Понятие, предмет и задачи эконометрики
Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.
Рубрика | Экономико-математическое моделирование |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 25.02.2014 |
Размер файла | 242,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Понятие, предмет, задачи эконометрики
эконометрический метод регрессия
Эконометрика - быстро развивающаяся отрасль науки, цель которой состоит в том, чтобы придать количественные меры экономическим отношениям.
- наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов.
Эконометрика - единство трех составляющих: экономической теории, экономической статистики и приложений математики к экономике - устанавливающее количественные меры экономическим отношениям.
Эконометрика - наука о связях экономически х явлений.
Термин эконометрики ввел бухгалтер П. Цьемпа в 1910г. в Австро-Венгрии.
«Эконометрика» = греч =«экономика» + «метрика» = измерение в экономике.
В 1929г. эконометрист Гриллихес подчеркивал значение эконометрического подхода на микро- и макроуровне. Он писал: «Эконометрика является одновременно нашим телескопом и нашим микроскопом для изучения окружающего экономического мира, поэтому мы говорим о микро- и макроэкономике».
Основное внимание в эконометрике уделяется следующим методам:
1. регрессионный анализ - для оценки уравнений, которые в наибольшей степени соответствуют совокупности уравнений, зависимых и независимых переменных. Эти уравнения позволяют предсказать значения зависимой переменной для заданного значения независимой (т. е. прогнозировать).
2. система эконометрических уравнений;
3. моделирование временных рядов;
4. динамические эконометрические модели.
Основные этапы развития эконометрики
Первоначальные попытки количественных исследований в экономике относятся к 17 в. «Политические арифметики» - В. Петти, Г. Кинг, Ч. Давенант. круг их интересов был связан с практическими вопросами: налогообложением, денежным обращением, международной торговлей и финансами.
Существенным толчком явилось развитие статистической теории в трудах Ф. Гальтона, К. Пирсона, Ф. Эджворта. появились первые применения парной корреляции (связь между уровнем бедности и формами помощи бедным).
Многие исследователи признают первой эконометрической работой книгу амер. ученого Г. Мура «Законы зарплаты: эссе по статистической экономике» (1911). Он использовал все достижения теории корреляции, регрессии, анализа динамических рядов. К этому же периоду относится первое применение итальянским ученым Р. Бенни метода множественной регрессии для оценки функции спроса.
Значительной вехой в формировании эконометрики явилось построение экономических барометров, прежде всего так называемого гарвардского барометра (У. Персонс и У. Митчелл). Он состоял из 5 групп показателей, в дальнейшем сведенных в три кривые (фондовый, товарный и денежный рынки).
В этот же период делались эконометрические построения, использующие методы гармонического анализа и периодограмм-анализа (Г. Мур). к 30-м гг. сложились все предпосылки для выделения эконометрики в отдельную науку.
29 декабря 1930г. по инициативе И. Фишера, Р. Фриша, Я. Тинбергена и др. было создано эконометрическое общество («эконометрика»). С 1933г. под редакцией Р. Фриша стал издаваться журнал «Эконометрика». В 1941г. появился первый учебник по эконометрике.
Другим важным событием стало появление компьютеров с высоким быстродействием и мощной оперативной памятью. Существенное развитие получил статистический анализ временных рядов.
В настоящее время эконометрика располагает огромным разнообразием типов моделей - от больших макроэкономических моделей до малых коинтеграционных.
Другой вариант
17в. шк. «Политич-е арифметики» - использовали в своих исслед-ях в сфере налогооблаж-я, ден. обращ-я, м/днар торговли и финансах цифры и факты. (Пети, Кинг)
18в. Гальтон, Пирсон, Эджворта. Первые применения парной корреляции (исследование Юла связи м/д ур-ем бедности и формами помощи бедным).
19. в 1ое применение Бонини метода множ. регрессии для оценки функции спроса. Исследования по цикличности экономики.
20в. 1930г. - создание эк-ческого общ-ва - Фишер, Фриш, Тимберген, Андерсон. Официально дали название науки -эконометрика.
70е. гг. - в связи с компьютеризацией сущ-ое развитие получил стат-ий анализ временных рядов.
В наст. время Э располагает множ-ом разнообразн. типов моделей, как больших (с множ-ом ур-ий), так и маленьких (для реш-я специфич. проблем).
Особенности эконометрического метода
Становление и развитие эконометрического метода происходили на основе высшей статистики - на методах парной и множественной регрессии, парной, частной и множественной корреляции, выделения тренда и других компонент временного ряда, на статистическом оценивании.
Первый момент - эконометрика как система специфических методов начала развиваться с осознания своих задач - отражения особенностей экономических переменных и связей между ними.
Второй момент - это взаимодействие социально-экономических переменных, которое может рассматриваться как самостоятельная компонента в уравнении регрессии. Например, имеем регрессию:
Конечно, эффект взаимодействия (в данном случае параметр b3) может оказаться статистически незначимым. Поэтому гипотезы о нелинейности и не аддитивности связей не исключают особого внимания к проблеме применимости линейных и аддитивных уравнений регрессии.
Для проведения правильного анализа нужно знать всю совокупность связей между переменными. Одним из первых подходов к решению этой задачи является конфлюэнтный анализ, разработанный в 1934г. Р. Фришем. он предложил изучать целую иерархию регрессий между всеми сочетаниями переменных. Анализируя регрессии с разным числом переменных, Р. Фриш обнаружил «эффект деградации» коэффициентов регрессии: если в регрессию включается много переменных, имеющих линейные связи друг с другом, то коэффициенты регрессии имеют тенденцию возвращаться к тем значениям, которые они имели в уравнении с меньшим числом переменных.
На основе изменения коэффициентов регрессии bi и множественного коэффициента детерминации R2 он разделил все переменные на полезные (их включение повышало R2), лишние (их ввод не изменял R2) и вредные (их ввод сильно изменял bi без заметного изменения R2).
Потребность в причинном объяснении корреляции привела американского генетика С. Райта к созданию метода путевого анализа, который основан на изучении всей структуры причинных связей между переменными.
Путевой анализ позволяет разложить величину коэффициента парной корреляции на 4 компоненты:
- прямое влияние одной переменной на другую;
- косвенное влияние;
- непричинная компонента, объясняемая наличием общих причин, воздействующих на одну и другую переменную;
- непричинная компонента, зависящая от неанализируемой в модели корреляции входных переменных. Если компоненты прямого и косвенного влияния равны 0, корреляция между переменными является ложной.
Путевой анализ позволил прояснить проблему ложной корреляции.
Эконометрический метод складывался в преодолении следующих неприятностей, искажающих результаты применения классических статистических методов:
- асимметричности связей;
- мультиколлинеарности объясняющих переменных;
- закрытости механизма связи между переменными в изолированной регрессии;
- эффекта гетероскедастичности, т. е. отсутствия нормального распределения остатков для регрессионной функции;
- автокорреляции;
- ложной корреляции;
- наличия лагов.
В качестве этапов эконометрического исследования можно указать:
- постановку проблемы;
- получение данных, анализ их качества;
- спецификацию модели;
- оценку параметров;
- интерпретацию результатов.
Спецификация моделей парной регрессии
В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессию.
Парная регрессия - регрессия между двумя переменными y и x, т. е. модель вида
где y - зависимая переменная (результативный признак) ;
x - независимая, объясняющая переменная (признак-фактор).
Спецификация модели - формулировка вида модели, исходя из соответствующей теории связи между переменными. Со спецификации модели начинается любое эконометрическое исследование. Иными словами, исследование начинается с теории, устанавливающей связь между явлениями.
Прежде всего, из круга факторов, влияющих на результативный признак, необходимо выделить наиболее существенно влияющие факторы. Парная регрессия достаточна, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной. В уравнении регрессии корреляционная по сути связь признаков представляется в виде функциональной связи, выраженной соответствующей математической функцией
где yj - фактическое значение результативного признака;
yxj -теоретическое значение результативного признака.
- случайная величина, характеризующая отклонения реального значения результативного признака от теоретического.
Случайная величина е называется также возмущением. Она включает влияние неучтенных в модели факторов, случайных ошибок и особенностей измерения.
От правильно выбранной спецификации модели зависит величина случайных ошибок: они тем меньше, чем в большей мере теоретические значения результативного признака подходят к фактическим данным у.
К ошибкам спецификации относятся неправильный выбор той или иной математической функции для , и недоучет в уравнении регрессии какого-либо существенного фактора, т. е. использование парной регрессии вместо множественной.
Наряду с ошибками спецификации имеет место ошибка выборки - исследователь чаще всего имеет дело с выборочными данными при установлении закономерной связи между признаками. Ошибки измерения практически сводят на нет все усилия по количественной оценке связи между признаками.
Основное внимание в эконометрических исследованиях уделяется ошибкам спецификации модели. В парной регрессии выбор вида математической функции может быть осуществлен тремя способами: графическим; аналитическим (исходя из теории изучаемой взаимосвязи) и экспериментальным.
Графический метод основан на поле корреляции. Аналитический метод основан на изучении материальной природы связи исследуемых признаков. Экспериментальный метод осуществляется путем сравнения величины остаточной дисперсии Dост, рассчитанной при разных моделях. Если фактические значения результативного признака совпадают с теоретическими то Docm =0. Если имеют место отклонения фактических данных от теоретических то
Чем меньше величина остаточной дисперсии, тем лучше уравнение регрессии подходит к исходным данным.
Если остаточная дисперсия оказывается примерно одинаковой для нескольких функций, то на практике предпочтение отдается более простым видам функций, ибо они в большей степени поддаются интерпретации и требуют меньшего объема наблюдений. Число наблюдений должно в 6 - 7 раз превышать число рассчитываемых параметров при переменной х.
Нелинейная регрессия
Среди нелинейных функций, которые могут быть приведены к линейному виду, в эконометрических исследованиях очень широко используется степенная функция:
Связано это с тем, что параметр b в ней имеет четкое экономическое истолкование, т. е. он является коэффициентом эластичности. Это значит, что величина коэффициента b показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%.
Например, если зависимость спроса от цен характеризуется уравнением вида , то с увеличением цен на 1% спрос снижается в среднем на 1, 12%.
В силу того, что коэффициент эластичности для нелинейной функции не является величиной постоянной, а зависит от соответствующего значения х, то обычно рассчитывается средний показатель эластичности по формуле:
Поскольку коэффициенты эластичности представляют экономический интерес, а виды моделей не ограничиваются только степенной функцией, приведем формулы расчета коэффициентов эластичности для наиболее распространенных типов уравнений регрессии.
Коэффициенты эластичности по разным видам регрессионных моделей
Линейная.
Парабола 2 порядка .
Гипербола .
Показательная .
Степенная .
Полулогарифмическая .
Логистическая .
Обратная .
Несмотря на широкое использование в эконометрике коэффициентов эластичности, возможны случаи, когда их расчет экономического смысла не имеет. Это происходит тогда, когда для рассматриваемых признаков бессмысленно определение изменения значений в процентах. Например, вряд ли кто будет определять, на сколько процентов может измениться заработная плата с ростом стажа работы на 1%. Или, например, на сколько процентов изменится урожайность пшеницы, если качество почвы, измеряемое в баллах, изменится на 1%.
Уравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем корреляции, а именно индексом корреляции (R) :
или
Величина данного показателя находится в границах: 0 ? R ? 1, чем ближе к единице, тем теснее связь рассматриваемых признаков, тем более надежно найденное уравнение регрессии.
Поскольку в расчете индекса корреляции используется соотношение факторной и общей суммы квадратов отклонений, то R2 имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину R2 для нелинейных связей называют индексом детерминации.
Оценка существенности индекса корреляции проводится, так же как и оценка надежности коэффициента корреляции.
Индекс детерминации используется для проверки существенности в целом уравнения нелинейной регрессии по F-критерию Фишера:
где R2 - индекс детерминации;
n - число наблюдений;
т - число параметров при переменных х.
Величина т характеризует число степеней свободы для факторной суммы квадратов, а (n - т - 1) - число степеней свободы для остаточной суммы квадратов.
Индекс детерминации R2yx можно сравнивать с коэффициентом детерминации r2yx для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина коэффициента детерминации r2yx меньше индекса детерминации R2yx. Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию. Практически если величина (R2yx - г2yx) не превышает 0, 1, то предположение о линейной форме связи считается оправданным. В противном случае проводится оценка существенности различия R2yx, вычисленных по одним и тем же исходным данным, через t-критерий Стьюдента:
где m|R - r| - ошибка разности между R2yx и r2yx.
.
Если tфакт > tтабл., то различия между рассматриваемыми показателями корреляции существенны и замена нелинейной регрессии уравнением линейной функции невозможна. Практически если величина t < 2, то различия между Ryx и ryx несущественны, и, следовательно, возможно применение линейной регрессии, даже если есть предположения о некоторой нелинейности рассматриваемых соотношений признаков фактора и результата.
Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации как среднюю арифметическую простую.
Ошибка аппроксимации в пределах 5-7% свидетельствует о хорошем подборе модели к исходным данным.
Спецификация моделей множественной регрессии
Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономических переменных контролировать нельзя, т. е. не удается обеспечить равенство всех прочих условий для оценки влияния одного исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. построить уравнение множественной регрессии:
Такого рода уравнение может использоваться при изучении потребления. Тогда коэффициенты - частные производные потребления по соответствующим факторам :
в предположении, что все остальные постоянны.
В 30-е гг. XX в. Кейнс сформулировал свою гипотезу потребительской функции. С того времени исследователи неоднократно обращались к проблеме ее совершенствования. Современная потребительская функция чаще всего рассматривается как модель вида:
где С - потребление; у - доход; Р - цена, индекс стоимости жизни; М - наличные деньги; Z - ликвидные активы.
При этом
Множественная регрессия широко используется в решении проблем спроса, доходности акций; при изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия - один из наиболее распространенных методов эконометрики. Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.
Построение уравнения множественной регрессия начинается с решения вопроса о спецификации модели. Спецификация модели включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.
Требования к факторам.
1 Они должны быть количественно измеримы.
2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.
Разновидностью интеркоррелированности факторов является мультиколлинеарность - наличие высокой линейной связи между всеми или несколькими факторами.
Причинами возникновения мультиколлинеарности между призанками являются:
Изучаемые факторные признаки, характеризуют одну и ту же сторону явления или процесса. Например, показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия;
Использование в качестве факторных признаков показателей, суммарное значение которых представляет собой постоянную величину;
Факторные признаки, являющиеся составными элементами друг друга;
Факторные признаки, по экономическому смыслу дублирующие друг друга.
Одним из индикаторов определения наличия мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0, 8 (rxi xj) и др.
Мультиколлинеарность может привести к нежелательным последствиям:
1) оценки параметров становятся ненадежными, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только в величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.
2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;
3) нельзя определить изолированное влияние факторов на результативный показатель.
Включение в модель факторов с высокой интеркорреляцией (Ryx1Rx1x2) может привести к ненадежности оценок коэф-ов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретированными. Включаемые во множ. регрессию факторы должны объяснить вариацию независимой переменной. Отбор факторов производится на основе качественного теоретико-экономического анализа, который обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй - на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.
Если факторы коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.
Методика построения двухфакторной линейной модели
Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:
метод исключения;
метод включения;
шаговый регрессионный анализ.
Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты - отсев факторов из полного его набора (метод исключения), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).
Простейший из этих методов - исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, снизится несущественно).
Ввиду четкой интерпретации параметров наиболее широко используются линейная и степенная функции.
К примеру, в линейной множественной регрессии:
параметры при x называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.
Выбор форм связи затрудняется тем, что, используя математический аппарат, теоретически зависимость между признаками может быть выражена большим числом различных функций.
Наиболее приемлемым способом определения вида исходного уравнения регрессии является метод перебора различных уравнений. Существует пять основных типов моделей:
- Линейная:
- Степенная
- Показательная
- Параболическая
- Гиперболическая
Основное значение имеют линейные модели в силу простоты и логичности их экономической интерпретации. Нелинейные формы зависимости приводятся к линейным путем линеаризации.
Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки параметров регрессии.
Так, для линейной функции система нормальных уравнений составит:
Для ее решения может быть применен метод определителей:
где Д - определитель системы;
Да, Дb1,..., Дbp - частные определители.
Возможен и иной подход к определению параметров множественной регрессии, когда на основе матрицы парных коэффициентов корреляции строится уравнение регрессии в стандартизованном масштабе:
,
где - стандартизированные переменные, для которых среднее значение равно 0; ty=tx=0, а среднее квадратическое отклонение ty=tx=1; вi-стандартизированные коэффициенты регрессии.
К уравнению множественной регрессии в стандартизованном масштабе применим МНК. Стандартизованные коэффициенты регрессии (в-коэффициенты) определяются из следующей системы уравнений:
Связь коэффициентов множественной регрессии bi со стандартизированными коэффициентами вi описывается соотношением:
Параметр определяется как .
Проверка значимости результатов множественной регрессии
Значимость уравнения множественной регрессии в целом оценивается с помощью F-критерия Фишера:
где Dфакт - факторная сумма квадратов на одну степень свободы;
Dост - остаточная сумма квадратов на одну степень свободы;
- коэффициент (индекс) множественной детерминации;
m - число параметров при переменных x (в линейной регрессии совпадает с числом включенных в модель факторов) ;
n - число наблюдений.
Оценка значимости уравнения множественной регрессии осуществляется путем проверки гипотезы: (гипотеза о незначимости уравнения регрессии).
По таблицам распределения Фишера находят критическое значение F-критерия . Для этого задаются уровнем значимости (обычно его берут равным 0, 05) и двумя числами степеней свободы и . Здесь m - число параметров модели.
Сравнивают фактическое значение F-критерия с табличным .
Если , то гипотезу о незначимости уравнения регрессии не отвергают. Если , то выдвинутую гипотезу отвергают и принимают альтернативную гипотезу о статистической значимости уравнения регрессии.
Частный F-критерий оценивает статистическую значимость присутствия каждого факторов в уравнении. Необходимость такой оценки вызвана тем, что не каждый фактор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативно признака. Кроме того, при наличии в модели нескольких факторов они могут вводиться в модель в разной последовательности. Ввиду корреляции между факторами значимость одного и того же фактора может быть разной в зависимости от последовательности его введения в модель.
Частный F-критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на однй степень свободы по регрессионной модели в целом. Предположим, что оцениваем значимость влияния как дополнительно включенного в модель фактора. В общем виде для фактора частный F-критерий определится как:
где- коэффициент множественной детерминации для модели с полным набором факторов;
- тот же показатель, но без включения в модель фактора
n - число наблюдений;
m - число параметров в модели (без свободного члена) или число независимых переменных модели.
По таблицам распределения Фишера находят критическое значение F-критерия . Для этого задаются уровнем значимости (обычно его берут равным 0, 05) и двумя числами степеней свободы и . Здесь m - число параметров модели.
Сравнивают фактическое значение F-критерия с табличным .
Если Fкр меньше табличного, то включение в модель данного фактора x1 после введения в нее фактора x2 нецелесообразно, и наоборот.
Оценка значимости коэффициентов чистой регрессии с помощью t-критерия Стьюдента сводится к вычислению значения:
где bi - коэффициент чистой регрессии при факторе xi;
- средняя квадратичная ошибка коэффициента регрессии bi.
Она может быть определена по следующей формуле:
где - среднее квадратическое отклонение для фактора y;
- среднее квадратическое отклонения для фактора xi;
- коэффициент детерминации для уравнения множественной регрессии;
- коэффициент детерминации для зависимости фактора xi со всеми другими факторами уравнения множественной регрессии;
n-m-1 - число степеней свободы для остаточной суммы квадратов отклонений.
Далее находят табличное значение t-критерия . Для этого задаются уровнем значимости (обычно его берут равным 0, 05) и . Здесь m - число параметров модели.
Сравнивают фактическое значение t-критерия с табличным .
Если фактическое tbi меньше табличного, то коэффициент регрессии bi статистически незначим, и формируется преимущественно под влиянием случайных факторов; и наоборот.
Аналогично оценивается статистическая значимость индекса множественной корреляции:
(k - число независимых переменных модели).
Адекватность регрессионной модели оценим опять же с помощью средней ошибки аппроксимации - среднее отклонение расчетных значений от фактических:
Допустимый предел значений - не более 8-10%.
10. Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.
Если факторные признаки различны по своей сущности и/или имеют различные единицы измерения, то коэффициенты регрессии при разных факторах являются несопоставимыми. Поэтому уравнение регрессии дополняют соизмеримыми показателями тесноты связи фактора с результатом, позволяющими ранжировать факторы. К ним относят: частные коэффициенты эластичности, в-коэффициенты, частные коэффициенты корреляции.
Парные коэффициенты корреляции. Для измерения тесноты связи между двумя из рассматриваемых переменных (без учета их взаимодействия с другими переменными) применяются парные коэффициенты корреляции. Методика расчета таких коэффициентов и их интерпретации аналогичны линейному коэффициенту корреляции в случае однофакторной связи.
где - среднее квадратическое отклонение факторного признака;
- среднее квадратическое отклонение результативного признака.
Коэффициент частной корреляции измеряет тесноту линейной связи между отдельным фактором и результатом при устранении воздействия прочих факторов модели.
Для качественной оценки тесноты связи можно использовать следующую классификацию:
0. 1- 0. 3- слабая связь
0. 3-0. 5 - умеренная связь
0. 5-0. 7- заметная связь
0. 7-0. 9- тесная связь
0. 9-0. 99- весьма тесная
Для расчета частных коэффициентов корреляции могут быть использованы парные коэффициенты корреляции.
Для случая зависимости Y от двух факторов можно вычислить 2 коэффициента частной корреляции:
(2-ой фактор фиксирован) ;
(1-ый фактор фиксирован).
Это коэффициенты частной корреляции 1-ого порядка (порядок определяется числом факторов, влияние которых на результат устраняется).
Частные коэффициенты корреляции, рассчитанные по таким формулам изменяются от -1 до +1. Они используются не только для ранжирования факторов модели по степени влияния на результат, но и также для отсева факторов. При малых значениях нет смысла вводить в уравнение m-ый фактор, т. к. качество уравнения регрессии при его введении возрастет незначительно (т. е. теоретический коэффициент детерминации увеличится незначительно).
Совокупный коэффициент множественной корреляции или индекс множественной корреляции определяет тесноту совместного влияния факторов на результат:
где остаточная дисперсия;
или
Он принимает значения от 0 до 1 (в отличие от парного коэффициента корреляции, который может принимать отрицательные значения, R используется без учета направления связи). Чем плотнее фактические значения располагаются относительно линии регрессии, тем меньше остаточная дисперсия и, следовательно, больше величина . Таким образом, при значении R близком к 1, уравнение регрессии лучше описывает фактические данные и факторы сильнее влияют на результат; при значении R близком к 0 уравнение регрессии плохо описывает фактические данные и факторы оказывают слабое воздействие на результат.
При трех переменных для двух факторного уравнения регрессии данная формула совокупного коэффициента множественной корреляции легко приводится к следующему виду:
Чем R ближе к единице, тем совокупное влияние изучаемых показателей x1 и x2 на результативный фактор y больше (корреляционная связь более интенсивная).
Множественный (совокупный) коэффициент детерминации определим как квадрат множественного коэффициента корреляции. Показывает, какая доля вариации изучаемого показателя объясняется влиянием факторов, включенных в уравнение множественной регрессии. Его значение - в пределах от нуля до единицы. Чем ближе множественный коэффициент детерминации к единице, тем вариация изучаемого показателя в большей мере характеризуется влиянием отобранных факторов.
Связь: Частный коэффициент корреляции в отличие от коэффициента (полного) парной корреляции между явлениями показывает тесноту связи после устранения изменений, обусловленных влиянием третьего явления на оба коррелируемых признака (из значений корреляционных признаков вычитаются линейные оценки в связи с третьим признаком).
Также из приведенных ранее формул частных коэффициентов корреляции видна связь этих показателей с совокупным коэффициентом корреляции. Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент корреляции по формуле:
При полной зависимости результативного признака от исследуемых факторов коэффициент совокупного их влияния равен единице. Из единицы вычитается доля остаточной дисперсии результативного признака , обусловленная последовательно включенными в анализ факторами. В результате подкоренное выражение характеризует совокупное действие всех исследуемых факторов.
Понятие мультиколлениарности, ее значение при отборе факторов
Мультиколлениарность факторов - тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров
- наличие высокой линейной связи между всеми или несколькими факторами.
Причинами возникновения мультиколлинеарности между признаками являются:
Изучаемые факторные признаки, характеризуют одну и ту же сторону явления или процесса. Например, показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия;
Использование в качестве факторных признаков показателей, суммарное значение которых представляет собой постоянную величину;
Факторные признаки, являющиеся составными элементами друг друга;
Факторные признаки, по экономическому смыслу дублирующие друг друга.
Одним из индикаторов определения наличия мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0, 8 (rxi xj) и др.
Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон, и в результате нельзя будет оценить воздействие каждого фактора в отдельности.
Включение в модель мультиколлинеарных факторов нежелательно в силу следующих последствий:
1) оценки параметров становятся ненадежными, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только в величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.
2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;
3) нельзя определить изолированное влияние факторов на результативный показатель.
Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлениарность факторов и ненадежнее результаты множественной регрессии. Чем ближе определитель к 1 - тем ниже мультиколлениарность.
Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.
Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них - исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, снизится несущественно).
Предпосылки метода наименьших квадратов
При оценке параметров уравнения регрессии применяется МНК. При этом делаются определенные предпосылки относительно составляющей , которая представляет собой в уравнении ненаблюдаемую величину.
Исследования остатковпредполагают проверку наличия следующих пяти предпосылок МНК:
1) случайный характер остатков. С этой целью строится график отклонения остатков от теоретических значений признака. Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и применение МНК оправдано. В других случаях необходимо применить либо другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки не будут случайными величинами.
2) нулевая средняя величина остатков, т. е. , не зависящая от хi. Это выполнимо для линейных моделей и моделей, нелинейных относительно включаемых переменных. С этой целью наряду с изложенным графиком зависимости остатков от теоретических значений результативного признака ух строится график зависимости случайных остатков от факторов, включенных в регрессию хi. Если остатки на графике расположены в виде горизонтальной полосы, то они независимы от значений xj. Если же график показывает наличие зависимости и хj то модель неадекватна. Причины неадекватности могут быть разные.
3. Гомоскедастичность - дисперсия каждого отклонения одинакова для всех значений хj. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции.
4. Отсутствие автокорреляции остатков. Значения остатков распределены независимо друг от друга. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии.
5. Остатки подчиняются нормальному распределению.
В тех случаях, когда все пять предпосылок выполняются, оценки, полученные по МНК и методу максимального правдоподобия, совпадают между собой. Если распределение случайных остатков не соответствует некоторым предпосылкам МНК, то следует корректировать модель, изменить ее спецификацию, добавить (исключить) некоторые факторы, преобразовать исходные данные, что в конечном итоге позволяет получить оценки коэффициентов регрессии aj, которые обладают свойством несмещаемости, имеют меньшее значение дисперсии остатков, и в связи с этим более эффективную статистическую проверку значимости параметров регрессии.
Понятие и основные элементы временного ряда
Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени.
Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:
- факторы, формирующие тенденцию ряда;
- факторы, формирующие циклические колебания ряда;
- случайные факторы.
При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы.
Каждый временной ряд складывается из следующих основных компонентов:
1) большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию. Аналитически тенденция выражается некоторой функцией времени, называемой трендом (T).
2) изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года. При наличии больших массивов данных за длительные промежутки времени можно выделить циклические колебания, связанные с общей динамикой конъюнктуры рынка и т. п. Например: значения макроэкономических показателей зависят от того, в какой фазе бизнес-цикла находится экономика. Объем продаж некоторых товаров подвержен сезонным колебаниям (S).
3) некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты (Е).
В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда.
Основная задача эконометрического исследования от дельного временного ряда - выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.
Автокорреляция уровней временного ряда и выявление его структуры.
При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.
Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Коэффициент корреляции имеет вид:
В качестве переменой x рассмотрим ряд в качестве переменной y - ряд Тогда коэффициент автокорреляции первого порядка:
где
Коэффициент автокорреляции первого порядка измеряет зависимость между соседними уровнями ряда t и t-1, т. е. при лаге 1.
Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями уt и yt-2 и определяется по формуле:
где
Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов корреляции использовать правило - максимальный лаг должен быть не больше (n/4).
Отметим два важных свойства коэффициента автокорреляции.
Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной (или близкой к линейной) связи текущего и предыдущего уровней ряда. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.
Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда.
Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага называется коррелограммой.
Анализ автокорреляционной функции и графика можно выявить структуру ряда. Если наиболее высоким оказался коэффициент автокорреляции 1го порядка, то ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент порядка - то содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов не является значимым, то 2 предположения: 1. ряд не содержит тенденции и циклических колебаний, 2. ряд содержит сильную нелинейную тенденцию.
Моделирование тенденций временного ряда (аналитическое выравнивание временного ряда)
Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.
Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции:
линейный тренд:
гипербола:
экспоненциальный тренд:
тренд в форме степенной функции:
парабола второго и более высоких порядков:
Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время t=1, 2,..., n, а в качестве зависимой перемен- 1 ной - фактические уровни временного ряда .
Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни и тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временно м ряде, тем в большей степени будут различаться значения указанных коэффициентов.
Выбор наилучшего уравнения в случае, если ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации R2 и выбора уравнения тренда с максимальным значением скорректированного коэффициента детерминации. Реализация этого метода относительно проста при компьютерной обработке данных.
Моделирование сезонных и циклических колебаний
Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.
1 ПОДХОД. Расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.
Общий вид аддитивной модели: (Т - трендовая компонента, S - сезонная, Е - случайная).
Общий вид мультипликативной модели:
Выбор модели на основе анализа структуры сезонных колебаний (если амплитуда колебаний приблизительно постоянна - аддитивная, если возрастает/уменьшается - мультипликативная).
Построение моделей сводится к расчету значений T, S, E для каждого уровня ряда.
Построение модели:
1. выравнивание исходного ряда методом скользящей средней;
2. расчет значений компоненты S;
3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (T+E) в аддитивной или (T*E) в мультипликативной модели.
4. Аналитическое выравнивание уровней (T+E) или (T*E) и расчет значения Т с использованием полученного уровня тренда.
5. Расчет полученных по модели значений (T+S) или (T*S).
6. Расчет абсолютных и/или относительных ошибок.
Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок Е для анализа взаимосвязи исходного ряда и др. временных рядов.
2 ПОДХОД. Построение модели регрессии с включением фактора времени и фиктивных переменных. Количество фиктивных переменных в такой модели должно быть на единицу меньше числа моментов (периодов) времени внутри одного цикла колебаний. Например, при моделировании поквартальных данных модель должна включать четыре независимые переменные - фактор времени и три фиктивные переменные. Каждая фиктивная переменная отражает сезонную (циклическую) компоненту временного ряда для какого-либо одного периода. Она равна единице (1) для данного периода и нулю (0) для всех остальных. Недостаток модели с фиктивными переменными - наличие большого количества переменных.
16. Виды трендовой компоненты и проверка гипотезы о существовании тенденции.
Тенденцией развития, или трендом, называется сформировавшееся направление развития явления во времени под воздействием постоянно действующих факторов.
В социально - экономических рядах динамики можно наблюдать тенденцию трех видов:
- среднего уровня;
- дисперсии;
- автокорреляции.
Тенденция среднего уровня - аналитически выражается с помощью математической функции, вокруг которой варьируют фактические уровни исследуемого явления. В данном случае значения тренда в отдельные моменты времени будут являться математическими ожиданиями ряда динамики, т. е. фактические значения врем. ряда колеблются вокруг некоего тренда, являющегося функцией времени. Часто тенденцию среднего уровня называют детерминированной (неслучайной) составляющей ряда динамики.
Тенденция дисперсии имеет место, если закономерным образом изменяются отклонения фактических значений ряда от вычисленных по уравнению, описывающему тренд. При этом под трендом понимается некая кривая или прямая линия, которая является функцией от времени и описывает характер изменения уровней временного ряда.
Тенденция автокорреляции прослеживается, если между уровнями временного ряда есть связь в развитии (графически это изменение не прослеживается).
В некоторых случаях судить о наличии тенденции в временном ряду можно на основе его визуального анализа, когда чётко видно, что при переходе от одного момента времени к другому уровни ряда возрастают или убывают. Однако в других случаях подобный визуальный анализ данных не позволяет обнаружить тенденцию к росту или падению значений показателя: они могут, как хаотично возрастать, так и убывать.
Поэтому начальным этапом выделения и анализа тренда является проверка гипотезы о существовании тренда. Существует около десятка критериев проверки наличия тренда. Рассмотрим некоторые из них.
А) Метод проверки существенности разности средних.
Ряд динамики разбивается на две равные или почти равные части. Проверяется гипотеза о существовании разности средних: Проверка гипотезы осуществляется на основе кумулятивного t-критерия Стьюдента. tфакт >tтабл > гипотеза Н0 о равенстве средних отвергается, расхождение между средними существенно значимо и не случайно, то в ряде динамики существует тенденция средней и, следовательно в исходном временном ряду тенденция имеется.
Б) Метод Фостера - Стюарта.
Кроме определения наличия тенденции явления этот метод позволяет выявить основную тенденцию дисперсии уровней ряда динамики. В основе реализации метода лежит принцип сравнения каждого следующего значения исходного рядя динамики со значением всех предыдущих уровней. Рассчитываются две величины: Ui и Li.
1. Сравнивается каждый уровень ряда со всеми предыдущими, при этом
если уt >yt-1, то Ut=1; Lt=0; при уt <yt-1, то Ut=0; Lt=1;
2. На основе этих величин определяется их сумма St и разность Dt. С помощью величины S проверяется гипотеза об отсутствии тенденции в дисперсиях, а D - об отсутствии тенденции средней. Вычисляются значения величин S и d:
S=?Si, где Si =Ui + Li d=?di, где di =Ui - Li
3. Проверяется с использованием t-критерия Стьюдента гипотеза о том, можно ли считать случайными разности S-µ и d-0: где - средние квадратические (стандартные) ошибки величин d и S, соответственно, а - математическое ожидание .
4. Сравниваются расчетные значения td и ts c табличным значением, соответствующим выбранному уровню значимости (обычно - 0, 05) и числу степеней свободы (n - количество уровней ряда).
Если , то гипотеза об отсутствии тенденции дисперсии отклоняется с вероятностью , т. е. тенденция дисперсии есть. Если , то это означает, что тенденция среднего уровня есть, и гипотеза об отсутствии данной тенденции отклоняется с вероятностью .
17. Моделирование тенденции временного ряда при наличии структурных изменений.
От сезонных и циклических колебаний следует отличать единовременные изменения характера тенденции временного ряда, вызванные структурными изменениями в экономике или иными факторами. В этом случае, начиная с некоторого момента времени t, происходит изменение характера динамики изучаемого показателя, что приводит к изменению параметров тренда, описывающего эту динамику.
Момент t сопровождается значительными изменениями ряда факторов, оказывающих сильное воздействие на изучаемый показатель . Чаще всего эти изменения вызваны изменениями в общеэкономической ситуации или событиями глобального характера, приведшими к изменению структуры экономики. Если исследуемый временной ряд включает в себя соответствующий момент времени, то одной из задач его изучения становится выяснение вопроса о том, значительно ли повлияли общие структурные изменения на характер этой тенденции.
...Подобные документы
Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.
курсовая работа [3,4 M], добавлен 10.02.2014Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.
контрольная работа [176,4 K], добавлен 17.10.2014Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Задачи эконометрики, ее математический аппарат. Взаимосвязь между экономическими переменными, примеры оценки линейности и аддитивности. Основные понятия и проблемы эконометрического моделирования. Определение коэффициентов линейной парной регрессии.
контрольная работа [79,3 K], добавлен 28.07.2013Понятие о взаимосвязях в эконометрике. Сопоставление параллельных рядов. Корреляция альтернативных признаков. Оценка надежности параметров парной линейной регрессии и корреляции. Коэффициенты эластичности в парных моделях. Парная нелинейная корреляция.
курсовая работа [1,9 M], добавлен 29.06.2015Понятие взаимосвязи между случайными величинами. Ковариация и коэффициент корреляции. Модель парной линейной регрессии. Метод наименьших квадратов, теорема Гаусса-Маркова. Сравнение регрессионных моделей. Коррекция гетероскедастичности, логарифмирование.
курс лекций [485,1 K], добавлен 02.06.2011Методика расчета линейной регрессии и корреляции, оценка их значимости. Порядок построения нелинейных регрессионных моделей в MS Exсel. Оценка надежности результатов множественной регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.
контрольная работа [3,6 M], добавлен 29.05.2010Экономическая интерпретация коэффициентов множественной регрессии. Доверительные интервалы для параметров множественной регрессии. Скорректированный коэффициент детерминации. Средние коэффициенты эластичности. Прогноз фундаментального исследования.
контрольная работа [866,7 K], добавлен 07.02.2009Оценка распределения переменной Х1. Моделирование взаимосвязи между переменными У и Х1 с помощью линейной функции и методом множественной линейной регрессии. Сравнение качества построенных моделей. Составление точечного прогноза по заданным значениям.
курсовая работа [418,3 K], добавлен 24.06.2015Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.
курсовая работа [233,1 K], добавлен 21.03.2015Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.
контрольная работа [155,8 K], добавлен 11.12.2010Понятие параметрической идентификации парной линейной эконометрической модели. Критерий Фишера, параметрическая идентификация парной нелинейной регрессии. Прогнозирование спроса на продукцию предприятия. Использование в MS Excel функции "Тенденция".
контрольная работа [73,3 K], добавлен 24.03.2010Выборка и генеральная совокупность. Модель множественной регрессии. Нестационарные временные ряды. Параметры линейного уравнения парной регрессии. Нахождение медианы, ранжирование временного ряда. Гипотеза о неизменности среднего значения временного ряда.
задача [62,0 K], добавлен 08.08.2010Оценка адекватности эконометрических моделей статистическим данным. Построение доверительных зон регрессий спроса и предложения. Вычисление коэффициента регрессии. Построение производственной мультипликативной регрессии, оценка ее главных параметров.
контрольная работа [1,2 M], добавлен 25.04.2010Функциональные преобразования переменных в линейной регрессии. Формулы расчета коэффициентов эластичности. Характеристика экзогенных и эндогенных переменных. Построение одно- и двухфакторного уравнений. Прогнозирование значения результативного признака.
курсовая работа [714,1 K], добавлен 27.01.2016Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.
курсовая работа [243,1 K], добавлен 17.01.2016Исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР) методом наименьших квадратов. Исследование зависимости производительности труда от уровня механизации. Анализ развития товарооборота по данным о розничном товарообороте региона.
контрольная работа [23,8 K], добавлен 08.12.2008Расчет параметров A и B уравнения линейной регрессии. Оценка полученной точности аппроксимации. Построение однофакторной регрессии. Дисперсия математического ожидания прогнозируемой величины. Тестирование ошибок уравнения множественной регрессии.
контрольная работа [63,3 K], добавлен 19.04.2013Построение регрессионных моделей. Смысл регрессионного анализа. Выборочная дисперсия. Характеристики генеральной совокупности. Проверка статистической значимости уравнения регрессии. Оценка коэффициентов уравнения регрессии. Дисперсии случайных остатков.
реферат [57,4 K], добавлен 25.01.2009