. Особливість проблеми синтезу полягає в принциповій суб'єктивності процедури багатофакторного оцінювання, її залежності від конкретного ОПР. Ця обставина не дозволяє скористатися класичною теорією ідентифікації, яка грунтується на об'єктивній кількісній інформації про вхідні дії системи та її реакції. У випадку системи прийняття рішень інформація про переваги рішень суб'єктивна, оскільки не може вимірюватись безпосередньо і надходить тільки від ОПР і у більшості випадків має якісний характер (краще, переважно і т.д.). Це викликало потребу створення нових, відмінних від класичних, методів ідентифікації. У цьому розумінні теорія багатофакторного оцінювання є новим науковим напрямком, що грунтується на міждисциплінарних дослідженнях в області психології, поведінки людини, теорії вимірів та шкалювання, спеціальних розділів математики, системного аналізу та теорії оптимальних рішень.
У розділі проведено аналітичний огляд існуючих підходів до синтезу моделей багатофакторного оцінювання.
Вивчення літературних джерел показало, що практично всі підходи до вирішення задачі структурної ідентифікації групуються на теорії корисності і відрізняються аксіоматикою та принципами формування узагальненої корисності. Основними ж принципами є аддитивний та мультиплікативний. Оскільки в дисертаційній роботі доведена універсальність аддитивного принципу, подальші дослідження було проведено в його межах.
Вирішення задачі параметричної ідентифікації, яка полягає у визначенні кількісних значень переваг ОПР, здебільшого грунтується на інтроспективному підході. Цей підхід передбачає спонукання ОПР до усвідомлення і формалізації в якомусь вигляді своїх переваг і здобуття цієї інформації (знань) зовнішнім спостерігачем. Це різноманітні методики експертних оцінок, анкетування, упорядкування альтернатив і т.д. В розділі проведено огляд основних груп цих методів і показано, що вони мають спільну ідеологію. Загальним недоліком цих методів є суб'єктивізм зовнішнього спостерігача і випробуваного, можливість впливати на результати, необхідність проводити тільки активні експерименти, неоднозначність результатів, недостатня їх відтворюваність. В зв'язку з цим необхідним є альтернативний підхід, орієнтований на підвищення об'єктивності процедури параметричної ідентификації моделі оцінювання. В роботі показано, що для цього можуть бути використані ідеї компараторної ідентифікації.
На основі проведеного аналізу сформульована мета роботи, яка полягає у розробці адаптивної моделі багатофакторного оцінювання, яка дозволяє враховувати особливості проблемної ситуації, переваги ОПР, ступінь визначеності та форму подання початкової інформації.
Досягнення цієї мети пов'язано з вирішенням двох основних задач: обгрунтуванням виду адаптивної моделі формування багатофакторних оцінок (структурна ідентифікація моделі) і розробкою нових, більш точних методів ідентифікації переваг ОПР (параметрична ідентифікація моделі оцінювання).
Основні результати розділу опубліковано в працях [3, 4, 5, 6, 8].
В другому розділі «Розробка адаптивної математичної моделі багатокритеріального оцінювання й оптимізації» розглянута задача ідентифікації структури математичної моделі багатофакторного оцінювання і визначення відношення порядку на множині альтернатив Х.
Задача вирішується в межах аддитивної теорії корисності. З урахуванням цього початкова залежність (1) перетворена в таку
, , (2)
де Р (х) - узагальнена корисність рішення ;
- безрозмірні коефіцієнти відносної важливості часткових характеристик; - функція корисності i-ї часткової характеристики рішення .
Перший етап вирішення задачі полягає в обгрунтуванні виду функції . Одна з вимог полягає в тому, що вона повинна приводити всі різнорідні часткові характеристики рішення до ізоморфного, тобто в даному випадку безрозмірного з однаковим інтервалом можливих значень від 0 до 1 виду. Для цього в розділі проведено аналіз основних типів шкал, в яких можуть бути проведені первинні вимірювання часткових характеристик. Показано, що якісні шкали (номінальна та рангова) не містять об'єктивної інформації про силу переваги різних значень характеристики і можуть використовуватись шляхом перетворення (наприклад, за допомогою експертних оцінок) в кількісні шкали. Аналіз останніх показав, що найбільш універсальною є інтервальна шкала з функцією перетворення у = а + bх, де а - будь-яке число (здійснює перенос початку координат відрахунку), b - будь-яке позитивне число (масштабний множник). Цю шкалу прийнято за базову при синтезі функції . Окрім поданих вище вимог ця функція повинна бути інваріантноюю до виду екстремума характеристики і дозволяти реалізувати поряд з лінійними гладкі випуклі вгору або вниз нелінійні залежності. Перше означає, що незалежно від того, максимізується чи мінімізується часткова характеристика, її кращому значенню повинна відповідати більша корисність. Друга з вимог є принциповою. Дослідження показали, що в багатьох випадках залежність корисності часткової характеристики від її абсолютного значення є нелінійною, і для побудови адекватної моделі оцінювання необхідно враховувати цю нелінійність. Реалізація такої вимоги відкриває перспективи розвитку нелінійної теорії корисності на відміну від прийнятого до цього часу лінійного підходу.
Усім переліченим вимогам відповідає функція корисності часткових характеристик виду
, (3)
де (x), , - відповідно значення i-ї характеристики для конкретного рішення xX та найкраще і найгірше значення характеристики, котрі вона набуває на усій множині Х; - параметр нелінійності (як показано на рис.1, при =1 реалізується лінійна, при > 1 - випукла вниз і при 0 < < 1 - випукла вгору залежності).
Наступний етап синтезу моделі узагальненої корисності (2) пов'язаний з вибором виду оператора F. Вид останнього обумовлюється ступенем визначеності та форми подання інформації про коефіцієнти відносної важливості . В роботі виділено класи можливих ситуацій.
До таких ситуацій в порядку зменшення інформативності належать: завдання у вигляді точкових або інтервальних числових значень; якісне упорядкування часткових характеристик за важливістю, тобто задання відношення порядку ; відсутність кількісної і якісної інформації про . При цьому точкові кількісні значення і межі інтервалів можуть задаватись точно, ймовірнісно, за допомогою лінгвістичних змінних типу «приблизно дорівнює», «біля» та ін. або поєднанням цих форм.
Інформація про переваги значень всередині інтервалу може бути задана ймовірнісно, за допомогою лінгвістичних змінних (функцією належності розмитій множині) або бути відсутньою. У розділі для кожної з перелічених ситуацій синтезовані нові моделі або обгрунтовано застосування відомих проблемно-орієнтованих моделей багатофакторного оцінювання та ранжування рішень.
Проте, аналіз всієї множини проблемно-орієнтованих моделей багатофакторного оцінювання дозволяє зробити висновок, що в кінцевому рахунку всіх їх можна звести до однієї з наступних трьох моделей або їх комбінації.
1. Аддитивна модель
, (4)
де - ефективне рішення; - детерміноване числове значення.
2. Модель послідовного (лексикографічного) впорядкування для випадку якісного впорядкування часткових характеристик
,
,
,, (5)
де - множина еквівалентних по j-й характеристиці рішень; процедура продовжується до отримання єдиного рішення.
Мінімаксна або максимінна модель
, (6)
яка використовується у випадку відсутності кількісної і якісної інформації про .
В реальних умовах, особливо в організаційних об'єктах, в межах однієї системи підтримки прийняття рішень для різних об'єктів та етапів можуть виникати всі перелічені вище проблемні ситуації. У зв'язку з цим доцільно синтезувати універсальну адаптивну модель багатофакторного оцінювання й ранжування рішень, що дозволяля б реалізувати, як частковий випадок, будь-яку з моделей, проблемно-орієнтованих на означеність завдання . Як таку універсальну модель в дисертаційній роботі запропоновано використати співвідношення
, (7)
де - адаптаційний параметр. При =1 та - заданих числових значеннях реалізується аддитивна модель (4); при =1, , =0, , , - схема послідовного упорядкування; при 1 завдяки дії теореми про ступеневе середнє, згідно з якою
,
(8)
реалізується мінімаксна абомаксимінна модель, при цьому , .
Таким чином, вибираючи значення параметру , що відповідає відомій інформації про значення , можна реалізувати будь-яку проблемно-орієнтовану модель оцінювання та ранжування рішень.
Основні результати розділу опубліковані в працях [1, 8, 9].
У третьому розділі «Розробка методів та алгоритмів формалізації переваг ОПР» сформульовано задачу ідентифікації індивідуальних переваг ОПР та синтезовані математичні моделі й методи вирішення цієї задачі.
Оцінка якості альтернатив та встановлення на її підгрунті порядку на множині Х є суб'єктивною процедурою. Формалізація цього процесу пов'язана з ідентифікацією переваг ОПР, тобто значень коефіцієнтів відносної важливості в моделі (2). Принциповою є неможливість безпосереднього кількісного вимірювання індивідуальних переваг ОПР. Щоб отримати цю інформацію, слід ініціювати усвідомлення, структуризацію та кількісну формалізацію ОПР своїх переваг і виробити процедуру їх добування. Ця методологія реалізується в вигляді різних процедур експертних оцінок, опитувань, інтерв'ю і відома як інтроспективний підхід.
У розділі проведена класифікація й аналіз найбільш відомих інтроспективних методів отримання інформації про переваги ОПР. При цьому виділені дві групи методів.
Перша з них орієнтована на реалізацію неконструктивного, або якісного, визначення відношення порядку на множині альтернатив без зазначення сили їх переваги. В результаті досягається ранжування альтернатив або визначення крайніх елементів ряду (кращого або гіршого). У цьому випадку структура оцінки якості не формалізується, а ОПР здійснює ту чи іншу процедуру безпосереднього евристичного порівняння альтернатив. Найбільш відомими є методи попарного та множинного порівняння, ранжування, гіперупорядкування, класифікації.
Друга група методів спрямована на отримання безпосередньо від ОПР кількісної інформації про силу переваг альтернатив та важливості їх часткових характеристик як початкових даних для визначення. Найбільш відомими у цій групі є методи Черчмена-Акоффа, Терстоуна, Неймана-Моргенштерна та інші.
Грунтовне вивчення інтроспективних методів показало, що їх загальним недоліком є суб'єктивність оцінок, яка обумовлюється вибором методів отримання інформації та її обробки дослідником, можливістю його впливу на результати, необхідністю суттєвої спеціальної підготовки ОПР, потребою активних експериментів. Наслідком цього є незадовільна точність результатів та неможливість їх репродукування. При цьому намагання отримати більш повну інформацію безпосередно від ОПР (наприклад, в числовому виді) призводить до зниження її достовірності. Цим була викликана необхідність розробки нових, більш об'єктивних методів добування знань ОПР про кількісні значення переваг факторів.
В дисертації запропонувано новий метод ідентифікації переваг ОПР, який грунтується на ідеях компараторної ідентифікації з урахуванням наступних гіпотез.
1. ОПР надаються для якісного оцінювання N альтернатив, які піддаються порівнянню, при цьому кожна з них характеризується однаковим набором n різнорідних часткових характеристик у кількісному вигляді і має обчислені за формулою (3) значення функції корисності , в подальшому позначені . Отже, початкова множина альтернатив характеризується матрицею
. (9)
2. За модель оцінювання обирається аддитивна теорія корисності, що дозволяє подати її у вигляді
P=A, (10)
де A=||a||, - матриця коефіцієнтів відносної важливості часткових характеристик, які задовольняють вимогам , .
3. ОПР грає роль компараторного порівнюючого пристрою, отже може визначати відношення переваг x x або еквівалентності x x для будь-якої пари альтернатив x, x X. На підгрунті цього може встановитись лінійний порядок на всій множині альтернатив Х або, у гіршому випадку, вказуватись його крайній елемент (краще рішення).
Із визначення функції узагальненої корисності маємо
x x P (x) > P (x),
x x P (x)=P (x). (11)
Маючи цю інформацію, визначимо числові значення елементів матриці вагових коефіцієнтів А.
Для визначеності припустимо, що для альтернатив x, x X, ОПР визначив xх , звідки
. (12)
Врахувавши (10), нерівність (12) можна записати як
, (13)
Звідки
. (14)
Позначимо
;
і в кінцевому вигляді отримаємо
0. (15)
Для випадку x x після аналогічних перетворень отримаємо
=0; (16)
У співвідношеннях (15), (16) коефіцієнти b мають відомі числові значення, а a - це шукані невідомі.
Число співвідношень виду (15) та (16) залежить від інформації, отриманої від ОПР. В дисертаційній роботі проаналізовані та синтезовані моделі визначення А для наступних випадків.
1. ОПР назвав тільки кращу альтернативу (крайній елемент ряду переваг). Це найпростіший випадок, який можна реалізувати як пасивний експеримент у вигляді реєстрації реального вибору ОПР . Модель у цьому випадку має (N-1)-у нерівність виду .
2. ОПР здійснив якісне ранжування всієї множини альтернатив, тобто виділив у загальному випадку класи еквівалентності і визначив для них відношення переваг. В цьому випадку модель є композицією рівностей (16), число яких дорівнює числу пар еквівалентних рішень і нерівностей (15).
3. ОПР назвав для всіх або частини альтернатив кількісні значення узагальненої корисності Р(х). У цьому випадку для пари x, x X буде дійсним рівняння
=. (17)
В дисертації показано, що з огляду ідентифікації матриці А рівняння (17) є не більш інформативним, ніж (16), але може вміщувати додаткові похибки, пов'язані з кількісним визначенням Р (х).
Загальна модель визначення вагових коефіцієнтів має вигляд
0;
...................................................
0;
=0;
....................................................
=0;
;
. (18)
Кількість рівностей і нерівностей в моделі (18) визначається інформацією про структуру переваг на множині Х, отриманою від ОПР. При цьому слід враховувати, що коли число рівностей (N-m)n, де n - число невідомих коефіцієнтів, то a визначаються однозначно. В протилежному випадку модель (18) окреслює певну область. Всі співвідношення, що входять в цю модель, лінійні відносно шуканих невідомих і, внаслідок цього, є напівплощинами (нерівностями) і площинами (рівностями), які обмежують в n - мірному просторі деякий випуклий багатогранник, що визначає множину допустимих значень матриці А.
Основні результати розділу опубліковані в працях [4, 5, 11, 12].
Четвертий розділ «Аналіз адекватності моделі компараторної ідентифікації вагових коефіцієнтів і розробка алгоритмів її реалізації» присвячено аналізу моделі (18), множини і розробці методів визначення числових значень матриці А.
Оскільки всі коефіцієнти , по зазначенню не є негативними, то рівність визначає гіперплощину в позитивному ортанті n-мірного простору. Перетин цієї гіперплощини з випуклим конусом, який описується співвідношеннями моделі (18), визначає область можливих значень матриці А. При цьому, якщо кількість рівностей і вони сумісні, то область представляє собою точку (єдине значення матриці А) в n - мірному просторі. В протилежному випадку представляє собою m = (n - r) -мірну область гіперплощини , межі якої визначаються нерівностями моделі (18). В розділі показано, що не всі нерівності, які можуть бути сформовані за результатами компараторного експерименту, інформативні, тобто звужують область можливих значень матриці А. В зв'язку з цим сформульовані наступні умови інформативності.
Умова 1. Інформативним є вибір альтернативи (компараторний експеримент), здійснений тільки на області Парето (суперечливих рішень). Для того щоб виділити такі рішення, сформульовані і доведені наступні умови 2 і 3.
Умова 2. Інформативними є нерівності, у котрих хоча б два коефіцієнти мають протилежні знаки.
Умова 3. Вихідна множина рішень, на якій проводиться компараторний експеримент, повинна містити не менше двох суперечливих альтернатив.
Крім того, доведено наступне твердження: якщо система обмежень моделі (18) спільна, то вона обмежує максимально можливу область допустимих значень матриці А. Це пов'язано з тим, що за межі області прийняті гіперплощини (рівності), хоча дійсні значення є строгими нерівностями. Це означає, що дійсні значення матриці А лежить всередині, а не на межі області .
Сказане стосується випадку, коли система сполучень моделі (18) сумісна. В противному випадку область не існує. Це означає, що модель (18) не адекватна реальному вибору ОПР. Причинами такого наслідку можуть бути:
- непрезентативність вибору конкретного ОПР, що означає, що вибір у розглядуваній ситуації випадає з області середньої (раціональної) поведінки, як випадкове значення;
- принципіальна неадекватність прийнятої моделі оцінювання в цілому, що означає невірний вибір структури (кількості й змісту) характеристик альтернатив.
Таким чином, сумісність рівнянь є індикатором адекватності моделі (18) реальному виборові. На цьому підгрунті в роботі запропоновано формальний апарат оцінки адекватності моделі (18), що базується на інформації про багаторазові вибори ОПР. Для цього наслідки вибору розглядаються як випадкова величина. Це дозволило сформувати статистичну гіпотезу адекватності моделі (18) та критерії перевірки її правильності. Через принципові особливості методу компараторної ідентифікації неможливо визначити параметри функції щільності розподілу випадкової величини (вона набуває значень 0 та 1), тому в роботі використані непараметричні критерії «знаків» та «серій» перевірки статистичної гіпотези справедливості моделі (18). Вони грунтуються на аналізі співвідношень позитивних та негативних наслідків експериментів і послідовності їх з'явлення. В розділі наведені названі критерії.
Якщо співвідношення моделі (18) сумісні, вони в загальному випадку визначають не єдине значення матриці А, а деяку допустиму область . У зв'язку з цим в розділі розроблені методи й алгоритми визначення кількісних оцінок значення матриці А на множині . При цьому виникає дві групи задач:
- визначення матриці Аи за єдиним актом вибору кращої альтернативи конкретним ОПР;
- оцінка усередненого значення матриці Аср за результатами множини актів вибору, тобто Аи одного або декількох ОПР.
В обох випадках проблема полягає в обгрунтуванні правила вибору кількісної оцінки значення матриці А на множині . Конкретизація цього правила є суб'єктивною процедурою і залежить від цілей аналізу, особливостей предметної області і т. інш. У той же час кінцевою метою визначення матриці А є побудова моделей оцінювання. В другому розділі дисертації розроблені моделі оцінювання й ранжування альтернатив, зорієнтовані на різні форми точкових, інтервальних та якісних оцінок елементів матриці . Тому в даному розділі оцінки матриці А визначаються саме в таких формах.
Алгоритми оцінки Аи .
1. Точкові оцінки. В роботі запропоновано два види таких оцінок: у вигляді чебишевскої точки та оцінки, яка максимізує силу переваг. У першому випадку оцінка визначається як точка, що рівновіддалена від меж області :
, (19)
де - обмеження-нерівності моделі (18). Оскільки всі співвідношення моделі (18) лінійні, задача (19) зводиться до задачі лінійного програмування виду
, (20)
де L - додаткова змінна, яка має зміст відстані від точки до меж області .
Переваги такої оцінки:
- стійкість до змін положення меж області (коефіцієнтів ), оскільки вона лежить в центрі області;
- числове значення змінної L дає кількісну характеристику стійкості Аи та розмаху області ;
- знак змінної L є індикатором сумісності співвідношень моделі (18). Якщо L недодатна - область існує.
Альтернативна точкова оцінка Аи базується на максимізації сили переваги. Ідея полягає у виборі такого значення , яке максимізує «відстань» по узагальненій корисності вибраної альтернативи від усіх інших. Для будь-якої пари альтернатив ця «відстань» визначається числовим значенням лівої частини відповідної нерівності моделі (18). З урахуванням цього модель визначення оцінки, максимізуючої силу переваг, має вигляд
. (21)
Мінімізація цільової функції обумовлена тим, що всі є недодатковими.
Позитивна якість оцінки (21) полягає в тому, що вона є максимально стійкою.
Інтервальні оцінки. В багатьох випадках виникає необхідність окреслення інтервалу можливих значень елементів матриці А на множині . Для визначення таких оцінок у роботі запропоновано дві моделі.
Перша грунтується на окресленні максимального та мінімального значень кожного вагового коефіцієнта на множині . Для цього вирішується 2n задач лінійного програмування виду
;
. (22)
Ця модель визначає максимальний розмах кожного з коефіцієнтів на області . Використання цих оцінок може привести до нестійкості моделі оцінювання. Більш стійкими є інтервальні оцінки, котрі максимізують силу переваг обраної альтернативи. У цьому випадку модель виглядає так
(23)
де, по аналогії з (21), - ліві частини нерівностей моделі (18).
За результатами рішень n оптимізаційних задач лінійного програмування виду (23) визначаємо матрицю
(24)
де кожний рядок є вектором індивідуальних переваг в точці екстремуму (23) по аi змінній. За межі інтервалів можливих значень приймаються
,
. (25)
Ці інтервали менші, ніж визначені по моделі (22).
Моделі та алгоритми оцінки Аср. Описані вище математичні моделі дозволяють ідентифікувати параметри моделі оцінювання на основі єдиного акту прийняття рішення, реалізованого ОПР в конкретній ситуації, і віддзеркалює його індивідуальні переваги. Адекватність моделі вибору в цілому залежить від репродуктивності результатів, її універсальності та коректності для деякого класу ситуацій та різних ОПР. У зв'язку з цим виникає задача визначення усереднених оцінок Аср на основі однорідної вибірки результатів ідентифікації матриць індивідуальної переваги Аи . В дисертації розроблені моделі й алгоритми вирішення цієї задачі, зорієнтовані на різну форму подання початкової інформації та різні проблемні ситуації оцінювання.
А. Початкова інформація подана у вигляді точкових оцінок Аи . Її можна представити у вигляді матриці де n - розмірність вектору індивідуальних переваг, m - число таких векторів. На основі цієї інформації можна сформувати точкові та інтервальні оцінки Аср.
А1. Формування точкових оцінок. Кожен рядок матриці Аи може розглядатися як точка в n - мірному просторі. За Аср запропоновано прийняти центр ваги вказаної множини точок з координатами
, (26)
де , - матриця-рядок коефіцієнтів ,.
Оцінка (26) передбачає рівноточність усіх векторів . Проте кожний з них визначається на індивідуальній області . Очевидно, що чим більшим є розмах області , тим менш точно визначається. Характеристикою розмаху області при визначенні Аи по моделі (20) є параметр. З урахуванням цієї інформації точкову оцінку Аср можна подати як «зважений» з урахуванням точності визначення , по формулі (26) за умови, що елементи матриці С підраховуються за формулою
. (27)
Аналогічна оцінка сформована також для моделі (21).
Жодна з наведених оцінок не є точною і містить деяку невизначеність, яка описується за допомогою лінгвістичних змінних типу «приблизно», «біля» і формалізується за допомогою апарату розмитих множин.
А2. Формування інтервальних оцінок. Найбільш простою є оцінка виду
;, (28)
де - елементи матриці. Тоді нерівності
,(29)
визначають область можливих значень Аср . При такому знаходженні Аср всередині області відстуні переваги, тобто всі значення рівноцінні та рівноймовірні. При достатній кількості значень закон розподілу величин Аср можна визначити більш точно традиційними методами. Це стосується також його статистичних параметрів: математичного очікування, дисперсії і т. інш.
В. Вхідна інформація подана у вигляді інтервальних оцінок значень Аи. На цій основі необхідно сформувати усереднену оцінку вектора переваг Аср .
В1. Формування інтервальних оцінок Аср . В роботі запропоновані два алгоритми визначення меж інтервала Аср . В першому випадку вони визначаються за правилом
;,. (30)
В другому випадку межі інтервалу визначаються відповідно як центри ваги точок та ,. Для цього необхідно скористуватися моделями (26) або (27). При формуванні інтервальних оцінок Аср може виникнути ситуація, коли , що відповідає перекриттю інтервалів . В цьому випадку доцільно перейти до точкових оцінок Аср.
В2. Визначення точкових оцінок Аср . Такі оцінки можна визначити по одному з правил, які описані в пункті А1.
Отже, усереднені значення коефіцієнтів переваг Аср можуть задаватись точково чи інтервально і визначатись детерміновано, ймовірносно або за допомогою лінгвістичних змінних. Окрім цьго, на основі аналізу Аср можна встановити відношення порядку на множині характеристик альтернатив, впорядкувавши їх за важливістю. Для кожної з цих форм подання інформації в розділі 2 визначено правило формування багатофакторної оцінки та ранжування альтернатив.
Вибір форми подання Аср здійснюється ОПР на основі змістовного аналізу особливостей задачі. Разом з цим виникає задача оцінки ефективності різних моделей визначення і форм подачі Аср. За критерій оцінки в роботі взято ступінь адекватності моделі багатофакторного оцінювання реальному виборові і сформульовано відповідний формальний критерій.
Визначення Аср передбачає однорідність початкової вибірки . В розділі розглянута задача виділення однорідних вибірок як задача класифікації за критерієм близькості Аи . Вказано на зв'язок формування критерію близькості із задачею визначення багатофакторної оцінки. Розглянуті різні метрики, в яких може бути сформована функція відстані в n - мірному просторі і запропоновано оригинальний метод та алгоритм визначення числа і складу однорідних груп. Коректність методу аргументується двома ствердженнями в розділі.
Основні результати четвертого розділу опубліковані в працях [2, 12, 19].
У п'ятому розділі «Методи та алгоритми багатокритеріального оцінювання й прийняття рішень в нестаціонарних системах» розглянуті особливості задачі прийняття рішень для нестаціонарних об'єктів. До них, наприклад, відносяться соціально-економічні та організаційні системи, що функціонують в умовах нестабільного економічного середовища.
Основна особливість цього класу об'єктів полягає в слабкій передбачуваності поведінки зовнішнього середовища, наприклад, цін, попиту, рівню платежів і т.д. Це пов'язано з тим, що високий динамізм та часті директивні дії (законотворчість, рішення органів влади, директиви центрального банку) не дозволяють отримати достатньо представницькі вибірки значень досліджуваного процесу та утруднюють прогнозування їх розвитку. В таких умовах необхідно прийняти ефективне рішення для досягнення деякої мети організаційної системи.
В загальній постановці вказана ситуація може бути інтерпретована як задача прийняття рішення в умовах ризику та невизначеності. Існує загальний апарат вирішення такої задачі, який шляхом вибору критеріїв прийняття рішень (ймовірносного, Лапласа, Вальда, Гурвиця і т.інш.) адаптується до форми подання та ступеня визначеності початкової інформації. Вибір рішення грунтується на аналізі «платіжної матриці», яка містить перелік альтернативних можливих станів зовнішнього середовища (природи), більш-менш повної інформації про ймовірність реалізації кожного із станів та оцінка ефекту, який можна досягти в кожному випадку. Формування такий матриці є центральним моментом процедури прийняття рішень.
В роботі запропоновано оригінальний підхід та алгоритми формування аналога платіжної матриці. Задача інтерпретується таким чином. Зовнішнє середовище розглядається як складна система, стан якої описується деяким набором параметрів, що є вхідними некерованими змінними для керованої організаційної системи. Конкретну реалізацію стану зовнішнього середовища назвемо сценарієм. В загальному випадку стан зовнішнього середовища описується композицією детермінованих параметрів, випадкових величин, випадкових подій та випадкових процесів. В останніх трьох випадках маємо більш-менш повну інформацію про статистичні характеристики. Окрім того вважаємо, що відома математична модель об'єкту дозволяє визначати раціональну поведінку (рішення) для будь-якого сценарію та оцінити його наслідки. Задача полягає у виділенні та формуванні характеристик сценаріїв, що досить повно характеризують можливі стани зовнішнього середовища. Для її вирішення використано метод статистичних випробувань (Монте-Карло) та розроблено алгоритм його реалізації. Він дозволяє формувати випадкові реалізації багатомірних характеристик зовнішнього середовища за початковою статистичною інформацією. Окрім цього запропоновано оригінальний алгоритм визначення вірогідності реалізації кожного конкретного сценарію.
Друга задача полягає в оцінці наслідків реалізації конкретного сценарію зовнішнього середовища для об'єкта. В роботі синтезовані математичні моделі, які дозволяють оцінити наслідки з урахуванням можливої зміни параметрів цільової функції, обмежень або їх композиції. В результаті багаторазового повторення описаної процедури формується аналог матриці платежів, в котрій виділені можливі сценарії зовнішнього середовища, сформована оцінка вірогідності їх реалізації та оцінені наслідки для об'єкта. Оскільки наслідки є багатофакторними, то згідно з методологією, розробленою у дисертації, формується скалярна узагальнена оцінка.
Прийняття рішення грунтується на визначенні компромісу між його потенційною ефективністю і варіаціями зовнішнього середовища. Для цього можуть використовуватись відомі критерії: ймовірносний, Лапласа, Вальда, Гурвиця. Вони розглянуті в розділі. Вибір конкретного критерія здійснюється ОПР на основі врахування особливостей об'єкта, повноти інформації, схильності до ризику і т. інш. Основні результати розділу опубліковані в працях [7, 18].
Шостий розділ «Приклади вирішення прикладних задач багатокритеріального оцінювання, ранжування та оптимізації» присвячено опису деяких найбільш типових задач організаційного управління, для котрих необхідно формувати багатофакторні оцінки.
Зокрема розглянута задача оптимального розподілу центром моноресурсу між підсистемами, які в результаті генерують різнорідні ефекти. Показано, що виробничі функції, які встановлюють зв'язок між кількістю виділеного ресурсу та величиною локального ефекту, можуть інтерпретуватись як функція корисності локальних факторів, а узагальнений ефект - як узагальнена функція корисності. Це дозволило використати розроблені в дисертації методи багатофакторного оцінювання та оптимізації для вирішення задачі розподілу бюджету та інвестиційної політики організації і т. інш. Розглянуті різні ситуації за ступенем поінформованості ОПР про вигляд та параметри виробничих функцій та ступені координуємості підсистем. Для кожної з ситуацій запропонована математична модель прийняття раціонального рішення.
Другою з розглянутих є задача ранжування техніко-економічних рішень, до якої зокрема належать вибір постачальника чи підрядника, оцінка тендерних пропозицій і т.д. Це типова задача багатофакторного оцінювання. В розділі запропонована методика формування відносної оцінки якості альтернатив та їх ранжування. Достоїнство запропонованих оцінок в їх прозорості, аргументованості, єдиній метриці, можливості уникнути авторитарного тиску при їх формуванні.
Окрім цього в розділі розглянута задача експертного формування моделі спеціаліста. Мається на увазі структура учбових дисциплін (кількість, назва, зміст) та обсяг учбових занять з кожної з них. В ролі експертів виступають викладачі, споживачі, спеціалісти-практики з даної спеціальності. Запропонована методика формування експертних оцінок важливості («ваги») кожної учбової дисципліни і на цій основі розподілу учбових ресурсів. Процедура може реалізуватись дистанційно, тобто без збору експертів в одному місці, і має перелічені вище достоїнства.
Основні результати розділу опубліковані в працях [10, 13, 14, 17].
В додатках наведено документи, що підтверджують практичне використання результатів дисертації: ОАО "ДМЗ ім. Петровського" м. Дніпропетровськ, ОАО "ДМК ім. Ф. Е. Дзержинського" м. Дніпродзержинськ, Об'єднанням "Укрвтормет" м. Дніпропетровськ.
ОСНОВНІ РЕЗУЛЬТАТИ ТА ВИСНОВКИ
В дисертації проведено системний аналіз загальної проблеми прийняття рішень і на цій основі виділено концептуальний етап проблеми - багатофакторного оцінювання та ранжування множини допустимих альтернатив (рішень). Це пов'язується з формалізацією одного з найважливіших аспектів інтелектуальної діяльності людини - процесу прийняття рішень. Знаходження загальних закономірностей цього процесу є предметом теорії штучного інтелекту, а конкретних ситуацій - проблемно-орієнтованих методів. Отже, ця проблема має загальнотеоретичне і прикладне значення.
Метою дослідження є узагальнення і подальший розвиток загальної теорії багатофакторного оцінювання, розробка методів, математичних моделей, процедур та алгоритмів, проблемно-орієнтованих на задачі організаційного управління, і вирішення на цій основі найважливішої науково-технічної проблеми - створення теоретичного базису та інструментарію систем підтримки прийняття рішень в організаційних системах.
В процесі досліджень отримані наступні основні результати.
...Подобные документы
Рейтингова оцінка галузі по показникам стимуляторам бухгалтерської звітності. Аналіз соціально-економічних процесів за допомогою ранжування та електронних таблиць Excel. Розрахунок коефіцієнту економічного розвитку підприємств деревообробної галузі.
лабораторная работа [494,1 K], добавлен 13.05.2015- Багатоетапні процедури прийняття рішень в умовах невизначеності на основі декомпозиції дерева рішень
Створення умов невизначеності через відсутність апріорної інформації про ймовірнісний розподіл рівнів попиту. Розрахунок корисності альтернативних варіантів рішень на відрізку часу в 10 років. Побудова дерева рішень з деталізацією варіантів рішень.
лабораторная работа [57,1 K], добавлен 01.04.2014 Теоретичні основи, сутність управлінських рішень та моделі їх прийняття. Три основні типи управлінських завдань: концептуальні, пов'язані з техніко-технологічним аспектом функціонування виробництва, завдання, які виникають унаслідок дії людського фактора.
курсовая работа [423,7 K], добавлен 26.07.2015Фондовий ринок України. Моделювання процесів прийняття рішень щодо ефективного управління інвестиційним портфелем підприємств-суб‘єктів ринкових відносин. Поєднання методів традиційного і портфельного підходів до формування інвестиційного портфеля.
автореферат [207,8 K], добавлен 06.07.2009Процедури та моделювання систем зв’язку, формальний опис та оцінювання ефективності. Специфіка цифрового зображення сигналів. Особливості та методи побудови математичних моделей систем та мереж зв'язку. Математичні моделі на рівні функціональних ланок.
реферат [120,1 K], добавлен 19.02.2011Упорядкування одиниць сукупності за допомогою інтегральних оцінок. Багатовимірне ранжування у системі Statistica. Формування однорідних одиниць сукупності за допомогою кластерного аналізу. Порядок об’єднання в кластери через опцію Amalgamation schedule.
контрольная работа [1,8 M], добавлен 08.12.2010Елементи теорії статистичних рішень. Критерії вибору рішення в умовах невизначеності. Класифікація систем масового обслуговування. Основні характеристики та розрахунок їх параметрів. Елементи задачі гри з природою. Особливості критерій Гурвіца та Вальда.
курсовая работа [94,6 K], добавлен 08.09.2012Загальні положення теорії оцінювання параметрів розподілів: криві розподілу оцінок, дисперсія асимптотично ефективної оцінки. Точкове та інтервальне оцінювання параметрів: довірчі інтервали, математичне сподівання та наближена правдоподібність.
реферат [185,2 K], добавлен 10.02.2011Загальний опис задачі прийняття рішень, порядок формування математичної моделі. Множина Парето і шляхи її визначення. Математична модель лінійної оптимізації. Визначення дефіцитних та найбільш цінних ресурсів. Формування оптимального плану перевезень.
контрольная работа [1,0 M], добавлен 21.11.2010Методика та головні етапи побудування платіжної матриці підприємства при різних термінах постачання цементу. Формування та аналіз матриці ризиків. Оцінка стратегії в умовах повної невизначеності на основі критеріїв Лапласа, Вальда, Севіджа, Гурвіца.
лабораторная работа [21,5 K], добавлен 28.03.2014Сутність теорії управління запасами, оптимізація рівня, стратегії управління. Основні типи моделей управління запасами, модель Уілсона. Визначення оптимального розміру запасів з використанням моделі Уілсона, з обмеженнями на складські приміщення.
курсовая работа [160,4 K], добавлен 11.05.2012Управлінське рішення як концентроване вираження процесу управління. Економіко-математичне моделювання процесів прийняття управлінських рішень. Окремі випадки економіко-математичного моделювання в менеджменті на прикладі прогнозування та планування.
курсовая работа [41,2 K], добавлен 24.03.2012Застосування електоронних таблиць та пакетів прикладних програм у статистичних та економетричних розрахунках. Побудова парної та непарної лінійної регресійної моделі економічних процесів. Моделювання економічних процесів для прогнозу та прийняття рішень.
методичка [232,8 K], добавлен 17.10.2009Оцінка ефективності рішень фахівця відділу матеріально-технічного забезпечення. Визначення оптимального плану випуску продукції засобами стохастичного програмування. Застосування теорії графів в інформаційній безпеці. Оцінка ризику цінних паперів.
курсовая работа [3,1 M], добавлен 22.09.2014Теоретичні аспекти математичного моделювання динамічних систем: поняття і принципи, прийняття управлінських рішень з урахуванням фактору часу. Вирішення задач динамічного програмування: побудова і розрахунок моделі; оптимальний розподіл інвестицій.
курсовая работа [1,1 M], добавлен 16.02.2011Соціально-економічний розвиток міста Тернополя і задача реформування його житлово-комунальної сфери. Сучасні технології та загальні принципи побудови системи підтримки прийняття рішень. Формулювання і опис модельованої системи, її програмна реалізація.
дипломная работа [803,8 K], добавлен 14.10.2010Теорія вибору інвестиційного портфеля цінних паперів, формування та управління ним із застосуванням методів ефективної диверсифікації ризиків. Розробка ефективного економіко-математичного інструментарію визначення оптимального інвестиційного портфеля.
автореферат [35,9 K], добавлен 06.07.2009Методи одержання стійких статистичних оцінок. Агломеративні методи кластерного аналізу. Грубі помилки та методи їх виявлення. Множинна нелінійна регресія. Метод головних компонент. Сутність завдання факторного аналізу. Робастне статистичне оцінювання.
курсовая работа [1,2 M], добавлен 28.04.2014Аналіз виробничої діяльності державного підприємства. Підготовка до впровадження реального інвестиційного проекту та оцінка його економічної ефективності. Інформаційна система підтримки прийняття рішень по мінімізації витрат на державному підприємстві.
дипломная работа [4,6 M], добавлен 14.10.2009Фірма як основне поняття мікроекономічної теорії; виробничі функції та співвідношення. Задача раціонального ведення господарства для фірми. Оптимізаційні математичні моделі: рівновага, алгоритм поведінки, недосконала конкуренція, монополія та монопсонія.
реферат [103,2 K], добавлен 07.12.2010