Методы построения экономических моделей
Характеристика особенностей линейного парного регрессионного анализа. Методические указания по решению задач по расчету коэффициента линейной парной корреляции и построения уравнения линейной парной регрессии. Анализ множественного регрессионного анализа.
Рубрика | Экономико-математическое моделирование |
Вид | методичка |
Язык | русский |
Дата добавления | 16.08.2014 |
Размер файла | 149,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
КАЛИНИНГРАДСКИЙ ФИЛИАЛ
АККРЕДИТОВАННОГО ОБРАЗОВАТЕЛЬНОГО ЧАСТНОГО УЧРЕЖДЕНИЯ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
МОСКОВСКИЙ ФИНАНСОВО-ЮРИДИЧЕСКИЙ
УНИВЕРСИТЕТ МФЮА
«Эконометрика»
Методические указания и контрольные задания
для студентов заочного отделения
Для студентов экономических специальностей
По направлению подготовки
(квалификация (степень) "Бакалавр")
Малаховский Н.В.
Калининград
2012
Эконометрика: Методические указания и контрольные задания для студентов заочной формы обучения / Авт.- сост. к.ф.-м.н. Малаховский Н.В. - г. Калининград: МФЮА, 2012. - 33 с.
Рассмотрена и одобрена Кафедрой общих гуманитарных и естественно-научных дисциплин, протокол от «___» _ноября_ 2012 г. № 3
ОБЩИЕ УКАЗАНИЯ
Контрольная работа по дисциплине «Эконометрика» выполняется для приобретения студентами опыта построения эконометрических моделей, принятия решений спецификации и идентификации моделей, выбора методов оценки параметров модели, интерпретации результатов, получения прогнозных оценок.
При выполнении контрольной работы следует обратить внимание на следующие требования:
Задания к контрольной работе составлены в 100 вариантах. Каждый студент выполняет один вариант. Номер его варианта соответствует последним двум цифрам номера его зачетной книжки. Замена задач не допускается. Номер варианта указывается в самом начале работы.
Работы можно выполнять с помощью вычислительной техники и специального программного обеспечения (например, электронных таблиц MS Excel).
3. Нельзя ограничиваться приведением только готовых ответов. Расчеты должны быть представлены в развернутом виде, применяя, где это необходимо, табличные оформления исходной информации и расчетов, со всеми формулами, пояснениями и выводами, соблюдая достаточную точность вычислений. В пояснениях и выводах показать, что именно и как характеризует исчисленный показатель.
4. Работа должна быть написана разборчиво, без помарок. Работа должна содержать список использованной литературы, быть подписана студентом.
5. Если работа не принимается к зачету, то она вместе с рецензией возвращается студенту. Студент обязан учесть все замечания и внести их в текст работы или выполнить ее заново; при этом рецензия преподавателя должна быть приложена к работе. Несамостоятельно выполненные работы рассматриваются как неудовлетворительные.
ВВЕДЕНИЕ
Эконометрика - наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов.
Эконометрика связывает между собой экономическую теорию и экономическую статистику и с помощью математико-статистических методов придает конкретное количественное выражение общим закономерностям, устанавливаемым экономической теорией.
Предметом эконометрики являются массовые экономические явления.
Главным инструментом эконометрики служит эконометрическая модель, которая представляет собой либо одно уравнение; либо систему уравнений.
Эконометрика изучает массовые явления в экономике через статистические совокупности, а последние через признаки, которыми характеризуются единицы этой совокупности.
Признаки могут находиться в связи между собой. Взаимосвязанные признаки могут выступать в одной из ролей:
- роли признака-результата (аналог зависимой переменной (y) в математике);
- роли признака-фактора, значения которого определяют значение признака-результата (аналог независимой переменной (x) в математике).
Связи классифицируют по степени тесноты, направлению, форме, числу факторов.
По степени тесноты связи делят на статистические (стохастические) и функциональные.
Статистическая (стохастическая) связь - это такая связь между признаками, при которой для каждого значения признака-фактора х признак-результат (y) может в определенных пределах принимать любые значения с некоторыми вероятностями; при этом его статистические (массовые) характеристики (например, среднее значение) изменяются по определенному закону.
Статистическая связь обусловлена:
1) тем, что на результативный признак оказывают влияние не только фактор (факторы), учтенные в модели, но и неучтенные или неконтролируемые факторы;
2) неизбежностью ошибок измерения значений признаков.
Модель статистической связи может быть представлена в общем виде уравнениями:
yi=f(x1i,ui) (i=1,2,…,n) - для модели с одним фактором,
yi=f(x1i,...,xmi,ui), (i=1,2,…,n) - для модели с множеством факторов,
где yi - фактическое значение результативного признака для i-ой единицы статистической совокупности;
f(x1i,...,xmi) - часть результативного признака, сформировавшаяся под воздействием учтенных известных факторных признаков (xji, j=1;m);
ui - часть результативного признака, сформировавшаяся под воздействием неконтролируемых или неучтенных факторов, а также ошибок измерения признаков.
Противоположной статистической связи является функциональная.
Функциональной называется такая связь, когда каждому возможному значению признака-фактора (х) соответствует одно или несколько строго определенных значений результативного признака (y). Определение функциональной связи может быть легко обобщено для случая многих признаков х1, х2,…,хm. модель функциональной связи в общем виде можно представить уравнением:
yi=f(x1i,...,xmi).
По направлению изменений результативного и факторного признаков связи делят на прямые и обратные.
По форме связи (виду функции f) связи делят на прямолинейные (линейные) и криволинейные (нелинейные).
По количеству факторов в модели связи подразделяют на однофакторные (парные) и многофакторные.
ЛИНЕЙНЫЙ ПАРНЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ
Одним из методов изучения стохастических связей между признаками является регрессионный анализ.
Регрессионный анализ представляет собой вывод уравнения регрессии, с помощью которого находится средняя величина случайной переменной (признака-результата), если величина другой (или других) переменных (признаков-факторов) известна. Он включает следующие этапы:
1) выбор формы связи (вида аналитического уравнения регрессии);
2) оценку параметров уравнения;
3) оценку качества аналитического уравнения регрессии.
Наиболее часто для описания статистической связи признаков используется линейная форма. Внимание к линейной связи объясняется четкой экономической интерпретацией ее параметров, ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму.
В случае линейной парной связи уравнение регрессии примет вид: . Параметры данного уравнения а и b оцениваются по данным статистического наблюдения x и y. Результатом такой оценки является уравнение: , где , - оценки параметров a и b, - значение результативного признака (переменной), полученное по уравнению регрессии (расчетное значение).
Наиболее часто для оценки параметров используют метод наименьших квадратов (МНК).
Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (u) и независимой переменной (x).
Задача оценивания параметров линейного парного уравнения методом наименьших квадратов состоит в следующем:
получить такие оценки параметров , , при которых сумма квадратов отклонений фактических значений результативного признака - yi от расчетных значений - минимальна.
Формально критерий МНК можно записать так:
.
Проиллюстрируем суть данного метода графически. Для этого построим точечный график по данным наблюдений (xi,yi, i=1;n) в прямоугольной системе координат (такой точечный график называют корреляционным полем). Попытаемся подобрать прямую линию, которая ближе всего расположена к точкам корреляционного поля. Согласно методу наименьших квадратов линия выбирается так, чтобы сумма квадратов расстояний по вертикали между точками корреляционного поля и этой линией была бы минимальной.
Математическая запись данной задачи:
.
Значения yi и xi i=1;n нам известны, это данные наблюдений. В функции S они представляют собой константы. Переменными в данной функции являются искомые оценки параметров - , . Чтобы найти минимум функции 2-ух переменных необходимо вычислить частные производные данной функции по каждому из параметров и приравнять их нулю, т.е.
.
В результате получим систему из 2-ух нормальных линейных уравнений:
Решая данную систему, найдем искомые оценки параметров:
Правильность расчета параметров уравнения регрессии может быть проверена сравнением сумм (возможно некоторое расхождение из-за округления расчетов).
Для расчета оценок параметров , можно построить таблицу 1.
Знак коэффициента регрессии b указывает направление связи (если b>0, связь прямая, если b<0, то связь обратная). Величина b показывает на сколько единиц изменится в среднем признак-результат -y при изменении признака-фактора - х на 1 единицу своего измерения.
Формально значение параметра а - среднее значение y при х равном нулю. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка параметра а не имеет смысла.
Оценка тесноты связи между признаками осуществляется с помощью коэффициента линейной парной корреляции - rx,y. Он может быть рассчитан по формуле:
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:
.
Область допустимых значений линейного коэффициента парной корреляции от -1 до +1. Знак коэффициента корреляции указывает направление связи. Если rx,y>0, то связь прямая; если rx,y<0, то связь обратная.
Если данный коэффициент по модулю близок к единице, то связь между признаками может быть интерпретирована как довольно тесная линейная. Если его модуль равен единице rx,y =1, то связь между признаками функциональная линейная. Если признаки х и y линейно независимы, то rx,y близок к 0.
Для расчета rx,y можно использовать также таблицу 1.
Таблица 1
N наблюдения |
xi |
yi |
xi •yi |
|||
1 |
x1 |
y1 |
x1·y1 |
|||
2 |
x2 |
y2 |
x2·y2 |
|||
... |
||||||
n |
xn |
yn |
xn·yn |
|||
Сумма по столбцу |
x |
y |
x·y |
|||
Среднее значение |
Для оценки качества полученного уравнения регрессии рассчитывают теоретический коэффициент детерминации - R2yx:
,
где 2 - объясненная уравнением регрессии дисперсия y;
2- остаточная (необъясненная уравнением регрессии) дисперсия y;
2y - общая (полная) дисперсия y.
Коэффициент детерминации характеризует долю вариации (дисперсии) результативного признака y, объясняемую регрессией (а, следовательно, и фактором х), в общей вариации (дисперсии) y. Коэффициент детерминации R2yx принимает значения от 0 до 1. Соответственно величина 1-R2yx характеризует долю дисперсии y, вызванную влиянием прочих неучтенных в модели факторов и ошибками спецификации.
При парной линейной регрессии R2yx=r2yx.
Оценка статистической значимости параметров уравнения регрессии.
С помощью МНК мы получили лишь оценки параметров уравнения регрессии, которые характерны для конкретного статистического наблюдения (конкретного набора значений x и y). Если оценку параметров произвести по данным другого статистического наблюдения (другому набору значений x и y), то получим другие численные значения , . Мы предполагаем, что все эти наборы значений x и y извлечены из одной и той же генеральной совокупности. Чтобы проверить, значимы ли параметры, т.е. значимо ли они отличаются от нуля для генеральной совокупности используют статистические методы проверки гипотез.
В качестве основной (нулевой) гипотезы выдвигают гипотезу о незначимом отличии от нуля параметра или статистической характеристики в генеральной совокупности. Наряду с основной (проверяемой) гипотезой выдвигают альтернативную (конкурирующую) гипотезу о неравенстве нулю параметра или статистической характеристики в генеральной совокупности. В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t-критерий Стьюдента.
Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике). Табличное значение определяется в зависимости от уровня значимости () и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2), n-число наблюдений.
Если фактическое значение t-критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью (1-) параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля.
Если фактическое значение t-критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля при уровне значимости .
Для параметра b критерий проверки имеет вид:
,
где - оценка коэффициента регрессии, полученная по наблюдаемым данным;
- стандартная ошибка коэффициента регрессии.
Для линейного парного уравнения регрессии стандартная ошибка коэффициента вычисляется по формуле:
.
Числитель в этой формуле может быть рассчитан через коэффициент детерминации и общую дисперсию признака-результата:
.
Для параметра a критерий проверки гипотезы о незначимом отличии его от нуля имеет вид:
,
где - оценка параметра регрессии, полученная по наблюдаемым данным;
- стандартная ошибка параметра a.
Для линейного парного уравнения регрессии:
.
Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции в генеральной совокупности используют следующий критерий:
,
где ryx - оценка коэффициента корреляции, полученная по наблюдаемым данным; r - стандартная ошибка коэффициента корреляции ryx.
Для линейного парного уравнения регрессии:
.
В парной линейной регрессии между наблюдаемыми значениями критериев существует взаимосвязь: t (b=0)=t(r=0).
Прогноз ожидаемого значения результативного признака y по линейному парному уравнению регрессии.
Пусть требуется оценить значение признака-результата для заданного значения признака-фактора (хр). Прогнозируемое значение признака-результата c доверительной вероятностью равной (1-) принадлежит интервалу прогноза:
(-t·p; +t·p),
где - точечный прогноз;
t - коэффициент доверия, определяемый по таблицам распределения Стьюдента в зависимости от уровня значимости и числа степеней свободы (n-2);
p- средняя ошибка прогноза.
Точечный прогноз рассчитывается по линейному уравнению регрессии, как:
.
Средняя ошибка прогноза определяется по формуле:
.
Задание № 1
На основе данных, приведенных в Приложении 1 и соответствующих Вашему варианту (таблица 2), требуется:
Рассчитать коэффициент линейной парной корреляции и построить уравнение линейной парной регрессии одного признака от другого. Один из признаков, соответствующих Вашему варианту, будет играть роль факторного (х), другой - результативного (y). Причинно-следственные связи между признаками установить самим на основе экономического анализа. Пояснить смысл параметров уравнения.
Определить теоретический коэффициент детерминации и остаточную (необъясненную уравнением регрессии) дисперсию. Сделать вывод.
Оценить статистическую значимость уравнения регрессии в целом на пятипроцентном уровне с помощью F-критерия Фишера. Сделать вывод.
Выполнить прогноз ожидаемого значения признака-результата y при прогнозном значении признака-фактора х, составляющим 105% от среднего уровня х. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал с вероятностью 0,95.
Таблица 2
Вариант |
Номер начального наблюдения |
Номер конечного наблюдения |
Номер признаков из прил. 1 |
Вариант |
Номер начального наблюдения |
Номер конечного наблюдения |
Номер признаков из прил. 1 |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
01 |
1 |
50 |
1,2 |
51 |
26 |
75 |
1,3 |
|
02 |
1 |
50 |
3,4 |
52 |
26 |
75 |
4,5 |
|
03 |
2 |
51 |
1,3 |
53 |
27 |
76 |
1,4 |
|
04 |
2 |
51 |
4,5 |
54 |
27 |
76 |
2,5 |
|
05 |
3 |
52 |
1,4 |
55 |
28 |
77 |
1,5 |
|
06 |
3 |
52 |
2,5 |
56 |
28 |
77 |
2,3 |
|
07 |
4 |
53 |
1,5 |
57 |
29 |
78 |
1,2 |
|
08 |
4 |
53 |
2,3 |
58 |
29 |
78 |
3,4 |
|
09 |
5 |
54 |
1,2 |
59 |
30 |
79 |
1,3 |
|
10 |
5 |
54 |
3,4 |
60 |
30 |
79 |
4,5 |
|
11 |
6 |
55 |
1,3 |
61 |
31 |
80 |
1,4 |
|
12 |
6 |
55 |
4,5 |
62 |
31 |
80 |
2,5 |
|
13 |
7 |
56 |
1,4 |
63 |
32 |
81 |
1,5 |
|
14 |
7 |
56 |
2,5 |
64 |
32 |
81 |
2,3 |
|
15 |
8 |
57 |
1,5 |
65 |
33 |
82 |
1,2 |
|
16 |
8 |
57 |
2,3 |
66 |
33 |
82 |
3,4 |
|
17 |
9 |
58 |
1,2 |
67 |
34 |
83 |
1,3 |
|
18 |
9 |
58 |
3,4 |
68 |
34 |
83 |
4,5 |
|
19 |
10 |
59 |
1,3 |
69 |
35 |
84 |
1,4 |
|
20 |
10 |
59 |
4,5 |
70 |
35 |
84 |
2,5 |
|
21 |
11 |
60 |
1,4 |
71 |
36 |
85 |
1,5 |
|
22 |
11 |
60 |
2,5 |
72 |
36 |
85 |
2,3 |
|
23 |
12 |
61 |
1,5 |
73 |
37 |
86 |
1,2 |
|
24 |
12 |
61 |
2,3 |
74 |
37 |
86 |
3,4 |
|
25 |
13 |
62 |
1,2 |
75 |
38 |
87 |
1,3 |
|
26 |
13 |
62 |
3,4 |
76 |
38 |
87 |
4,5 |
|
27 |
14 |
63 |
1,3 |
77 |
39 |
88 |
1,4 |
|
28 |
14 |
63 |
4,5 |
78 |
39 |
88 |
2,5 |
|
29 |
15 |
64 |
1,4 |
79 |
40 |
89 |
1,5 |
|
30 |
15 |
64 |
2,5 |
80 |
40 |
89 |
2,3 |
|
31 |
16 |
65 |
1,5 |
81 |
41 |
90 |
1,2 |
|
32 |
16 |
65 |
2,3 |
82 |
41 |
90 |
3,4 |
|
33 |
17 |
66 |
1,2 |
83 |
42 |
91 |
1,3 |
|
34 |
17 |
66 |
3,4 |
84 |
42 |
91 |
4,5 |
|
35 |
18 |
67 |
1,3 |
85 |
43 |
92 |
1,4 |
|
36 |
18 |
67 |
4,5 |
86 |
43 |
92 |
2,5 |
|
37 |
19 |
68 |
1,4 |
87 |
44 |
93 |
1,5 |
|
38 |
19 |
68 |
2,5 |
88 |
44 |
93 |
2,3 |
|
39 |
20 |
69 |
1,5 |
89 |
45 |
94 |
1,2 |
|
40 |
20 |
69 |
2,3 |
90 |
45 |
94 |
3,4 |
|
41 |
21 |
70 |
1,2 |
91 |
46 |
95 |
1,3 |
|
42 |
21 |
70 |
3,4 |
92 |
46 |
95 |
4,5 |
|
43 |
22 |
71 |
1,3 |
93 |
47 |
96 |
1,4 |
|
44 |
22 |
71 |
4,5 |
94 |
47 |
96 |
2,5 |
|
45 |
23 |
72 |
1,4 |
95 |
48 |
97 |
1,5 |
|
46 |
23 |
72 |
2,5 |
96 |
48 |
97 |
2,3 |
|
47 |
24 |
73 |
1,5 |
97 |
49 |
98 |
1,2 |
|
48 |
24 |
73 |
2,3 |
98 |
49 |
98 |
3,4 |
|
49 |
25 |
74 |
1,2 |
99 |
50 |
99 |
1,3 |
|
50 |
25 |
74 |
3,4 |
100 |
50 |
99 |
4,5 |
МНОЖЕСТВЕННЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ
Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели, который в свою очередь включает 2 круга вопросов: отбор факторов и выбор уравнения регрессии.
Отбор факторов обычно осуществляется в два этапа:
1) теоретический анализ взаимосвязи результата и круга факторов, которые оказывают на него существенное влияние;
2) количественная оценка взаимосвязи факторов с результатом. При линейной форме связи между признаками данный этап сводится к анализу корреляционной матрицы (матрицы парных линейных коэффициентов корреляции):
ry,y ry,x1 ryx2 .... ry,xm
rx1,y rx1,x2 rx2x2 .... rx2,xm
rxm,y rxm,x1 rxm,x2 .... rxm,xm
где ry,xj - линейный парный коэффициент корреляции, измеряющий тесноту связи между признаками y и хj j=1;m, m -число факторов.
rxj,xk - линейный парный коэффициент корреляции, измеряющий тесноту связи между признаками хj и хk j,k=1;m.
Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:
1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов).
2. Каждый фактор должен быть достаточно тесно связан с результатом (т.е. коэффициент парной линейной корреляции между фактором и результатом должен быть существенным).
3. Факторы не должны быть сильно коррелированы друг с другом, тем более находиться в строгой функциональной связи (т.е. они не должны быть интеркоррелированы). Разновидностью интеркоррелированности факторов является мультиколлинеарность - тесная линейная связь между факторами.
Мультиколлинеарность может привести к нежелательным последствиям:
1) оценки параметров становятся ненадежными. Они обнаруживают большие стандартные ошибки. С изменением объема наблюдений оценки меняются (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.
2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;
3) становится невозможным определить изолированное влияние факторов на результативный показатель.
Мультиколлинеарность имеет место, если определитель матрицы межфакторной корреляции близок к нулю:
.
Если же определитель матрицы межфакторной корреляции близок к единице, то мультколлинеарности нет.Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них - исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, теоретический коэффициент детерминации -R2y(x1...xm) снизится несущественно).
Определение факторов, ответственных за мультиколлинеарность, может быть основано на анализе матрицы межфакторной корреляции. При этом определяют пару признаков-факторов, которые сильнее всего связаны между собой (коэффициент линейной парной корреляции максимален по модулю). Из этой пары в наибольшей степени ответственным за мультиколлинеарность будет тот признак, который теснее связан с другими факторами модели (имеет более высокие по модулю значения коэффициентов парной линейной корреляции).
Еще один способ определения факторов, ответственных за мультиколлинеарность основан на вычислении коэффициентов множественной детерминации (R2xj(x1,...,xj-1,xj+1,...,xm)), показывающего зависимость фактора xj от других факторов модели x1,...,xj-1, xj+1,...,xm. Чем ближе значение коэффициента множественной детерминации к единице, тем больше ответственность за мультиколлинеарность фактора, выступающего в роли зависимой переменной. Сравнивая между собой коэффициенты множественной детерминации для различных факторов можно проранжировать переменные по степени ответственности за мультиколлинеарность.
При выборе формы уравнения множественной регрессии предпочтение отдается линейной функции:
yi=a+b1·x1i+ b2·x2i+...+ bm·xmi+ui
в виду четкой интерпретации параметров.
Данное уравнение регрессии называют уравнением регрессии в естественном (натуральном) масштабе. Коэффициент регрессии bj при факторе хj называют условно-чистым коэффициентом регрессии. Он измеряет среднее по совокупности отклонение признака-результата от его средней величины при отклонении признака-фактора хj на единицу, при условии, что все прочие факторы модели не изменяются (зафиксированы на своих средних уровнях).
Если не делать предположения о значениях прочих факторов, входящих в модель, то это означало бы, что каждый из них при изменении хj также изменялся бы (так как факторы связаны между собой), и своими изменениями оказывали бы влияние на признак-результат.
Расчет параметров уравнения линейной множественной регрессии
Параметры уравнения множественной регрессии можно оценить методом наименьших квадратов, составив и решив систему нормальных линейных уравнений.
Кроме того, для линейной множественной регрессии существует другой способ реализации МНК при оценке параметров - через -коэффициенты (через параметры уравнения регрессии в стандартных масштабах).
Модель регрессии в стандартном масштабе предполагает, что все значения исследуемых признаков переводятся в стандарты (стандартизованные значения) по формулам:
, j=1;m,
где хji - значение переменной хji в i-ом наблюдении.
.
Таким образом, начало отсчета каждой стандартизованной переменной совмещается с ее средним значением, а в качестве единицы изменения принимается ее среднее квадратическое отклонение . Если связь между переменными в естественном масштабе линейная, то изменение начала отсчета и единицы измерения этого свойства не нарушат, так что и стандартизованные переменные будут связаны линейным соотношением:
.
Для оценки -коэффциентов применим МНК. При этом система нормальных уравнений будет иметь вид:
rx1y=1+rx1x2•2+…+ rx1xm•m
rx2y= rx2x1•1+2+…+ rx2xm•m
…
rxmy= rxmx1•1+rxmx2•2+…+m
Найденные из данной системы -коэффициенты позволяют определить значения коэффициентов в регрессии в естественном масштабе по формулам:
, j=1;m; .
Показатели тесноты связи факторов с результатом.
Если факторные признаки различны по своей сущности и (или) имеют различные единицы измерения, то коэффициенты регрессии bj при разных факторах являются несопоставимыми. Поэтому уравнение регрессии дополняют соизмеримыми показателями тесноты связи фактора с результатом, позволяющими ранжировать факторы по силе влияния на результат. К таким показателям тесноты связи относят: частные коэффициенты эластичности, -коэффициенты, частные коэффициенты корреляции.
Частные коэффициенты эластичности Эj рассчитываются по формуле:
.
Частный коэффициент эластичности показывают, на сколько процентов в среднем изменяется признак-результат y с изменением признака-фактора хj на один процент от своего среднего уровня при фиксированном положении других факторов модели. В случае линейной зависимости Эj рассчитываются по формуле:
,
где - оценка коэффициента регрессии при j-ом факторе.
Стандартизированные частные коэффициенты регрессии - -коэффициенты (j) показывают, на какую часть своего среднего квадратического отклонения у изменится признак-результат y с изменением соответствующего фактора хj на величину своего среднего квадратического отклонения (хj) при неизменном влиянии прочих факторов (входящих в уравнение).
По коэффициентам эластичности и -коэффициентам могут быть сделаны противоположные выводы. Причины этого: а) вариация одного фактора очень велика; б) разнонаправленное воздействие факторов на результат.
Коэффициент j может также интерпретироваться как показатель прямого (непосредственного) влияния j-ого фактора (xj) на результат (y). Во множественной регрессии j-ый фактор оказывает не только прямое, но и косвенное (опосредованное) влияние на результат (т.е. влияние через другие факторы модели). Косвенное влияние измеряется величиной:
,
где m- число факторов в модели. Полное влияние j-ого фактора на результат равное сумме прямого и косвенного влияний измеряет коэффициент линейной парной корреляции данного фактора и результата - rxj,y.
Коэффициент частной корреляции измеряет «чистое» влияние фактора на результат при устранении воздействия прочих факторов модели.
Для расчета частных коэффициентов корреляции могут быть использованы парные коэффициенты корреляции.
Для случая зависимости y от двух факторов можно вычислить 2 коэффициента частной корреляции:
,
(фактор х2 фиксирован).
(фактор х1 фиксирован).
Это коэффициенты частной корреляции 1-ого порядка (порядок определяется числом факторов, влияние которых устраняется).
Частные коэффициенты корреляции, рассчитанные по таким формулам изменяются от -1 до +1. Они используются не только для ранжирования факторов модели по степени влияния на результат, но и также для отсева факторов. При малых значениях ryxm/x1,x2…xm-1 нет смысла вводить в уравнение m-ый фактор, т.к. его чистое влияние на результат несущественно.
Коэффициенты множественной детерминации и корреляции характеризуют совместное влияние всех факторов на результат.
По аналогии с парной регрессией можно определить долю вариации результата, объясненной вариацией включенных в модель факторов (2), в его общей вариации (2y). Ее количественная характеристика - теоретический множественный коэффициент детерминации (R2y(x1,...,xm)). Для линейного уравнения регрессии данный показатель может быть рассчитан через -коэффициенты, как:
.
- коэффициент множественной корреляции. Он принимает значения от 0 до 1 (в отличии от парного коэффициента корреляции, который может принимать отрицательные значения). Поэтому R не может быть использован для интерпретации направления связи. Чем плотнее фактические значения yi располагаются относительно линии регрессии, тем меньше остаточная дисперсия и, следовательно, больше величина Ry(x1,...,xm). Таким образом, при значении R близком к 1, уравнение регрессии лучше описывает фактические данные и факторы сильнее влияют на результат. При значении R близком к 0 уравнение регрессии плохо описывает фактические данные и факторы оказывают слабое воздействие на результат.
Оценка значимости полученного уравнения множественной регрессии.
Оценка значимости уравнения множественной регрессии осуществляется путем проверки гипотезы о равенстве нулю коэффициент детерминации рассчитанного по данным генеральной совокупности: или b1= b2=…=bm=0 (гипотеза о незначимости уравнения регрессии, рассчитанного по данным генеральной совокупности).
Для ее проверки используют F-критерий Фишера.
При этом вычисляют фактическое (наблюдаемое) значение F-критерия, через коэффициент детерминации R2y(x1,...,xm), рассчитанный по данным конкретного наблюдения:
,
где n-число наблюдений; h - число оцениваемых параметров (в случае двухфакторной линейной регрессии h=3).
По таблицам распределения Фишера-Снедоккора находят критическое значение F-критерия (Fкр). Для этого задаются уровнем значимости (обычно его берут равным 0,05) и двумя числами степеней свободы k1=h-1 и k2=n-h.
Сравнивают фактическое значение F-критерия (Fнабл) с табличным Fкр(;k1;k2). Если Fнабл<Fкр(;k1;k2), то гипотезу о незначимости уравнения регрессии не отвергают. Если Fнабл>Fкр(;k1;k2), то выдвинутую гипотезу отвергают и принимают альтернативную гипотезу о статистической значимости уравнения регрессии.
Задание № 2
анализ регрессионный множественный парный
На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:
Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.
Рассчитать частные коэффициенты эластичности. Сделать вывод.
Определить стандартизованные коэффициенты регрессии (-коэффициенты). Сделать вывод.
Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.
CИСТЕМЫ ЭКОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Не всегда получается описать адекватно сложное социально-экономическое явление с помощью только одного соотношения (уравнения). Кроме того, некоторые переменные могут оказывать взаимные воздействия и трудно однозначно определить, какая из них является зависимой, а какая независимой переменной. Поэтому при построении эконометрической модели прибегают к системам уравнений.
В любой эконометрической модели в зависимости от конечных прикладных целей ее использования все участвующие в ней переменные подразделяются на:
Экзогенные (независимые) - значения которых задаются «извне», автономно, в определенной степени они являются управляемыми (планируемыми) (X);
Эндогенные (зависимые) - значения которых определяются внутри модели, или взаимозависимые (Y).
Лаговые - экзогенные или эндогенные переменные эконометрической модели, датированные предыдущими моментами времени и находящиеся в уравнении с текущими переменными. Например:
yt - текущая эндогенная переменная,
yt-1 - лаговая эндогенная переменная (отстоящая от текущей на 1 период назад),
yt-2 - тоже лаговая эндогенная переменная (отстоящая от текущей на 2 периода).
Предопределенные переменные - переменные, определяемые вне модели. К ним относятся лаговые и текущие экзогенные переменные (xt, xt-1), а также лаговые эндогенные переменные (yt-1).
Все эконометрические модели предназначены для объяснения текущих значений эндогенных переменных по значениям предопределенных переменных.
В дальнейшем для простоты будем рассматривать в качестве предопределенных переменных только текущие экзогенные переменные (х).
Система уравнений в эконометрических исследованиях может быть построена по-разному. Выделяют следующие 3 вида систем уравнений.
Система независимых уравнений, когда каждая зависимая переменная (y) рассматривается как функция только от предопределенных переменных (х):
Система рекурсивных уравнений, когда в каждом последующем уравнении системы зависимая переменная представляет функцию от зависимых и предопределенных переменных предшествующих уравнений:
В рассмотренных 2-ух видах систем каждое уравнение может рассматриваться самостоятельно, и его параметры можно определить с помощью метода наименьших квадратов (МНК).
Система взаимозависимых (совместных, одновременных) уравнений, когда зависимые переменные в одних уравнениях входят в левую часть (т.е. выступают в роли признаков-результатов), а в других уравнениях - в правую часть системы (т.е. выступают в роли признаков-факторов) одновременно:
Название «система одновременных уравнений» подчеркивает тот факт, что в системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других.
В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим, т.к. нарушаются предпосылки, лежащие в основе МНК. В результате оценки параметров получаются смещенными.
В эконометрике эта система уравнений также называется структурной формой модели.
Некоторые из уравнений системы могут быть представлены в виде тождеств, т.е. параметры этих уравнений являются константами.
От структурной формы легко перейти к так называемой приведенной форме модели. Число уравнений в приведенной форме равно числу эндогенных переменных модели. В каждом уравнении приведенной формы эндогенная переменная выражается через все предопределенные переменные модели:
Так как правая часть каждого из уравнений приведенной формы содержит только предопределенные переменные и остатки, а левая часть только одну из эндогенных переменных, то такая система является системой независимых уравнений. Поэтому параметры каждого из уравнений системы в приведенной форме можно определить независимо обычным МНК.
Зная оценки этих приведенных коэффициентов можно определить параметры структурной формы модели. Но не всегда, а только если модель является идентифицируемой.
Проблема идентификации.
Модель считается точно идентифицированной, если все ее уравнения точно идентифицированны.
Если среди уравнений модели есть хотя бы одно сверхидентифицированное уравнение, то вся модель считается сверхидентифицированной.
Если среди всех уравнений модели есть хотя бы одно неидентифицированное, то вся модель считается неидентифицированной.
Уравнение называется точно идентифицированным, если оценки структурных параметров можно однозначно (единственным способом) найти по коэффициентам приведенной модели.
Уравнение сверхидентифицировано, если для некоторых структурных параметров можно получить более одного численного значения.
Уравнение называется неидентифицированным, если оценки его структурных параметров невозможно найти по коэффициентам приведенной модели.
Правила идентификации - необходимое и достаточное условия идентификации (применяются только к структурной форме модели).
Введем следующие обозначения:
M- число предопределенных переменных в модели;
m- число предопределенных переменных в данном уравнении;
K - число эндогенных переменных в модели;
k - число эндогенных переменных в данном уравнении.
Необходимое (но недостаточное) условие идентификации уравнения модели:
Для того чтобы уравнение модели было идентифицируемо, необходимо, чтобы число предопределенных переменных, не входящих в уравнение, было не меньше «числа эндогенных переменных, входящих в уравнение минус 1», т.е. : M-m>=k-1;
Если M-m=k-1 , уравнение точно идентифицированно.
Если M-m>k-1, уравнение сверхидентифицированно.
Эти правила следует применять в структурной форме модели.
Достаточное условие идентификации уравнения модели.
Введем обозначения: А - матрица коэффициентов при переменных не входящих в данное уравнение.
Достаточное условие идентификации заключается в том, что ранг матрицы А должен быть равен (К-1). Ранг матрицы - размер наибольшей ее квадратной подматрицы, определитель которой не равен нулю.
Сформулируем необходимое и достаточное условия идентификации уравнения модели:
1) Если M-m>k-1 и ранг матрицы А равен К-1, то уравнение сверхидентифицированно.
2) Если M-m=k-1 и ранг матрицы А равен К-1, то уравнение точно идентифицированно.
3) Если M-m>=k-1 и ранг матрицы А меньше К-1, то уравнение неидентифицированно.
4) Если M-m<k-1, то уравнение неидентифицированно. В этом случае ранг матрицы А будет меньше К-1.
Оценка точно идентифицированного уравнения осуществляется с помощью косвенного метода наименьших квадратов (КМНК).
Алгоритм КМНК включает 3 шага:
1) составление приведенной формы модели и выражение каждого коэффициента приведенной формы через структурные параметры;
2) применение обычного МНК к каждому уравнению приведенной формы и получение численных оценок приведенных параметров;
3) определение оценок параметров структурной формы по оценкам приведенных коэффициентов, используя соотношения, найденные на шаге 1.
Оценка сверхидентифицированного уравнения осуществляется при помощи двухшагового метода наименьших квадратов.
Алгоритм двухшагового МНК включает следующие шаги:
1) составление приведенной формы модели;
2) применение обычного МНК к каждому уравнению приведенной формы и получение численных оценок приведенных параметров;
3) определение расчетных значений эндогенных переменных, которые фигурируют в качестве факторов в структурной форме модели;
4) определение структурных параметров каждого уравнения в отдельности обычным МНК, используя в качестве факторов входящие в это уравнение предопределенные переменные и расчетные значения эндогенных переменных, полученные на шаге 1.
Рассмотрим пример.
Пусть имеется система:
Требуется составить приведенную форму модели, проверить каждое уравнение структурной модели на идентификацию, и предложить способ оценки параметров структурной формы модели.
Решение:
В этой системе y1, y2,y3 - эндогенные переменные (K=3);
x1, x2, x3 - предопределенные переменные (M=3).
K-1=2; K+M=6.
Составим приведенную форму модели:
Проверим, как выполняется необходимое условие идентификации для каждого уравнения.
Для 1-ого уравнения имеем: k1=3; m1=2;
M-m1=1 < k1-1=2, следовательно, 1-ое уравнение неидентифицированно.
Для 2-ого уравнения имеем: k2=2; m2=1;
M-m2=2 > k2-1=1, следовательно, 2-ое уравнение сверхидентифицированно.
Для 3-его уравнения имеем: k3=2; m3=2;
M-m3=1 = k3-1=1, следовательно, 3-е уравнение точно идентифицированно.
Рассмотрим, как выполняется достаточное условие идентификации для каждого уравнения системы. Для того, чтобы оно выполнялось необходимо, чтобы определитель матрицы А (матрицы коэффициентов при переменных, не входящих в это уравнение) был равен К-1=2.
Составим матрицу А для 1-ого уравнения системы. В 1-ом уравнении отсутствует лишь одна переменная системы х3. Поэтому матрица А будет иметь вид:
х3
0 - во 2-ом уравнении
a33 - в 3-ем уравнении
Ранг данной матрицы равен 1, что меньше К-1=2, следовательно, 1-ое уравнение модели неидентифицированно.
Составим матрицу А для 2-ого уравнения системы. Во 2-ом уравнении отсутствуют переменные y3, x2, х3:
y3 x2 x3
b13 a13 0 - в 1-ом уравнении
1 a32 a33 - в 3-ем уравнении
Ранг данной матрицы равен 2, что равно К-1=2, следовательно, 2-ое уравнение модели точно идентифицированно.
Составим матрицу А для 3-его уравнения системы. В 3-ем уравнении отсутствуют переменные y1, x2:
y1 x2
1 a12 - в 1-ом уравнении
b21 0 - во 2-ом уравнении
Ранг данной матрицы равен 1, что меньше К-1=2, следовательно, 3-е уравнение модели неидентифицированно.
Сделаем выводы: 1-ое и 3-е уравнения системы неидентифицированны (т.к. не выполняются достаточные условия идентификации, а в случае 1-ого уравнения и необходимое условие также). 2-ое уравнение системы сверхидентифицированно. Следовательно, система в целом является неидентифицируемой.
Для оценки параметров 2-ого уравнения можно применить двухшаговый МНК. Параметры 1-ого и 3-его уравнений определить по коэффициентам приведенной формы нельзя. Поэтому модель должна быть модифицирована.
Задание № 3
На основе данных, приведенных в таблице 3 и соответствующих Вашему варианту (таблица 4) провести идентификацию модели и описать процедуру оценивания параметров уравнений структурной формы модели.
Таблица 3
Уравнение |
Вариант уравнения |
Коэффициенты перед регрессорами |
|||||
y2 |
y3 |
x1 |
x2 |
x3 |
|||
y1 |
1 |
0 |
0 |
a11 |
a21 |
a31 |
|
2 |
0 |
b31 |
0 |
a21 |
a31 |
||
3 |
0 |
b31 |
a11 |
a21 |
0 |
||
4 |
0 |
b31 |
a11 |
0 |
a31 |
||
5 |
b21 |
b31 |
a11 |
0 |
a31 |
||
y1 |
y3 |
x1 |
x2 |
x3 |
|||
y2 |
1 |
b12 |
b32 |
0 |
0 |
a32 |
|
2 |
b12 |
0 |
a12 |
a22 |
0 |
||
3 |
0 |
b32 |
a12 |
a22 |
a32 |
||
4 |
b12 |
b32 |
a12 |
a22 |
0 |
||
5 |
b12 |
b32 |
0 |
a22 |
a32 |
||
y1 |
y2 |
x1 |
x2 |
x3 |
|||
y3 |
1 |
b13 |
b23 |
a13 |
0 |
0 |
|
2 |
b13 |
0 |
0 |
a23 |
a33 |
||
3 |
b13 |
0 |
a13 |
0 |
a33 |
||
4 |
b13 |
0 |
a13 |
a23 |
a33 |
Таблица 4
№ варианта контрольной работы |
Уравнение |
№ варианта контрольной работы |
Уравнение |
|||||
y1 |
y2 |
y3 |
y1 |
y2 |
y3 |
|||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
0 |
y11 |
y21 |
y31 |
50 |
y13 |
y23 |
y33 |
|
1 |
y11 |
y21 |
y32 |
51 |
y13 |
y23 |
y34 |
|
2 |
y11 |
y21 |
y33 |
52 |
y13 |
y24 |
y31 |
|
3 |
y11 |
y21 |
y34 |
53 |
y13 |
y24 |
y32 |
|
4 |
y11 |
y22 |
y31 |
54 |
y13 |
y24 |
y33 |
|
5 |
y11 |
y22 |
y32 |
55 |
y13 |
y24 |
y34 |
|
6 |
y11 |
y22 |
y33 |
56 |
y13 |
y25 |
y31 |
|
7 |
y11 |
y22 |
y34 |
57 |
y13 |
y25 |
y32 |
|
8 |
y11 |
y23 |
y31 |
58 |
y13 |
y25 |
y33 |
|
9 |
y11 |
y23 |
y32 |
59 |
y13 |
y25 |
y34 |
|
10 |
y11 |
y23 |
y33 |
60 |
y14 |
y21 |
y31 |
|
11 |
y11 |
y23 |
y34 |
61 |
y14 |
y21 |
y32 |
|
12 |
y11 |
y24 |
y31 |
62 |
y14 |
y21 |
y33 |
|
13 |
y11 |
y24 |
y32 |
63 |
y14 |
y21 |
y34 |
|
14 |
y11 |
y24 |
y33 |
64 |
y14 |
y22 |
y31 |
|
15 |
y11 |
y24 |
y34 |
65 |
y14 |
y22 |
y32 |
|
16 |
y11 |
y25 |
y31 |
66 |
y14 |
y22 |
y33 |
|
17 |
y11 |
y25 |
|
Подобные документы
Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.
курсовая работа [233,1 K], добавлен 21.03.2015Исследование зависимости часового заработка одного рабочего от общего стажа работы после окончания учебы с помощью построения уравнения парной линейной регрессии. Вычисление описательных статистик. Построение поля корреляции и гипотезы о форме связи.
контрольная работа [226,6 K], добавлен 11.08.2015Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.
лабораторная работа [67,8 K], добавлен 26.12.2010Связь между случайными переменными и оценка её тесноты как основная задача корреляционного анализа. Регрессионный анализ, расчет параметров уравнения линейной парной регрессии. Оценка статистической надежности результатов регрессионного моделирования.
контрольная работа [50,4 K], добавлен 07.06.2011Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.
контрольная работа [141,3 K], добавлен 05.05.2010Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.
контрольная работа [155,8 K], добавлен 11.12.2010Экономическое моделирование хозяйственных процессов. Множественная модель уравнения регрессии. Уравнение парной линейной регрессии, поиск необходимых значений. Выбор одного из значимых признаков для построения парной модели, расчет показателей.
контрольная работа [117,6 K], добавлен 17.04.2015Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.
контрольная работа [110,4 K], добавлен 28.07.2012Нахождение уравнения линейной регрессии, парного коэффициента корреляции. Вычисление точечных оценок для математического ожидания, дисперсии, среднеквадратического отклонения показателей x и y. Построение точечного прогноза для случая расходов на рекламу.
контрольная работа [216,6 K], добавлен 12.05.2010Исследование зависимости сменной добычи угля на одного рабочего от мощности пласта путем построения уравнения парной линейной регрессии. Построение поля корреляции. Определение интервальных оценок заданных коэффициентов. Средняя ошибка аппроксимации.
контрольная работа [2,1 M], добавлен 09.08.2013Расчет параметров уравнения линейной регрессии, экономическая интерпретация ее коэффициента. Проверка равенства математического ожидания уровней ряда остатков нулю. Построение степенной модели парной регрессии. Вариация объема выпуска продукции.
контрольная работа [771,6 K], добавлен 28.04.2016Построение поля корреляции, расчет уравнений линейной парной регрессии, на основе данных о заработной плате и потребительских расходах в расчете на душу населения. Анализ коэффициента эластичности, имея уравнение регрессии себестоимости единицы продукции.
контрольная работа [817,3 K], добавлен 01.04.2010Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.
контрольная работа [71,7 K], добавлен 17.09.2016Построение математической модели выбранного экономического явления методами регрессионного анализа. Линейная регрессионная модель. Выборочный коэффициент корреляции. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы.
курсовая работа [1,1 M], добавлен 22.05.2015Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.
лабораторная работа [100,5 K], добавлен 02.06.2014Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации; определение средней ошибки аппроксимации. Статистическая надежность регрессионного моделирования с помощью критериев Фишера и Стьюдента.
контрольная работа [34,7 K], добавлен 14.11.2010Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008- Использование корреляционно-регрессионного анализа для обработки экономических статистических данных
Расчет стоимости оборудования с использованием методов корреляционного моделирования. Метод парной и множественной корреляции. Построение матрицы парных коэффициентов корреляции. Проверка оставшихся факторных признаков на свойство мультиколлинеарности.
задача [83,2 K], добавлен 20.01.2010