Применение системно-когнитивного анализа и системы "Эйдос" для синтеза когнитивной матричной передаточной функции сложного объекта управления на основе эмпирических данных

Изучение управленческой взаимосвязи между теорией автоматизированного, автоматического менеджмента и системно-когнитивным анализом. Особенности применения программного инструментария системы "Эйдос" для интеллектуального управления сложными системами.

Рубрика Экономико-математическое моделирование
Вид статья
Язык русский
Дата добавления 28.04.2017
Размер файла 337,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Блок 10. Если решение, полученное с помощью системы поддержки принятия решений, оказалось неэффективным, то это означает, что проблемная ситуация идентифицирована как аналогичная ранее встречавшимся неверно. Следовательно, что на вход системы поступила качественно новая, по сравнению с решаемыми ранее, т.е. сложная проблема. В этом случае необходимо продолжить попытки разрешения проблемы с использованием творческих неформализованных подходов с участием человека-эксперта и перейти на блок 5, иначе - на блок 11.

Блок 11. Информация об условиях и результатах решения проблемы заносится в базу знаний, т.е. стандартизируется. После чего база знаний количественно (не принципиально) изменяется, т.е. осуществляется ее адаптация. В результате адаптации при встрече в будущем точно таких же проблемных ситуаций, как разрешенная, система уже будет разрешать ее не как проблему, а как стандартную задачу.

Блок 12. На этом этапе с использованием неформализованных творческих подходов осуществляется поиск качественно нового решения проблемы, не встречавшейся ранее, после чего управление передается блоку 13.

Блок 13. Если решение, полученное экспертами с помощью неформализованных подходов, оказалось неэффективным, то это означает, что система терпит крах (осуществляется переход на блок 6). Если же адекватное решение найдено, то происходит переход на блок 14.

Блок 14. Стандартизация качественно нового решения, проблемы и пересинтез модели. Информация об условиях и результатах творческого решения проблемы заносится в базу знаний, т.е. стандартизируется. После этого база знаний качественно, принципиально изменяется, т.е. фактически осуществляется ее пересоздание (пересинтез). В результате пересинтеза базы знаний при встрече в будущем проблемных ситуаций, аналогичных разрешенной, система уже будет реагировать на них как проблемы, решаемые автоматизированными системами поддержки принятия решений.

Блоки информационной модели деятельности специалиста, в которых в принципе могут использоваться системы искусственного интеллекта, на рисунке 6 показаны со светло-зеленой заливкой:

- блоки 2 и 12: система распознавания образов, идентификации и прогнозирования;

- блоки 9, 11, 12 и 14: автоматизированная система поддержки принятия решений.

Однако в настоящее время специалист, как правило, решает все вышеперечисленные задачи без использования систем искусственного интеллекта (СИИ). Но чтобы эта принципиальная возможность применения СИИ превратилась в практическую возможность необходимо, чтобы существовала программная система искусственного интеллекта, созданная в универсальной постановке, не зависящей от предметной области. Благодаря универсальной постановке такая система поддерживала бы решение вышеперечисленных задач, решаемых управляющей системой САУ и АСУ, но не только для технических объектов управления, а в широком круге предметных областей, в том числе при управлении биологическими, экономическими и социально-психологическими системами. Это именно те области, в которых в настоящее время в основном применяются слабо формализованные методы управления без использования компьютерных технологий. Причины этого вполне понятны. Они связаны с тем, что применение математического аппарата матричных передаточных функций, развитого в теории САУ и АСУ, для управления столь сложными объектами управления представляется в настоящее время фактически невозможным из-за практической невозможности адекватного математического описания этих объектов управления. Между тем подобные системы давно существуют, например, Универсальная когнитивная аналитическая система «Эйдос» [1], обеспечивающая формирование когнитивных матричных передаточных функций сложных объектов управления на основе эмпирических данных. Однако чтобы эта практическая возможность стала действительностью необходимо с помощью системы «Эйдос» разработать соответствующие интеллектуальные приложения, а затем применить эти приложения на практике. Это в очень многих случаях уже сделано [1, 4, 5], в том числе и автором с соавторами, но поле деятельности в этом направлении вообще не ограничено.

Есть два способа принятия решения о многофакторном управляющем воздействии, при которых выбирается система значений факторов для воздействия на объект управления:

- многократное решение задачи прогнозирования при различных сочетаниях значений управляющих факторов;

- решение обратной задачи прогнозирования (а затем замена значений факторов с использованием результатов кластерного анализа, прогнозирование и принятие окончательного решения о выборе управляющего воздействия).

Выработка управляющего воздействия путем прогнозирования поведения объекта управления в результате воздействия на него различных сочетаний значений факторов приводит к комбинаторному взрыву и огромным затратам вычислительных ресурсов и времени. В результате весьма вероятна ситуация, когда принятие решения путем многократного прогнозирования и выбора наиболее подходящего варианта может занимать больше времени, чем длительность цикла управления (рисунок 1), что вообще неприемлемо.

Например, если в модели всего 3 описательных шкалы по 10 градаций в каждой, то выбор варианта управляющего воздействия путем прогнозирования поведения объекта управления при различных вариантах значений управляющих факторов потребовал бы 1000 прогнозов. Отметим, что на практике при решении реальных задач факторов (шкал) может быть не 3, а сотни и тысячи. Это делает выбор управляющего воздействия путем перебора вариантов прогнозов практически неосуществимым.

Выработка управляющего воздействия путем решения обратной задачи прогнозирования. Если при прогнозировании на основе знаний о системе действующих значений факторов определяется будущее поведение объекта управления, то при решении обратной задачи прогнозирования, наоборот, по заданному целевому состоянию объекта управления определяется такая система значений факторов, которая при воздействии на объект управления с наибольшей степенью обусловленности переводит его в это целевое состояние. Решение обратной задачи прогнозирования представляет собой просто выборку всех знаний из матрицы знаний о воздействии различных значений факторов на переход объекта управления в целевое состояние и сортировку этих значений факторов в порядке убывания количеств знаний в них. Если какие-либо значения факторов не удается использовать на практике из-за их высокой стоимости или фактической недоступности соответствующих технологий, то можно используя результаты кластерного анализа [27] заменить эти значения факторов другими, сходными по действию на поведение объекта управления, но более доступными, а затем решить задачу прогнозирования с новым набором значений факторов. Если результат прогнозирования удовлетворительный, то принимается решение о выборе данного управляющего воздействия.

Рассмотрим, как в предлагаемой модели реализуются задачи идентификации, прогнозирования и принятия решений.

Рассмотрим поведение объекта управления при воздействии на него не одного, а целой системы значений факторов:

(18)

В теории принятия решений скалярная функция Ij векторного аргумента называется интегральным критерием. Основная проблема состоит в выборе такого аналитического вида функции интегрального критерия, который обеспечил бы эффективное решение задач, решаемых управляющей системой САУ и АСУ.

Учитывая, что частные критерии (таблица 6) имеют смысл количества знаний, а знания, как и информация, является аддитивной функцией, предлагается ввести интегральный критерий, как аддитивную функцию от частных критериев в виде:

(19)

В выражении (19) круглыми скобками обозначено скалярное произведение, т.е. свертка. В координатной форме это выражение имеет вид:

, (20)

где:

- вектор j-го класса-состояния объекта управления;

- вектор состояния предметной области (объекта управления), включающий все виды факторов, характеризующих объект управления, возможные управляющие воздействия и окружающую среду (массив-локатор), т.е. Li=n, если i-й признак встречается у объекта n раз.

Таким образом, предложенный интегральный критерий представляет собой суммарное количество знаний, содержащихся в системе значений факторов различной природы (т.е. факторах, характеризующих объект управления, управляющее воздействие и окружающую среду) о переходе объекта управления в то или иное будущее состояние.

В многокритериальной постановке задача прогнозирования состояния объекта управления, при оказании на него заданного многофакторного управляющего воздействия Ij, сводится к максимизации интегрального критерия:

(21)

т.е. к выбору такого состояния объекта управления, для которого интегральный критерий максимален.

Результат прогнозирования поведения объекта управления, описанного данной системой факторов, представляет собой список его возможных будущих состояний, в котором они расположены в порядке убывания суммарного количества знаний о переходе объекта управления в каждое из них.

Задача принятия решения о выборе наиболее эффективного управляющего воздействия является обратной задачей по отношению к задаче максимизации интегрального критерия (идентификации и прогнозирования), т.е. вместо того, чтобы по набору факторов прогнозировать будущее состояние объекта, наоборот, по заданному (целевому) состоянию объекта определяется такой набор факторов, который с наибольшей эффективностью перевел бы объект управления в это состояние.

Предлагается еще одно обобщение фундаментальной леммы Неймана-Пирсона, основанное на косвенном учете корреляций между информативностями в векторе состояний при использовании средних по векторам. Соответственно, вместо простой суммы количеств информации предлагается использовать корреляцию между векторами состояния и объекта управления, которая количественно измеряет степень сходства этих векторов:

где:

- средняя информативность по вектору класса;

- среднее по вектору идентифицируемой ситуации (объекта).

- среднеквадратичное отклонение информативностей вектора класса;

- среднеквадратичное отклонение по вектору распознаваемого объекта.

Выражение (22) получается непосредственно из (20) после замены координат перемножаемых векторов их стандартизированными значениями:

Необходимо отметить, что выражение для интегрального критерия сходства (22) по своей математической форме является корреляцией двух векторов. Это означает, что если эти вектора являются суммой двух сигналов: полезного и белого шума, то при достаточно большой выборке при расчете интегрального критерия белый шум практически не будет играть никакой роли, т.е. его корреляция с самими собой равна нулю по определению. Поэтому интегральный критерий сходства объекта со случным набором признаков с любыми образами классов, или реального объекта с образами классов, сформированными случайным образом, будет равен нулю. Это означает, что выбранный интегральный критерий сходства является высокоэффективным средством подавления белого шума и выделения полезной информации из шума, который неизбежно присутствует в эмпирических данных.

Важно также отметить неметрическую природу предложенного интегрального критерия сходства, благодаря чему его применение является корректным и при неортонормированном семантическом информационном пространстве, каким оно в подавляющем количестве случае и является, т.е. в общем случае.

Если применить предлагаемые модели для конкретизации схемы цикла управления, представленного на рисунке 1, и информационной модели деятельности специалиста (рисунок 6), то получим представленную на рисунке 7 параметрическая модель рефлексивной АСУ активными объектами (системами), впервые приведенную в работе [1]. В работах [4, 5] приведены подобные схемы ряда конкретных применений системно-когнитивного анализа и системы «Эйдос» для интеллектуального управления сложными системами.

Рисунок 7 Параметрическая модель рефлексивной АСУ активными объектами (системами)

Рассмотренные выше матрицы условных и безусловных вероятностей, а также матрица знаний, могут рассматриваться не только как аналоги матричной передаточной функции, но и как матричные коэффициенты передачи, элементы которых являются коэффициентами передачи между значениями факторов и классами, соответствующими переходам объекта управления в будущие состояния. Безразмерные относительные коэффициенты передачи используются и в экономике и называются эластичность [14] и также могут быть использованы качестве меры знаний. Согласно [8] «передаточные функции принято записывать в стандартной форме:

, (24)

- коэффициент передачи». Таким образом, можно сделать вывод, что коэффициент передачи - это матричная передаточная функция при начальных условиях.

Выводы

Таким образом, в статье рассмотрена глубокая взаимосвязь между теорией автоматизированного и автоматического управления и системно-когнитивным анализом и его программным инструментарием - системой «Эйдос» в их применении для интеллектуального управления сложными системами. Предлагается технология, позволяющая на практике реализовать интеллектуальное автоматизированное и даже автоматическое управление такими объектами управления, для которых ранее управление реализовалось лишь на слабоформализованном уровне, как правило, без применения математических моделей и компьютеров. К таким объектам управления относятся, например, технические системы, штатно качественно-изменяющиеся в процессе управления, биологические и экологические системы, социально-экономические и психологические системы.

О применении САУ для управления подобными сложными системами в настоящее время не может быть речи из-за практической невозможности их адекватного описания с применением дифференциальных уравнений. Вместе с тем, перспектива развития методов управления сложными системами состоит в повышении степени формализации процессов принятия решений при выборе вариантов управляющих воздействий. Предлагается технология, обеспечивающая создание формальной количественной модели сложного объекта управления на основе эмпирических данных о его поведении под действием различных факторов, модели, пригодной для решения задач прогнозирования и принятия решений. В предлагаемой технологии есть ряд аналогий с методами САУ и АСУ, рассмотрению которых и посвящена статья. Естественно, предложенная технология не рассматривается авторами как альтернатива САУ и АСУ в тех областях, где их применение хорошо освоено и предлагается лишь как вариант повышения степени формализации при управлении сложными системами, управление которыми, как правило, осуществляется вообще без использования математических моделей и компьютерных технологий.

Сформулированы и обоснованы гипотезы о том, что матрица условных и безусловных процентных распределений и матрицы знаний с различными количественными мерами знаний, могут рассматриваться как матричные передаточные функции, т.е. модели сложных многофакторных динамичных объектов управления, на основе которых могут успешно решаться основные задачи, решаемые с применением матричных передаточных функций: задача прогнозирования поведения объекта управления под действием системы факторов и задача выработки такого управляющего воздействия, которое переведет объект управления в заранее заданное целевое состояние.

Материалы статьи могут быть использованы при проведении лекционных и лабораторных занятий по дисциплинам: «Основы теории управления (теория автоматического управления) (ТАУ)», «Автоматизированные системы управления (АСУ)», «Эффективность АСУ», «Интеллектуальные информационные системы» и «Концепции современного естествознания» для различных специальностей, а также для решения перечисленных в начале статьи и других задач того же типа в различных предметных областях.

Литература

1. Луценко Е.В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). - Краснодар: КубГАУ. 2002. - 605 с.

2. Луценко Е.В. Исследование влияния подсистем различных уровней иерархии на эмерджентные свойства системы в целом с применением АСК-анализа и интеллектуальной системы "Эйдос" (микроструктура системы как фактор управления ее макросвойствами) / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2012. - №01(75).- Режим доступа: http://ej.kubagro.ru/2012/01/pdf/52.pdf, 2,688 у.п.л.

3. Орлов А.И. Менеджмент. Учебник. / А.И.Орлов.- М.: Издательство «Изумруд», 2003. - 298 с. [Электронный ресурс]. Режим доступа: http://orlovs.pp.ru/econ/managem.zip

4. Луценко Е.В., Коржаков В.Е., Лаптев В.Н. Теоретические основы и технология применения системно-когнитивного анализа в автоматизированных системах обработки информации и управления (АСОИУ) (на примере АСУ вузом). Под науч. ред. д.э.н., проф. Е.В.Луценко. Монография (научное издание). - Майкоп: АГУ. 2009. - 536 с.

5. Луценко Е.В., Коржаков В.Е., Ермоленко В.В. Интеллектуальные системы в контроллинге и менеджменте средних и малых фирм: Под науч. ред. д.э.н., проф. Е.В.Луценко. Монография (научное издание). - Майкоп: АГУ. 2011. - 392 с.

6. Меньков А.В. Теоретические основы автоматизированного управления / А.В. Меньков, В.А. Острейковский. - Учебник для вузов. - М.: Издательство Оникс, 2005. - 640 с.

7. Воевода А.А. Матричные передаточные функции: учеб. пособие под ред. А.С.Вострикова; Новосиб. гос. техн. ун-т, г.Новосибирск, 1983 г., - 94 стр. [Электронный ресурс]. Режим доступа: http://www.twirpx.com/file/166174/

8. Востриков А.С., Французова Г.А., Шпилевая О.Я. Теория автоматического управления линейных систем. Учебное пособие. - Новосибирск: НГТУ, 2011. [Электронный ресурс]. Режим доступа: http://edu.nstu.ru/courses/tech/tau/demo/book/M1.htm http://edu.nstu.ru/courses/tech/tau/demo/book/Sod27.htm

9. Луценко Е.В. Методологические аспекты выявления, представления и использования знаний в АСК-анализе и интеллектуальной системе «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2011. - №06(70). С. 233 - 280. - Шифр Информрегистра: 0421100012\0197. - Режим доступа: http://ej.kubagro.ru/2011/06/pdf/18.pdf, 3 у.п.л.

10. Луценко Е.В. Метод когнитивной кластеризации или кластеризация на основе знаний (кластеризация в системно-когнитивном анализе и интеллектуальной системе «Эйдос») / Е.В. Луценко, В.Е. Коржаков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2011. - №07(71). С. 528 - 576. - Шифр Информрегистра: 0421100012\0253. - Режим доступа: http://ej.kubagro.ru/2011/07/pdf/40.pdf, 3,062 у.п.л.

11. Луценко Е.В. Семантическая информационная модель СК-анализа / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2008. - №02(36). С. 193 - 211. - Шифр Информрегистра: 0420800012\0015. - Режим доступа: http://ej.kubagro.ru/2008/02/pdf/12.pdf, 1,188 у.п.л.

12. Луценко Е.В. Математическая сущность системной теории информации (СТИ) (Системное обобщение формулы Больцмана-Найквиста-Хартли, синтез семантической теории информации Харкевича и теории информации Шеннона) / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2008. - №08(42). С. 76 - 103. - Шифр Информрегистра: 0420800012\0114. - Режим доступа: http://ej.kubagro.ru/2008/08/pdf/04.pdf, 1,75 у.п.л.

13. Луценко Е.В. Типовая методика и инструментарий когнитивной структуризации и формализации задач в СК-анализе / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2004. - №01(3). С. 388 - 414. - Режим доступа: http://ej.kubagro.ru/2004/01/pdf/16.pdf, 1,688 у.п.л.

14. Луценко Е.В. Численный расчет эластичности объектов информационной безопасности на основе системной теории информации / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2003. - №01(1). С. 16 - 27. - Режим доступа: http://ej.kubagro.ru/2003/01/pdf/05.pdf, 0,75 у.п.л.

15. Луценко Е.В. Системная теория информации и нелокальные интерпретируемые нейронные сети прямого счета / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2003. - №01(1). С. 79 - 91. - Режим доступа: http://ej.kubagro.ru/2003/01/pdf/11.pdf, 0,812 у.п.л.

16. Луценко Е.В. Синтез многоуровневых семантических информационных моделей активных объектов управления в системно-когнитивном анализе / Е.В. Луценко, И.Л. Наприев // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2007. - №04(28). С. 89 - 110. - Шифр Информрегистра: 0420700012\0081. - Режим доступа: http://ej.kubagro.ru/2007/04/pdf/11.pdf, 1,375 у.п.л.

17. Толмачев В.А. Теория электропривода. Ч.2. Замкнутые системы. Учебное пособие. С`Петербургский государственный институт точной механики и оптики (технический университет). [Электронный ресурс]. - Режим доступа: http://ets.ifmo.ru/tolmachev/ouems/lec2/lec2.htm http://www.ets.ifmo.ru/tolmachev/ouems/ouems.htm

18. Бахурин С.А. Дискретные сигналы. Преобразование Лапласа дискретного сигнала. Z-преобразование. Разностное уравнение дискретного фильтра. [Электронный ресурс]. - Режим доступа: http://www.dsplib.ru/content/filters/ch9/ch9.html

19. Луценко Е.В. Метод визуализации когнитивных функций - новый инструмент исследования эмпирических данных большой размерности / Е.В. Луценко, А.П. Трунев, Д.К. Бандык // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2011. - №03(67). С. 240 - 282. - Шифр Информрегистра: 0421100012\0077. - Режим доступа: http://ej.kubagro.ru/2011/03/pdf/18.pdf, 2,688 у.п.л.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие системы управления, ее назначение и целевые функции. Суть параметрического метода исследования на основе научного аппарата системного анализа. Проведение исследования системы управления на предприятии "Атлант", выявление динамики объема продаж.

    курсовая работа [367,1 K], добавлен 09.06.2010

  • Модели оптимальных систем автоматического управления с объектами, динамика которых описывается линейными дифференциальными уравнениями второго порядка. Моделирование объекта с передаточной функцией. Расчет стоимости разработки программы. Расчет освещения.

    дипломная работа [1,8 M], добавлен 24.04.2013

  • Описание объекта регулирования температуры жидкости на выходе теплообменника. Составление математической логической аналитической модели системы автоматического управления. Исследование типа и рационального значения параметров настройки регулятора.

    курсовая работа [232,3 K], добавлен 22.03.2015

  • Анализ линейного стационарного объекта управления, заданного передаточной функцией. Получение математической модели в пространстве состояний линейного стационарного объекта управления, заданного передаточной функцией. Метод параллельной декомпозиции.

    курсовая работа [2,2 M], добавлен 23.02.2010

  • Определение передаточной функции объекта управления. Построение кривой разгона на выходе объекта. Вычисление и построение комплексно–частотной характеристики объекта, границ устойчивости. Выбор настроек ПИ-регулятора по методике Кона и Копеловича.

    курсовая работа [292,8 K], добавлен 03.05.2012

  • Подсчет запасов устойчивости контуров по амплитуде и фазе в трактовке критерия Найквиста. Проверка устойчивости объекта по двум замкнутым контурам. Составление цифровой модели объекта для системы Simulink. Переходные характеристики объекта управления.

    курсовая работа [748,6 K], добавлен 19.02.2012

  • Разработка и принятие правильного решения как задачи работы управленческого персонала организации. Деревья решений - один из методов автоматического анализа данных, преимущества их использования и область применения. Построение деревьев классификации.

    контрольная работа [91,6 K], добавлен 08.09.2011

  • Особенности создания непрерывных структурированных моделей. Схема выражения передаточной функции. Методы интегрирования систем дифференциальных уравнений. Структурная схема систем управления с учетом запаздывания в ЭВМ. Расчет непрерывной SS-модели.

    курсовая работа [242,6 K], добавлен 16.11.2009

  • Передаточная функция разомкнутой системы "ЛА-САУ". Выбор частоты среза для желаемой ЛАХ и ее построение. Синтез корректирующего звена. Расчет переходного процесса для замкнутой скорректированной и не скорректированной автоматической системы управления.

    курсовая работа [83,9 K], добавлен 10.12.2012

  • Линеаризация математической модели регулирования. Исследование динамических характеристик объекта управления по математической модели. Исследование устойчивости замкнутой системы управления линейной системы. Определение устойчивости системы управления.

    курсовая работа [1,6 M], добавлен 07.08.2013

  • Модель развития многоотраслевой экономики Леонтьева для двух отраслей. Математические модели объекта управления. Свойства системы, процессы в объекте управления. Законы управления для систем с обратной связью. Структурная схема системы с регулятором.

    курсовая работа [2,0 M], добавлен 30.12.2013

  • Понятие и структура интеллектуальной системы. Математическая теория нечетких множеств. Причины распространения системы Fuzzy-управления. Предпосылки для внедрения нечетких систем управления. Принципы построения системы управления на базе нечеткой логики.

    реферат [68,3 K], добавлен 31.10.2015

  • Главные требования к математическим моделям в САП. Применение принципа декомпозиции при математическом моделировании сложного технического объекта. Разработка приближенных моделей объектов на микроуровне. Сущность метода сеток, метода конечных элементов.

    презентация [705,6 K], добавлен 09.02.2015

  • Определение числа датчиков на основе формулы Байеса. Решение задач на однородном линейном комплексе. Распределение задач по свободным машинам с учетом их взаимосвязи. Оптимизация плана комплекса работ по критерию минимума. Нахождение средней сезонной.

    контрольная работа [173,2 K], добавлен 23.01.2014

  • Методика формирования математической модели в операторной форме, а также в форме дифференциального уравнения и в пространстве состояний. Построение графа системы. Оценка устойчивости, управляемости, наблюдаемости системы автоматического управления.

    контрольная работа [200,4 K], добавлен 03.12.2012

  • Изучение методов моделирования и анализа панельных данных. Построение ABC-XYZ классификации среди данных широкой номенклатуры по товарным запасам торгового предприятия. Виды исходных данных и построение на их основе модели регрессии по панельным данным.

    курсовая работа [363,2 K], добавлен 23.02.2015

  • Области применения системного анализа, его место, роль, цели и функции в современной науке. Понятие и содержание методик системного анализа, его неформальные методы. Особенности эвристических и экспертных методов исследования и особенности их применения.

    курсовая работа [78,8 K], добавлен 20.05.2013

  • Важнейшим заданием экономического анализа является изучение взаимосвязи между различными экономическими явлениями. Метод сглаживания ряда динамики с использованием скользящей средней. Определение вида функциональной зависимости между признаком и фактором.

    контрольная работа [100,8 K], добавлен 12.03.2009

  • Применение дискриминантного анализа. Дискриминантные функции и их геометрическая интерпретация. Расчет коэффициентов дискриминантной функции. Классификация при наличии двух обучающих выборок. Взаимосвязь между дискриминантными переменными и функциями.

    реферат [4,6 M], добавлен 08.05.2009

  • Особенности управления состоянием сложных систем. Способы нахождения математической модели объекта (системы) методом площадей в виде звена 2-го и 3-го порядков. Формы определения устойчивости ЗСАУ. Нахождение переходной характеристики ЗСАУ и основных ПКР.

    курсовая работа [112,5 K], добавлен 04.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.