Моделирование систем

Условия существования модели и ее основные функции. Принципы системного подхода. Преимущества математического моделирования, случаи его применения. Детерминированные и стохастические математические модели. Матричный способ задания конечных автоматов.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 11.01.2014
Размер файла 677,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Дифференциальными уравнениями называются такие уравнения, в которых неизвестными будут функции одной переменной или нескольких переменных, причём в уравнение входят не только их функции но их производные различных порядков.

Если неизвестные - функции многих переменных, то уравнения называются -- уравнения в частных производных. Если неизвестные функции одной независимой переменной, то имеют место обыкновенные дифференциальные уравнения.

Например, процесс малых колебаний маятника описан обыкновенными дифференциальным уравнением где m1, l1 - масса, длина подвески маятника, угол отклонения маятника от положения равновесия. Из этого уравнения можно найти оценки интересующих характеристик, например период колебаний

Диф. уравнения, Д - схемы являются математическим аппаратом теории систем автоматического регулирования, управления.

При проектировании и эксплуатации систем САУ необходимо выбрать такие параметры системы, которые бы обеспечивали требуемую точность управления.

Следует отметить, что часто используемые в САУ системы диф. уравнений определяются путём линеаризацией управления объекта (системы), более сложного вида, имеющего нелинейности:

19. Дискретно­детерминированные модели, F­схемы

ДДМ являются предметом рассмотрения теории автоматов (ТА). Теория автоматов - это раздел теоретической кибернетики, в котором изучаются математические модели - автоматы.

На основе этого система представляется в виде автомата, перерабатывающего дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени.

Конечным автоматом называется автомат, у которого множество внутренних состояний и входных сигналов (а следовательно, и множество выходных сигналов) являются конечными множествами.

Абстрактно конечный автомат можно представить как математическую схему, характеризующуюся шестью элементами:

конечным множеством X входных сигналов (входным алфавитом);

конечным множеством Y выходных сигналов (выходным алфавитом);

конечным множеством Z внутренних состояний (алфавитом состояний);

начальным состоянием z0, z0 принадлежит Z;

функцией переходов Фи (z, x);

функцией выходов Кси (z, x)

Автомат, задаваемый F - схемой функционирует в дискретном автоматном времени, моментам которого являются такты, т.е. примыкающие друг к другу равные интервалы времени, каждому из которых соответствуют постоянные значения входного и выходного сигналов и внутренние состояния.

Абстрактный конечный автомат имеет один выходной и один выходной каналы. В каждый момент t=0,1,2,… дискретного времени автомат находится в определенном состоянии z(t) принадлежащий Z состояний автомата, причем в начальный момент времени t=0 он всегда находится в начальном состоянии z(0)=z0.

В момент t, будучи в состоянии z(t), автомат способен воспринять на входном канале сигнал x(t) принадлежащий X и выдать на выходном канале сигнал y(t), переходя в состоянии z+1. Абстрактный конечный автомат реализует множества слов входного алфавита X на множество слов выходного алфавита Y.

Способы задания схемы:

табличный - задания конечного автомата и выходов, строки которых соответствуют входным сигналам автомата, а столбцы его состояниям;

направленный граф - представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершины дуг графа, соответствующих тем или иным переходам автомата;

матричный - это матрица соединений, строки которой соответствуют исходным состояниям, а столбцы - состояниям перехода.

Итог: понятие F- автомата в дискретно - детерминированном подходе к исследованию на моделях свойств объектов является математической абстракцией, удобной для описания широкого класса процессов функционирования реальных объектов в автоматизированных системах обработки информации и управления.

20. Виды конечных автоматов

Виды конечных автоматов.

По способу формирования функций выходов выделяют автоматы Мили и Мура.

Автомат Мили

В автомате Мили (англ. Mealy machine) функция выходов ? определяет значение выходного символа по классической схеме абстрактного автомата. Математическая модель автомата Мили и схема рекуррентных соотношений не отличаются от математической модели и схемы рекуррентных соотношений абстрактного автомата. Таким образом, можно дать следующее определение:

Конечным детерминированным автоматом типа Мили называется совокупность пяти объектов

,

где S, X и Y -- конечные непустые множества, а ? и ? -- отображения вида:

и

со связью элементов множеств S, X и Y в абстрактном времени T = {0, 1, 2, …} уравнениями:

(Отображения ? и ? получили названия, соответственно функции переходов и функции выходов автомата A).

Особенностью автомата Мили является то, что функция выходов является двухаргументной и символ в выходном канале y(t) обнаруживается только при наличии символа во входном канале x(t). Функциональная схема не отличается от схемы абстрактного автомата.

Автомат Мура

Зависимость выходного сигнала только от состояния представлена в автоматах типа Мура (англ. Moore machine). В автомате Мура функция выходов определяет значение выходного символа только по одному аргументу -- состоянию автомата. Эту функцию называют также функцией меток, так как она каждому состоянию автомата ставит метку на выходе.

Конечным детерминированным автоматом типа Мура называется совокупность пяти объектов:

где S, X, Y и ? -- соответствуют определению автомата типа Мили, а ? является отображением вида: ? : S > Y, с зависимостью состояний и выходных сигналов во времени уравнением:

Особенностью автомата Мура является то, что символ y(t) в выходном канале существует все время пока автомат находится в состоянии s(t).

Для любого автомата Мура существует автомат Мили, реализующий ту же самую функцию. И наоборот: для любого автомата Мили существует соответствующий автомат Мура.

По характеру отсчёта дискретного времени автоматы делятся на синхронные и асинхронные.

В синхронных конечных автоматах моменты времени, в которые автомат считывает входные сигналы, определяются принудительно синхронизирующими сигналами. После очередного синхронизирующего сигнала с учётом «считанного» и в соответствии с соотношениями для функционирования автомата происходит переход в новое состояние и выдача сигнала на выходе, после чего автомат может воспринимать следующее значение входного сигнала.

Асинхронный конечный автомат считывает входной сигнал непрерывно, и поэтому, реагируя на достаточно длинный входной сигнал постоянной величины x, он может, как следует из соотношений для функционирования автомата, несколько раз изменять состояние, выдавая соответствующее число выходных сигналов, пока не перейдёт в устойчивое состояние, которое уже не может быть изменено данным входным сигналом.

По числу состояний различают конечные автоматы с памятью и без памяти. Автоматы с памятью имеют более одного состояния, а автоматы без памяти (комбинационные или логические схемы) обладают лишь одним состоянием.

21. Табличный способ задания конечных автоматов

Чтобы задать конечный F-автомат, необходимо описать все элементы множества F = <Z, X, Y, ?, ?, z0>, т. е. входной, внутренний и выходной алфавиты, а также функции переходов и выходов, причем среди множества состояний необходимо выделить состояние z0, в котором автомат находился в момент времени t = 0. Существует несколько способов задания работы F-автоматов, но наиболее часто используются табличный, графический и матричный.

Простейший табличный способ задания конечного автомата основан на использовании таблиц переходов и выходов, строки которых соответствуют входным сигналам автомата, а столбцы -- его состояниям. При этом обычно первый слева столбец соответствует начальному состоянию z0. На пересечении i-й строки и k-го столбца таблицы переходов помещается соответствующее значение ?(zk, хi) функции переходов, а в таблице выходов соответствующее значение ?(zk,xi) функции выходов. Для F-автомата Мура обе таблицы можно совместить, получив так называемую отмеченную таблицу переходов, в которой над каждым состоянием zk автомата, обозначающим столбец таблицы, стоит соответствующий этому состоянию, согласно (2.17), выходной сигнал ? (zi).

Описание работы F-автомата Мили таблицами переходов ? и выходов ? иллюстрируется табл. 2.1, а описание F-автомата Мура -- таблицей переходов (табл. 2.2).

Примеры табличного способа задания F-автомата Мили F1 с тремя состояниями, двумя входными и двумя выходными сигналами приведены в табл. 2.3, а для F-автомата Мура F2 -- в табл. 2.4.

22. Графический способ задания конечных автоматов

При другом способе задания конечного автомата используется понятие направленного графа. Граф автомата представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершины дуг графа, соответствующих тем или иным переходам автомата. Если входной сигнал хk вызывает переход из состояния zi в состояние zj, то на графе автомата дуга, соединяющая вершину zi с вершиной zj, обозначается хk. Для того чтобы задать функцию выходов, дуги графа необходимо отметить соответствующими выходными сигналами. Для автоматов Мили эта разметка производится так: если входной сигнал хk действует на состояние zi, то, согласно сказанному, получается дуга, исходящая из zi, и помеченная хk; эту дугу дополнительно отмечают выходным сигналом у=?(zi, хk). Для автомата Мура аналогичная разметка графа такова: если входной сигнал хk, действуя на некоторое состояние автомата, вызывает переход в состояние zj то дугу, направленную в zj помеченную хк, дополнительно отмечают выходным сигналом у=?(zj, хk).

На рис. 2.3, а, б приведены заданные ранее таблицами F-автоматы Мили F1 и Мура F2 соответственно.

23. Матричный способ задания конечных автоматов

При решении задач моделирования систем часто более удобной формой является матричное задание конечного автомата. При этом матрица соединений автомата есть квадратная матрица С=||сij||, строки которой соответствуют исходным состояниям, а столбцы -- состояниям перехода. Элемент cij=xk/ys, стоящий на пересечении i-й строки и j-гo столбца, в случае автомата Мили соответствует входному сигналу хk, вызывающему переход из состояния zi в состояние zj, и выходному сигналу ys, выдаваемому при этом переходе.

Для автомата Мили F1, рассмотренного выше, матрица соединений имеет вид

Если переход из состояния zi в состояние zj происходит под действием нескольких сигналов, элемент матрицы cij представляет собой множество пар «вход-выход» для этого перехода, соединенных знаком дизъюнкции.

Для F-автомата Мура элемент cij равен множеству входных сигналов на переходе (zi, zj), а выход описывается вектором выходов i-я компонента которого -- выходной сигнал, отмечающий состояние zi.

Размещено на Allbest.ur

...

Подобные документы

  • Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.

    курсовая работа [1,3 M], добавлен 02.10.2009

  • Гомоморфизм - методологическая основа моделирования. Формы представления систем. Последовательность разработки математической модели. Модель как средство экономического анализа. Моделирование информационных систем. Понятие об имитационном моделировании.

    презентация [1,7 M], добавлен 19.12.2013

  • Анализ разработки визуальной среды, позволяющей легко создавать модели в виде графического представления сети Петри. Описания моделирования конечных автоматов, параллельных вычислений и синхронизации. Исследование влияния сна на процесс усвоения знаний.

    курсовая работа [4,3 M], добавлен 15.12.2011

  • Статические и динамические модели. Анализ имитационных систем моделирования. Система моделирования "AnyLogic". Основные виды имитационного моделирования. Непрерывные, дискретные и гибридные модели. Построение модели кредитного банка и ее анализ.

    дипломная работа [3,5 M], добавлен 24.06.2015

  • Моделирование экономических систем: основные понятия и определения. Математические модели и методы их расчета. Некоторые сведения из математики. Примеры задач линейного программирования. Методы решения задач линейного программирования.

    лекция [124,5 K], добавлен 15.06.2004

  • Гносеологическая роль теории моделирования и сущность перехода от натурального объекта к модели. Переменные, параметры, связи (математические) и информация - элементы модели. Обобщенное представление вычислительного эксперимента и признаки морфологии.

    реферат [31,0 K], добавлен 11.03.2009

  • Основы понятия регрессионного анализа и математического моделирования. Численное решение краевых задач математической физики методом конечных разностей. Решение стандартных и оптимизационных задач, систем линейных уравнений. Метод конечных элементов.

    реферат [227,1 K], добавлен 18.04.2015

  • Динамические, стохастические, дискретные модели имитационного моделирования. Предпосылки, технологические этапы машинного моделирования сложной системы. Разработка имитационной модели автоматизированного участка обработки деталей, ее верификация.

    дипломная работа [224,3 K], добавлен 05.09.2009

  • Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.

    реферат [91,1 K], добавлен 16.05.2012

  • Характеристика простых и сложных систем, их основные признаки. Общие принципы и этапы экономико-математического моделирования. Назначение рабочего этапа системного анализа - выявление ресурсов и процессов, композиция целей, формулирование проблемы.

    контрольная работа [47,7 K], добавлен 11.10.2012

  • Сущность математического моделирования и формализации. Выявление управляемых и неуправляемых параметров. Математическое описание посредством уравнений, неравенств, функций и иных отношений взаимосвязей между элементами модели (параметрами, переменными).

    курсовая работа [116,8 K], добавлен 17.12.2009

  • Теоретические и методологические основы моделирования развития фирм с рентноориентированным управлением. Экономико-математические основы моделирования динамически сложных систем. Функция заимствования: понятие, сущность, свойства, аналитический вид.

    дипломная работа [630,4 K], добавлен 04.02.2011

  • Основные этапы математического моделирования, классификация моделей. Моделирование экономических процессов, основные этапы их исследования. Системные предпосылки формирования модели системы управления маркетинговой деятельностью предприятия сферы услуг.

    реферат [150,6 K], добавлен 21.06.2010

  • Основные математические модели макроэкономических процессов. Мультипликативная производственная функция, кривая Лоренца. Различные модели банковских операций. Модели межотраслевого баланса Леонтьева. Динамическая экономико-математическая модель Кейнса.

    контрольная работа [558,6 K], добавлен 21.08.2010

  • Понятие экономико-математического моделирования. Совершенствование и развитие экономических систем. Сущность, особенности и компоненты имитационной модели. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.

    курсовая работа [451,4 K], добавлен 23.04.2013

  • Элементы экономико-математического моделирования. Основные направления оптимизационного моделирования банковской деятельности. Модели банка как совокупности стохастических финансовых процессов. Управление портфелем ценных бумаг в банковском бизнесе.

    дипломная работа [1,3 M], добавлен 17.07.2013

  • Процедура проведения имитационных экспериментов с моделью исследуемой системы. Этапы имитационного моделирования. Построение концептуальной модели объекта. Верификация и адаптация имитационной модели. Метод Монте-Карло. Моделирование работы отдела банка.

    курсовая работа [549,5 K], добавлен 25.09.2011

  • Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.

    контрольная работа [141,5 K], добавлен 02.02.2013

  • Исследование особенностей разработки и построения модели социально-экономической системы. Характеристика основных этапов процесса имитации. Экспериментирование с использованием имитационной модели. Организационные аспекты имитационного моделирования.

    реферат [192,1 K], добавлен 15.06.2015

  • Основные понятия теории моделирования экономических систем и процессов. Методы статистического моделирования и прогнозирования. Построение баланса производства и распределение продукции предприятий с помощью балансового метода и модели Леонтьева.

    курсовая работа [1,5 M], добавлен 21.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.