Проблемы и перспективы теории и методологии научного познания и автоматизированный системно-когнитивный анализ как автоматизированный метод научного познания, обеспечивающий содержательное феноменологическое моделирование

Познаваемость с применением разных форм и методов познания и при разных формах сознания. Основные векторы динамики процесса познания. Перспективы применения научного метода к постановке и решению философских проблем. Множественность адекватных моделей.

Рубрика Экономико-математическое моделирование
Вид научная работа
Язык русский
Дата добавления 26.05.2017
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Феноменологические модели могут вполне адекватно отражать результат действия внешних факторов на процессы и явления, но при этом описывают процессы и явления внешне, не рассматривая их внутреннюю структуру, т.е. не рассматривая, каким образом внешние факторы влияют на внутреннюю структуру и каким образом изменения в этой внутренней структуре обусловливают изменение внешне наблюдаемых свойств этих процессов и явлений. В современной науке такие модели называются феноменологическими моделями, наиболее распространенное название которых «Модели черного ящика». Такие модели широко применяются в автоматической теории управления, в которой влияние внешних факторов на систему описывается передаточной функцией. Связанные с этой проблематикой вопросы рассматриваются в работах [19, 20].

Например, (несколько упрощая) можно сказать, что в сельском хозяйстве изучается влияние природных и технологических факторов, а также свойств сортов и пород, на количественные и качественные результаты производства сельхозпродукции, а также методы прогнозирования и поддержки принятия решений, направленные на достижение заданных результатов. А в биологических науках, а также биохимии, биофизике и т.п., изучаются механизмы влияния тех же самых факторов на эти результаты.

4.1.4 Научные законы (движение от феноменологических моделей к содержательным, от эмпирического к теоретическому познанию)

Дальнейшее движение процесса познания - это движение от феноменологических моделей к содержательным. Суть этого процесса состоит в том, что процесс познание переходит от познания чувственно-воспринимаемой или познаваемой другими эмпирическими методами внешней стороны явлений и процессов к познанию их сущности. В отличие от внешней стороны сущность явлений и процессов при обычной наиболее массовой в настоящее время форме сознания не является непосредственно воспринимаемой и осознаваемой и для ее познания в настоящее время используется интеллектуальная форма познания: мышление и логика.

Задачей мышления является разработка такой теории изучаемых процессов и явлений, которая бы правильно объясняла эмпирически наблюдаемые их свойства. Таким образом теория описывает некий «внутренний механизм» изучаемых процессов и явлений, объясняющий их внешне наблюдаемые свойства.

Разработка новой теории - это процесс многоэтапный. На первом этапе выдвигается научная гипотеза о причинах действия эмпирического закона. Если оказывается, что научная гипотеза имеет прогностическую силу, т.е. предсказывает новые наблюдаемые на опыте ранее неизвестные процессы и явления, то она приобретает статус научного закона.

Например, 100 лет назад Альберт Эйнштейн в рамках созданной им теории гравитации (ОТО) предсказал существование гравитационных волн, которые недавно были экспериментально обнаружены.

Определение научного закона: научный закон - это такой эмпирический закон, который действуют везде, где сохраняют силу и действуют причины его действия, описанные в теории, объясняющей причины и механизм действия данного эмпирического закона.

Область действия научного закона расширяется на неограниченную область не всегда доступную эмпирически, даже в принципе и в перспективе.

Научные законы получаются из эмпирических методом научной индукции (Ф. Бэкон, Дж. Милль) https://yandex.ru/search/?text=метод%20научной%20индукции%20(Ф.Бэкон%2C%20Дж.Милль&lr=35 :

- строится содержательная модель, «объясняющая», почему действует эмпирический закон;

- делается научное обобщение: эмпирические законы выполняются не только во всех исследованных случаях, но и во всех остальных, где сохраняется действие причин их выполнения.

4.1.5 Философское обобщение

Философский закон - это придание научному (или даже эмпирическому) закону статуса всеобщности, т.е. ничем неограниченное расширение области действия научных законов ни в пространстве, ни во времени, ни по предметной области, ни по уровню иерархического строения Вселенной как системы, ни каким-либо другим образом.

По мнению автора философское обобщение - это неоправданное и очень рискованное предельное обобщение, которое никогда не может быть в достаточной мере (для столь ответственного решения) аргументировано и обосновано, и, по глубокому убеждению автора, в конечном счете оно всегда ошибочно, что рано или поздно и выясняется (правда обычно поздно).

4.1.7 Перспективы применения научного метода к постановке и решению философских проблем и конец философии

История науки свидетельствует, что науки возникали не одновременно, а в определенной последовательности в порядке усложнения предмета их исследования: физика, химия, биология, науки о человеке и обществе. Понятно, что предметы исследования этих наук не только существовали и до их возникновения, но и исследовались до возникновения этих наук, но исследовались они не научными методами, а в рамках философии, которая выступала в роли своеобразной «преднауки», «прародительницы» и одновременно «матери всех наук» См., например: http://bookz.ru/authors/nina-bu4ilo/filosofi_921/page-4-filosofi_921.html .

Принцип возникновения новых наук состоит в том, что они «отмежевываются» от преднауки философии когда начинают применять научный метод, так как именно этот метод позволял перевести знания из умозрительной формы в точно установленную доказательную форму.

При возникновении новых наук предмет философии сужается, так как часть предмета философии становится предметом изучения этих новых конкретных наук. Конкретные науки обеспечивают более глубокое, детальное, достоверное и доказательное изучение предмета познания, чем это было возможно в философии. В результате этого процесса в настоящее время предметом философии является лишь основной вопрос философии, а также диалектика, логика и теория познания.

По мнению автора «конец философии» наступит, когда научный метод будет применен к познанию не только материи (что уже сделано), но и сознания, а также к исследованию их отношения, т.е. к постановке и решению основного вопроса философии [3], и это станет реально возможным только при высших формах сознания, при которых людям станут доступными другие формы познания, в частности, интеллектуальная истина станет предметом непосредственного восприятия (т.е. это еще не скоро).

4.2 АСК-анализ как автоматизированный метод научного познания

4.2.1 Кратко об АСК-анализе

4.2.1.1 Что же такое АСК-анализ

Автоматизированный системно-когнитивный анализ (АСК-анализ) - это новый универсальный метод искусственного интеллекта, представляющий собой единственный в настоящее время вариант автоматизированного системного анализа, а именно, системный анализ, структурированный по базовым когнитивным операциям.

Известно, что системный анализ является одним из общепризнанных в науке методов решения проблем и многими учеными рассматривается вообще как методология научного познания. Однако как впервые заметил еще в 1984 году проф. И. П. Стабин Стабин И.П., Моисеева B.C. Автоматизированный системный анализ.- М.: Машиностроение, 1984. -309 с. практическое применение системного анализа наталкивается на проблему, суть которой состоит в том, что методология системного анализа успешно применяется в сравнительно простых случаях, в которых в принципе можно обойтись и без нее, тогда как в реальных сложных ситуациях, она чрезвычайно востребован и у нее нет альтернатив, сделать это удается очень редко. Проф. И. П. Стабин первым предложил и путь решения этой проблемы, состоящий в автоматизации системного анализа, он же ввел и термин: «Автоматизированный системный анализ» (АСА).

4.2.1.2 Работы каких ученых сыграли большую роль в создании АСК-анализа

Автора идеи АСА мы упомянули выше.

Теперь необходимо отметить отечественных классиков методологии системного анализа проф. Ф. И. Перегудова и проф. Ф. П. Тарасенко, которые в своих фундаментальных работах Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ. М.: Высшая школа, 1989. - 320 с., Перегудов Ф. И., Тарасенко Ф. П.. Основы системного анализа. Томск Изд-во науч.-техн. лит. 1997. 389с. подробно рассмотрели математические методы, которые могли бы быть успешно применены для автоматизации отдельных этапов системного анализа. Однако даже самые лучшие математические методы не могут быть использованы на практике без эффективно реализующих их программных средств, а путь от научного метода, реализуемого с помощью математики к его эффективной программной системе долог и сложен. Обусловлено это тем обстоятельством, что ЦЭВМ - это дискретный автомат, работающий только в рамках дискретной математики. Для использования ЦЭВМ необходимо разработать численные методы или методики их реализации на компьютере. А затем реализовать и отладить компьютерную программу, основанную на этом численном методе.

В числе первых попыток реального использования автоматизированного системного анализа следует отметить монографию [6] Симанков В.С., Луценко Е.В., Лаптев В.Н. Системный анализ в адаптивном управлении: Монография (научное издание). /Под науч. ред. В.С.Симанкова. - Краснодар: ИСТЭК КубГТУ, 2001. - 258с. и докторскую диссертацию проф. В. С. Симанкова (2002). В этих работах идея автоматизации системного анализа была основана на высокой детализации этапов системного анализа и подборе уже существующих программных систем, автоматизирующих эти этапы. Эта попытка была реализована проф. В.С.Симанковым, однако лишь для специального случая исследования в области возобновляемой энергетики, где использовались системы разных разработчиков, созданные с помощью различного инструментария и не имеющие программных интерфейсов друг с другом, т.е. не образующие единой автоматизированной системы. Эта попытка, безусловно, была большим шагом по пути, предложенному проф. И.П.Стабиным, но ее нельзя признать обеспечившей достижение поставленной им цели: создание работающего автоматизированного системного анализа. Эта работа не привела к созданию единой универсальной программной системы, автоматизирующий системный анализ, которую можно было бы успешно применять в различных предметных областях.

4.2.1.3 Кем и когда создан АСК-анализ

Автоматизированный системно-когнитивный анализ, как реально работающий АСА, предложен и разработан проф. Е. В. Луценко в 2002 году [6] и получил детальное и всестороннее развитие в десятках монографий и сотнях научных статей Ссылка на некоторые из них приведены здесь: http://lc.kubagro.ru/aidos/_Aidos-X.htm .

Основная идея Е. В. Луценко, позволившая сделать это, состоит в рассмотрении автоматизированного системного анализа как метода познания (отсюда и использование термина: «когнитивный» от «cognitio» - знание, познание, лат.).

Эта идея позволила структурировать автоматизированный системный анализ не по этапам, как это пытались сделать другие ученые, а по конкретным базовым когнитивным операциям (БКОСА), т.е. таким операциям, из комбинаций которых конструируются всевозможные операции системного анализа. Таких базовых операций оказалось 10 и они образуют когнитивный конфигуратор:

1) присвоение имен;

2) восприятие;

3) обобщение (синтез, индукция);

4) абстрагирование;

5) оценка адекватности модели;

6) сравнение, идентификация и прогнозирование;

7) дедукция, силлогизм и абдукция;

8) классификация и генерация конструктов;

9) содержательное сравнение;

10) планирование и принятие решений об управлении.

Каждая из этих операций достаточно элементарна для формализации и программной реализации.

Рассмотрим чуть подробнее п.7. Пример силлогизма (или дедуктивного рассуждения «от общего к частному»):

Всякий человек смертен (большая посылка)

Сократ - человек (меньшая посылка)

Сократ смертен (заключение)

Абдукция представляет вид вывода с той особенностью, что из посылки, которая является условным высказыванием, и заключения вытекает вторая посылка. Например, если рассмотреть тот же пример Сократом:

Всякий человек смертен (большая посылка)

Сократ смертен (заключение)

Мы можем предположить, что меньшая посылка: «Сократ - человек (меньшая посылка)».

Однако, кроме указания одного признака Сократа: что он смертен, мы можем привести и другие его признаки, которые могут помочь идентифицировать его как человека или препятствовать этому.

По сути, при абдукции мы по признакам объекта, его экстенсиональному описанию, относим его к обобщающим категориям: референтным классам [44], т.е. восстанавливаем его интенсиональное описание, и делаем это путем решения задачи определения степени релевантности объекта классу или решения задачи классификации (идентификации, распознавания, прогнозирования, классификации, диагностики). При этом мы никогда не можем точно установить принадлежит ли объект классу, но можем лишь высказать гипотезу [45] об этом и оценить степень достоверности этой гипотезы (ее релевантности). Поэтому абдукция имеет широкое применение в системах искусственного интеллекта, в т.ч. в системе «Эйдос».

4.2.1.4 Что включает в себя АСК-анализ

АСК-анализ Е. В. Луценко представляет собой единственный существующий в настоящее время реально работающий вариант автоматизированного системного анализа. Но, конечно, это совершенно не исключает того, что в будущем, возможно, будут разработаны и другие его варианты.

Автоматизированный системно-когнитивный анализ включает: формализуемую когнитивную концепцию, математическую модель, методику численных расчетов и реализующий их программный инструментарий, в качестве которого в настоящее время выступает постоянно совершенствуемая автором универсальная когнитивная аналитическая система "Эйдос".

Компоненты АСК-анализа:

- формализуемая когнитивная концепция и следующий из нее когнитивный конфигуратор;

- теоретические основы, методология, технология и методика АСК-анализа;

- обобщенная и частные математические модели АСК-анализа, основанная на системном обобщении теории информации;

- методика численных расчетов, в универсальной форме реализующая математическую модель АСК-анализа на компьютерах, включающая иерархическую структуру данных и 24 детальных алгоритма 10 БКОСА;

- специальное инструментальное программное обеспечение, реализующее математическую модель и численный метод АСК-анализа - Универсальная когнитивная аналитическая система "Эйдос".

Этапы АСК-анализа:

1) когнитивно-целевая структуризация предметной области;

2) формализация предметной области (конструирование классификационных и описательных шкал и градаций и подготовка обучающей выборки);

3) синтез системы обобщенных и частных моделей предметной области (в настоящее время система «Эйдос» поддерживает 3 статистические модели и 7 системно-когнитивных моделей);

4) оценка достоверности (верификация) системы моделей предметной области;

5) повышение достоверности системы моделей, в т.ч. адаптация и пересинтез этих моделей;

6) решение задач идентификации, прогнозирования и поддержки принятия решений;

7) исследование объекта моделирования (процесса, явления) путем исследования его моделей: кластерно-конструктивный анализ классов и факторов; содержательное сравнение классов факторов; изучение системы детерминации состояний моделируемого объекта, нелокальные нейроны и интерпретируемые нейронные сети прямого счета; построение классических когнитивных моделей (когнитивных карт); построение интегральных когнитивных моделей (интегральных когнитивных карт).

4.2.1.5 Какие ученые принимали и сейчас принимают участие в развитии АСК-анализа

Необходимо отметить, что в развитии различных теоретических основ и практических аспектов АСК-анализа приняли участие многие ученые: д.э.н., к.т.н., проф. Луценко Е.В., Засл. деятель науки РФ, д.т.н., проф. Лойко В.И., к.ф.-м.н., Ph.D., проф., Трунев А.П. (Канада), д.э.н., д.т.н., к.ф.-м.н., проф. Орлов А.И., к.т.н., доц. Коржаков В.Е., д.э.н., проф. Барановская Т.П., д.э.н., к.т.н., проф. Ермоленко В.В., к.пс.н. Наприев И.Л., к.пс.н., доц. Некрасов С.Д., к.т.н., доц. Лаптев В.Н., к.пс.н, доц. Третьяк В.Г., к.пс.н., Щукин Т.Н., д.т.н., проф. Симанков В.С., д.э.н., проф. Ткачев А.Н., д.т.н., проф. Сафронова Т.И., д.э.н., доц. Горпинченко К.Н., к.э.н., доц. Макаревич О.А., к.э.н., доц. Макаревич Л.О., к.м.н. Сергеева Е.В. (Лаптева Е.В.), Бандык Д.К. (Белоруссия), Чередниченко Н.А., к.ф.-м.н. Артемов А.А., д.э.н., проф. Крохмаль В.В., д.т.н., проф. Рябцев В.Г., к.т.н., доц. Марченко А.Ю., д.т.н., проф. Фролов В.Ю., д.ю.н, проф. Швец С.В., Засл. деятель науки Кубани, д.б.н., проф. Трошин Л.П., Засл. изобр. РФ, д.т.н., проф. Серга Г.В., Сергеев А.С., д.б.н., проф. Стрельников В.В. и другие.

4.2.1.6 Каков индекс цитирования ученых, принимающих участие в развитии АСК-анализа

Работы по АСК-анализу вызывают большой интерес у научной общественности. Это подтверждается высокими индексами цитирования этих ученых (например, проф. Е. В. Луценко занимает 1-ю позицию в России среди ученых в области кибернетики, к которой относится искусственный интеллект по индексу Хирша).

4.2.1.7 Докторские и кандидатские диссертации защищенные с применением АСК-анализа в различных областях науки

Метод системно-когнитивного анализа и его программный инструментарий интеллектуальная система "Эйдос" были успешно применены при проведении ряда кандидатских и докторских диссертационных работ в ряде различных предметных областей по экономическим, техническим, психологическим и медицинским наукам. С применением АСК-анализа проведены исследования и защищены диссертации:

- доктора экономических наук - 4:

Е.В.Луценко: http://ej.kubagro.ru/a/viewaut.asp?id=11

А.Н.Ткачев: http://ej.kubagro.ru/a/viewaut.asp?id=20

В.В.Крохмаль: http://ej.kubagro.ru/a/viewaut.asp?id=22

К.Н.Горпинченко: http://ej.kubagro.ru/a/viewaut.asp?id=646

доктора технических наук - 2:

В.С.Симанков:http://www.yandex.ru/yandsearch?text=профессор Симанков Владимир Сергеевич

Т.И.Сафронова: http://ej.kubagro.ru/a/viewaut.asp?id=111

кандидата психологических наук - 4:

С.Д.Некрасов: http://manag.kubsu.ru/index.php/ofup/kafedry/174-nekrasov

В.Г.Третьяк: http://law.edu.ru/person/person.asp?persID=1345265

Т.Н.Щукин: http://ej.kubagro.ru/a/viewaut.asp?id=94 http://2045.ru/expert/27.html

И.Л.Наприев: http://ej.kubagro.ru/a/viewaut.asp?id=573

- кандидат технических наук - 1:

Е.В.Луценко: http://ej.kubagro.ru/a/viewaut.asp?id=11

- кандидат экономических наук - 1:

Л.О.Макаревич: http://www.mesi.ru/upload/iblock/b5a/Автореферат%20Макаревич%20ЛО.pdf http://ej.kubagro.ru/a/viewaut.asp?id=1377

- кандидат медицинских наук - 1:

Сергеева Е.В. (Лаптева Е.В.): http://ej.kubagro.ru/a/viewaut.asp?id=1034

На текущий момент времени в процессе выполнения и выхода на защиту находится еще несколько диссертаций на соискание ученых степеней кандидатов и докторов экономических наук.

4.2.1.8 Сколько грантов РФФИ и РГНФ выполнено и выполняется с применением АСК-анализа

С применением АСК-анализа с использованием системы "Эйдос" были выполнены (или находятся в процессе выполнения) следующие гранты РФФИ и РГНФ (пронумерованы только одобренные проекты):

РФФИ

Номер проекта

Название проекта

Начало - окончание

02-01-00035-а

Разработка компьютерных методов изучения эмерджентных свойств плодовых культур с дальнейшим использованием их для оптимизации выращивания

2002 -2004

1

02-05-64234-а

Разработка теории многокритериальной оценки ландшафтных и метеорологических характеристик юга России для увеличения продуктивности плодовых культур на основе создания системы банков данных и компьютерного моделирования.

2002 - 2003

2

03-04-96771-р2003юг_а

Разработка новой методологии районирования сортов сельскохозяйственных культур на основе системного подхода при анализе и математическом прогнозе их жизнеобеспечения и продуктивности

2003 - 2005

3

03-07-96801-р2003юг_в

Создание системы мониторинга, прогнозирования, анализа и поддержки управленческих решений по продуктивности плодовых культур на основе электронных баз данных

2003- 2005

06-06-96644-р_юг_а

Семантические информационные модели управления агропромышленным комплексом

2006 - 2008

07-07-13510-офи_ц

Инвестиционное управление АПК на основе методологии системно-когнитивного анализа

2007 - 2008

08-06-99005-р_офи

Управление в АПК исходя из критерия качества жизни

2008 - 2009

09-06-13509-офи_ц

Системно-когнитивные основы инвестиционного управления региональным агропромышленным комплексом

2009 - 2010

4

11-06-96508-р_юг_ц

Системно-когнитивные основы инвестиционного управления региональным агропромышленным комплексом

2011 - 2012

13-07-96507

Принципы создания облачного сервиса по курсу математики с визуализацией понятийного аппарата, процесса доказательств теорем и выполнения практических заданий

2013 - 2014

5

15-06-02569

Когнитивные модели прогнозирования развития многоотраслевой корпорации

2015 - 2017

6

16-06-00114

Разработка интеллектуальной технологии исследования влияния экологических факторов на различные аспекты качества жизни населения региона

2016 - 2018

15-29-02530

Управление генресурсами семейства Rosaceae и Juglandacea для сохранения и использования биораpнообразия культурных растений на основе информационной системы, включая оцифровку коллекций

2015 - 2017

15-29-02545

Ампелографическое и молекулярно-генетическое изучение происхождения, структуры, динамики генетических ресурсов рода Vitis (Tournef) L., их систематизация и оцифровка для эффективного управления биоресурсами

2015 - 2017

РГНФ

Номер проекта

Название проекта

Начало - окончание

1

13-02-00440а

Методологические основы управления экономической устойчивостью перерабатывающего комплекса региона с применением технологий искусственного интеллекта

2013 - 2015

16-02-00185а

Управление качеством жизни населения региона через объемы и направленность инвестиций в АПК на примере Краснодарского края

2018 - 2018

2

17-02-00064а

Системно-когнитивный анализ в управлении номенклатурой и объемами закупки-реализации продукции в торговой агрофирме

2017 - 2019

4.2.1.9 Сколько монографий, патентов, публикаций, входящих в Перечень ВАК есть по АСК-анализу

По проблематике АСК-анализа издано 23 монографии (еще несколько в стадии подготовки к печати), получено 29 патентов на системы искусственного интеллекта, их подсистемы, режимы и приложения, издано около 228 статей в изданиях, входящих в Перечень ВАК РФ. В одном только Научном журнале КубГАУ (входит в Перечень ВАК РФ с 26-го марта 2010 года) автором АСК-анализа и разработчиком системы «Эйдос» проф.Е.В.Луценко опубликовано 206 статей, общим объёмом 365,871 у.п.л., в среднем 1,776 у.п.л. на одну статью http://ej.kubagro.ru/a/viewaut.asp?id=11 .

4.2.1.10 В каких областях и где уже применялись АСК-анализ и система «Эйдос»

Анализ приведенных выше грантов, диссертаций и публикаций [3-327] позволяет констатировать, что АСК-анализ успешно применяется в следующих предметных областях и научных исследованиях:

- региональная экономика;

- отраслевая экономика;

- экономика предприятий;

- технические науки - интеллектуальные системы управления в возобновляемой энергетике;

- технические науки - мелиорация и управление мелиоративными системами;

- психология личности;

- психология экстремальных ситуаций;

- психология профессиональных и учебных достижений;

- медицинская диагностика;

- прогнозирование результатов применения агротехнологий;

- принятие решений по выбору рациональных агротехнологий;

- геофизика: прогнозирование землетрясений;

- геофизика: прогнозирование параметров магнитного поля Земли;

- геофизика: прогнозирование движения полюсов Земли.

На рисунке ниже представлены использование системы «Эйдос» в различных странах мира, причем в основном, к сожалению, не в России:

Карта и база данных системы «Эйдос» с информацией о запусках системы «Эйдос » в мире с 09.12.2016 по 24.03.2017

Вместо пояснения по рисунку приведем ниже экранную форму помощи по режиму, обеспечивающему отображение на карте мира и в базе данных информации о запусках системы «Эйдос»:

Экранная форма Help по режиму 6.9 системы «Эйдос»

Исследования по некоторым из перечисленных направлений мы постараемся отразить в данной монографии.

Две монографии проф. Е. В. Луценко размещены в библиотеке конгресса США [5, 18]:

- Симанков В.С., Луценко Е.В. Адаптивное управление сложными системами на основе теории распознавания образов. Монография (научное издание). - Краснодар: ТУ КубГТУ, 1999. - 318с. http://elibrary.ru/item.asp?id=18828433.

- Трунев А.П., Луценко Е.В. Автоматизированный системно-когнитивный анализ влияния факторов космической среды на ноосферу, магнитосферу и литосферу Земли: Под науч. ред. д.т.н., проф. В.И.Лойко. Монография (научное издание). - Краснодар, КубГАУ. 2012. - 480 с. ISBN 978-5-94672-519-4. http://elibrary.ru/item.asp?id=21683737.

4.2.1.11 В каких областях может применяться АСК-анализ

По мнению авторов АСК-анализ, как метод искусственного интеллекта, может успешно применяться во всех областях, в которых для решения своих профессиональных задач специалист использует свой естественный интеллект, при этом АСК-анализ выступает в качестве инструмента, многократно увеличивающего возможности естественного интеллекта.

АСК-анализ может применяться во всех предметных областях, где ученый или практики решает свои профессиональные задачи и проблемы, постоянно развивает свои знания, используя новейшие достижения в сфере искусственного интеллекта.

Главный вывод: автоматизированный системно-когнитивный анализу присущи все основные признаки нового перспективного междисциплинарного научного направления в рамках автоматизированного системного анализа.

4.2.1.12 Internet-ссылки по АСК-анализу

Интернет-ссылки по АСК-анализу лучше всего представлены на сайте проф. Е.В.Луценко: http://lc.kubagro.ru/. Данный сайт посетило уже около 500000 посетителей с уникальными IP-адресами.

Страничка проф. Е.В.Луценко имеется на сайте Научного журнала КубГАУ: http://ej.kubagro.ru/a/viewaut.asp?id=11. В расчете на фамилию автора приходится более 270000 прочтений статей.

4.2.1.13 О плагиаторах, использующих работы по АСК-анализу, находящиеся в Internet в открытом доступе

Все авторы научных работ по АСК-анализу всегда размещали и размещают их в свободном открытом бесплатном доступе, чем не преминули воспользоваться плагиаторы. Лучше всего их деятельность описана в статье «Групповой плагиат: от студента до министра» Вяткин В.Б. Групповой плагиат: от студента до министра. - Троицкий вариант -- Наука - http://trv-science.ru - [Электронный ресурс]. Адрес доступа: http://trv-science.ru/2011/11/08/gruppovojj-plagiat-ot-studenta-do-ministra/ или: http://trv-science.ru/2011/11/08/gruppovojj-plagiat-ot-studenta-do-ministra/print/ . Чтобы найти многочисленные «труды» плагиаторов, включая диссертации, достаточно в любой поисковой системе Internet сделать запрос, например: «Коэффициенты эмерджентности Хартли, Харкевича, Шеннона», которые автор системной теории информации (СТИ) проф. Е.В.Луценко назвал так в честь этих выдающихся ученых в области теории информации. При этом автор следовал сложившейся научной традиции называть единицы измерения и математические выражения в честь указанных выдающихся ученых. Причем часто плагиаторы даже не понимают, что сами основоположники и классики теории информации не предлагали этих коэффициентов, а предложены они были в работах проф. Е.В.Луценко [7] См., также: Луценко Е.В. Подборка публикаций по вопросам системного обобщения математики, теории множеств и теории информации: http://www.twirpx.com/file/780491/. Наверное, поэтому они и не считают нужным делать ссылки и пишут, например:

1. «По Харкевичу коэффициент эмерджентности определяет степень детерменированности ситемы…» (подчеркнуто нами, авт., в цитате сохранены орфографические ошибки плагиатора).

2. «Отсюда строится системная численная мера количества информации в ИС на основе оценки эмерджентности системы (по Хартли и Харкевичу)» (выделено плагиатором).

Эти фразы легко найти в Internet. Здесь автор не считает нужным уделять вопросу о плагиате большего внимания. Отметим лишь, что эта плагиаторская деятельность не просто продолжается, а даже набирает обороты.

4.2.2 Движение познания от эмпирических данных к информации, а от нее к знаниям

Данные - это информация, записанная на каком-либо носителе (или находящаяся в каналах связи) и представленная на каком-то языке или в системе кодирования.

Это определение является общепринятым См., например: http://dic.academic.ru/dic.nsf/ruwiki/71919 , но не выдерживает никакой критики.

Во-первых, обычно определение понятия дается через более общее понятие и выделение специфического признака.

Например: млекопитающее - это животное (более общее понятие), выкармливающее своих детенышей молоком (специфический признак).

Если следовать этой логике, то понятие информации должно быть более общим, чем понятие данных, а на самом еле как раз наоборот. Кроме того, специфическим признаком информации, которая является данными, оказывается то, что она записана на каком-то носителе, в том время как и данные и информация, всегда записаны на каком-либо носителе в какой-то системе кодирования и невозможно даже представить себе информации, не записанной на носителе и не представленной на каком-либо языке.

Во-вторых, естественно, и более общее понятие, и специфический признак, должны быть известны и сами не требовать определения, иначе получится, что мы определяем одно неизвестное через другое неизвестное, иногда даже более неизвестное, чем первое. Но понятие информации является не менее неизвестным, чем определяемое через него понятие данных.

Например, мы определяем что такое бутерброд и говорим: «бутерброд это хлеб, на который намазано масло». А когда мы спрашиваем, что же такое хлеб, нам отвечают: «Но так это же просто: это то, на что намазывают масло, когда делают бутерброд». И когда, наконец, мы спрашиваем, а что такое масло, нам говорят: «Но это Вы уже и сами должны были догадаться, - это то, что намазывают на хлеб, когда делают бутерброд». Мы уже не говорим о смысле слова: «намазывают». Все вместе взятые эти «определения» выглядят уже просто как издевательство. Наверное это было бы даже смешно, если бы не было грустно, т.к. в науке подобный способ давать определения, как это ни странно, довольно распространен. Например нетрудно найти подобные «определения» материи и сознания друг через друга: материя - это то, что существует вне и независимо от сознания, а сознание это способность мозга, что отражать материю См., например: http://nounivers.narod.ru/bibl/diam9.htm: «Материя есть объективная реальность, существующая вне и независимо от сознания, тогда как сознание производно от материи и зависит от неё. Сознание есть отражение объективного мира в мозгу человека. Сознание-свойство высокоорганизованной материи, способность нашего мозга отражать вне нас существующий материальный мир.».

Исходные данные об объекте управления обычно представлены в форме баз данных, чаще всего временных рядов, т.е. данных, привязанных ко времени. В соответствии с методологией и технологией автоматизированного системно-когнитивного анализа (АСК-анализ), развиваемой проф. Е.В.Луценко, для управления и принятия решений использовать непосредственно исходные данные не представляется возможным. Точнее сделать это можно, но результат управления при таком подходе оказывается мало чем отличающимся от случайного. Для реального же решения задачи управления необходимо предварительно преобразовать данные в информацию, о том, какие воздействия на объект моделирования к каким последствиям приводят, и в знания о том, какие значения факторов применить для воздействия на объект моделирования, чтобы он перешел в заранее заданные желательные целевые состояния.

Информация есть осмысленные данные.

Смысл данных, в соответствии с концепцией смысла Шенка-Абельсона [21], состоит в том, что известны причинно-следственные зависимости между событиями, которые описываются этими данными. Понятие причинно-следственных связей относится к реальной области. Данные же являются лишь моделью, с определенной степенью адекватности отражающей реальную предметной область. Поэтому в данных никаких причинно-следственных связей нет и выявить их в данных невозможно.

Но причинно следственные связи вполне возможно выявить между событиями, отражаемыми этими данными. Но для этого нужно предварительно преобразовать базу исходных данных в базу событий. Операция выявления причинно-следственных связей между событиями, отраженными в данных, называется «Анализ данных». По сути, анализ данных представляет собой их осмысление и преобразование в информацию.

Например, анализируя временные ряды, отражающие события на фондовом рынке, мы начинаем замечать, что если вырос спрос на какую-либо валюту, то за этим обычно следует повышение ее курса.

Анализ данных включает следующие этапы:

1. Выявление событий в данных:

- разработка классификационных и описательных шкал и градаций;

- преобразование исходных в базу событий - эвентологическую базу, путем кодирования исходных данных с применением классификационных и описательных шкал и градаций, т.е. по сути путем нормализации исходных данных.

2. Выявление причинно-следственных зависимостей между событиями в эвентологияческой базе данных.

В случае систем управления, событиями в данных являются совпадения определенных значений входных факторов и выходных параметров объекта управления, т.е. по сути, случаи перехода объекта управления в определенные будущие состояния, соответствующие классам, под действием определенных сочетаний значений управляющих факторов. Качественные значения входных факторов и выходных параметров естественно формализовать в форме лингвистических переменных. Если же входные факторы и выходные параметры являются числовыми, то их значения измеряются с некоторой погрешностью и фактически представляют собой интервальные числовые значения, которые также могут быть представлены или формализованы в форме порядковых лингвистических переменных (типа: «малые», «средние», «большие» значения показателей).

Какие же математические меры могут быть использованы для количественного измерения силы и направления причинно-следственных зависимостей?

Наиболее очевидным ответом на этот вопрос, который обычно первым всем приходит на ум, является: «Корреляция». Однако, в статистике хорошо известно, что это совершенно не так, т.к. для выявления причинно-следственных связей в соответствии с методом научной индукции (Ф.Бэкон, Дж.Милль) необходимо сравнивать результаты по крайней мере в двух группах, в одной из которых фактор действовал, а в другой нет.

Например, на плакате, выпущенном полицией Автор такой плакат видел, когда проходил медосмотр перед получением прав нового образца., написано: «По статистике, порядка 7,5-8 % аварий в России ежегодно совершается по вине водителей, находящихся в состоянии алкогольного опьянения» См., например: https://cnev.ru/polezno/stati/osnovnye-prichiny-dtp-pyanstvo-za-rulem . Все. Точка. Больше ничего не написано. Однако, чтобы понять, является ли состояние алкогольного опьянения фактором, увеличивающим риск совершения ДТП или его тяжесть, этой информации недостаточно. Для этого обязательно необходима также информация о том, сколько процентов аварий в России ежегодно совершается по вине трезвых водителей. Но эта информация не приводится, поэтому формально здесь возможно три варианта: 1) по вине трезвых водителей аварий совершается меньше, чем по вине пьяных; 2) по вине трезвых водителей аварий совершается столько же, сколько по вине пьяных; 3) по вине трезвых водителей аварий совершается больше, чем по вине пьяных. Первый вариант содержит информацию о том, что опьянение - это фактор риска совершения ДТП, второй - что это никак не влияет на риск совершения ДТП, а третий - что опьянение уменьшает его. Конечно, все понимают, что в жизни реализуется 1-ф вариант. Но об этом ведь нет прямых статистических данных. Таким образом, знак разности этих процентов определяет направление влияния этого фактора, а модуль этой разности силу его влияния, что и используется как один из частных критериев знаний в АСК-анализе и системе «Эйдос» [35].

Для преобразования исходных данных в информацию необходимо не только выявить события в этих данных, но и найти причинно-следственные связи между этими событиями. В АСК-анализе предлагается 7 количественных мер причинно-следственных связей, основной из которых является семантическая мера целесообразности информации по А. Харкевичу. Все эти меры причинно-следственных связей основаны на сравнении условных вероятностей встречи различных значений факторов при переходе объекта моделирования в различные состояния и по всей выборке.

Знания - это информация, полезная для достижения целей, т.е. для управления.

Значит для преобразования информации в знания необходимо:

1. Поставить цель (классифицировать будущие состояния моделируемого объекта на целевые и нежелательные в какой-то шкале, лучше всего в порядковой или числовой).

2. Оценить полезность информации для достижения этой цели (знак и силу влияния).

Второй пункт, по сути, выполнен при преобразовании данных в информацию. Поэтому остается выполнить только первый пункт, т.к. классифицировать будущие состояния объекта управления как желательные (целевые) и нежелательные.

Знания могут быть представлены в различных формах, характеризующихся различной степенью формализации:

- вообще неформализованные знания, т.е. знания в своей собственной форме, ноу-хау (мышление без вербализации есть медитация);

- знания, формализованные в естественном вербальном языке;

- знания, формализованные в виде различных методик, схем, алгоритмов, планов, таблиц и отношений между ними (базы данных);

- знания в форме технологий, организационных, производственных, социально-экономических и политических структур;

- знания, формализованные в виде математических моделей и методов представления знаний в автоматизированных интеллектуальных системах (логическая, фреймовая, сетевая, продукционная, нейросетевая, нечеткая и другие).

Таким образом, для решения сформулированной проблемы необходимо осознанно и целенаправленно последовательно повышать степень формализации исходных данных до уровня, который позволяет ввести исходные данные в интеллектуальную систему, а затем:

- преобразовать исходные данные в информацию;

- преобразовать информацию в знания;

- использовать знания для решения задач управления, принятия решений и исследования предметной области.

Процесс преобразования данных в информацию, а ее в знания называется анализ:

В системе «Эйдос» этот процесс осуществляется в следующей последовательности:

Основные публикации автора по вопросам выявления, представления и использования знаний [21, 22, 23].

Из вышеизложенного можно сделать обоснованный вывод о том, что АСК-анализ и система «Эйдос» обеспечивают движение познания от эмпирических данных к информации, а от нее к знаниям. По сути это движение от феноменологических моделей, описывающих явления внешне, к содержательным теоретическим моделям.

4.2.3 Когнитивные функции

Когнитивные функции представляют собой отображение в наглядном графическом виде количества информации, которое содержится в различных значениях аргумента (т.е. значениях описательных шкал, значениях факторов) о различных значениях функции (градаций классификационных шкал, или классов) [7, 24-34]. Поэтому когнитивные функции отражают не только внешний вид функциональной зависимости, как в феноменологических моделях, но и смысл этой зависимости, т.е. являются средством визуализации причинно-следственных зависимостей.

В работе [36] приведено теоретическое обоснование применения системно-когнитивных моделей вместо содержательных аналитических моделей сложных технических систем. Презентация к данной работе находится по адресу: http://ej.kubagro.ru/2016/07/upload/02.zip. В работе [37] приведен развернутый детальный пример такого применения, в т.ч. с использованием аппарата когнитивных функций.

4.2.4 Автоматизированный SWOT- и PEST-анализ

SWOT-анализ является широко известным и общепризнанным метод стратегического планирования. Однако это не мешает тому, что он подвергается критике, часто вполне справедливой, обоснованной и хорошо аргументированной. В результате критического рассмотрения SWOT-анализа выявлено довольно много его слабых сторон (недостатков), источником которых является необходимость привлечения экспертов, в частности для оценки силы и направления влияния факторов. Ясно, что эксперты это делают неформализуемым путем (интуитивно), на основе своего профессионального опыта и компетенции. Но возможности экспертов имеют свои ограничения и часто по различным причинам они не могут и не хотят это сделать. Таким образом, возникает проблема проведения SWOT-анализа без привлечения экспертов. Эта проблема может решаться путем автоматизации функций экспертов, т.е. путем измерения силы и направления влияния факторов непосредственно на основе эмпирических данных. Подобная технология разработана давно, ей уже около 30 лет, но она малоизвестна - это интеллектуальная система «Эйдос». В статье на реальном численном примере подробно описывается возможность проведения количественного автоматизированного SWOT-анализа средствами АСК-анализа и интеллектуальной системы «Эйдос-Х++» без использования экспертных оценок непосредственно на основе эмпирических данных. Предложено решение прямой и обратной задач SWOT-анализа [38]. PEST-анализ рассматривается как SWOT-анализ, с более детализированной классификацией внешних факторов [38].

Выводы, полученные с помощью Автоматизированного SWOT- и PEST-анализа можно непосредственно использовать для достижения целей, т.е. для управления. Это и означает, что АСК-анализ и его программный инструментарий - интеллектуальная система «Эйдос» обеспечивают создание непосредственно на основе эмпирических данных содержательных феноменологических моделей и их применение для решения задач идентификации, поддержки управляющих решений и исследования моделируемой предметной области.

4.2.5 Системно-когнитивные модели как содержательные эмпирические модели (выводы)

Из вышеизложенного можно обоснованно сделать следующие выводы:

1. Системно-когнитивные модели, создаваемые в АСК-анализе с помощью интеллектуальной системы «Эйдос» непосредственно на основе эмпирических данных представляют собой новый, ранее неизвестный класс моделей: содержательные феноменологические модели, которые занимают промежуточное положение между эмпирическими феноменологическими моделями и содержательными теоретическим модели. Система «Эйдос» обеспечивает визуализацию знаний о моделируемом объекте, содержащихся в системно-когнитивных моделях, в форме развитой когнитивной графики, в частности в форме когнитивных функций, разнообразных когнитивных диаграмм и SWOT-диаграмм [38]. Необходимо особо подчеркнуть, что все эти диаграммы формируются не основе экспертных оценок, получаемых неформализуемым способом на основе интуиции, опыта и профессиональной компетенции, а на основе системно-когнитивных моделей, формируемых непосредственно на основе эмпирических данных.

2. АСК-анализ и система «Эйдос» обеспечивают движение познания от эмпирических данных к информации, а от нее к знаниям. По сути это движение от феноменологических моделей, описывающих явления внешне, к содержательным теоретическим моделям. Конечно, до создания теоретических моделей этот процесс не доходит, но он уменьшает разрыв или пропасть, существующую между эмпирическими феноменологическими моделями и содержательными теоретическим моделями. А значит и облегчает преодоление этого разрыва, т.е. подготавливает более благоприятную почву для разработки теоретических моделей уже не на основе эмпирических моделей, а на основе системно-когнитивных моделей [36, 37]. Таким образом не смотря на то, что системно-когнитивные модели являются содержательными феноменологическими моделями и отражают смысловые причинно-следственные связи между событиями реальной области они также требуют содержательной теоретической интерпретации, разработка которой является делом специалиста-эксперта содержательно разбирающегося в моделируемой предметной области.

3. Вместе с тем, опыт применения АСК-анализа и системы «Эйдос» показывает, что в ряде практически значимых случаев, таких, например, как принятие решений по рациональному выбору конструктивных особенностей и режимов работы сложных технических систем [36, 37], оказывается, что системно-когнитивных моделей в принципе достаточно для решения поставленных задач и в разработке содержательных теоретических моделей нет особой необходимости. А ранее, когда в распоряжении исследователей и разработчиков были лишь феноменологические модели, а ранее такая необходимость была, т.к. эти модели не позволяли решать те задачи, которые решались лишь с применяем теоретических моделей.

4.3 Движение познания от частных и менее адекватных моделей объекта познания к более общим и более адекватным: принцип соответствия

4.3.1 Множественность адекватных моделей

Пусть у нас есть таблица с координатами точек: (X, Y), отражающая на эмпирическом уровне некоторую предметную область (результаты наблюдений или эксперимента). Эти точки образуют некое облако точек на плоскости. Спрашивается, как построить аналитическую модель этих эмпирических данных? Один из вариантов ответа на этот вопрос, реализованный в регрессионном анализе, состоит в том, чтобы провести некую кривую (тренд) таким образом, чтобы сумма квадрата отклонений от кривой до этих точек была минимальна? Другой вариант ответа на этот вопрос дает АСК-анализ [31, 39, 40]. Возможны и другие варианты. В реализации регрессионного анализа MS Excel пользователь сам выбирает функцию для аппроксимации эмпирических данных и нескольких вариантов. Качество аппроксимации, т.е. достоверность модели, количественно отражается в значении коэффициента детерминации R2. При этом опыт показывает, что значения R2 для разных функций иногда оказываются очень близкими, практически одинаковыми.

...

Подобные документы

  • Экономико-математическое моделирование как метод научного познания, классификация его процессов. Экономико-математическое моделирование транспортировки нефти нефтяными компаниями на примере ОАО "Лукойл". Моделирование личного процесса принятия решений.

    курсовая работа [770,1 K], добавлен 06.12.2014

  • Особенности и сущность моделей системной динамики. Характеристика контуров с положительной и отрицательной обратной связью. Моделирование S-образного роста. Разработка модели запаздывания и ее построение. Основные разновидности моделей мировой динамики.

    реферат [134,7 K], добавлен 22.02.2013

  • Методология анализа сложных объектов, изучения и познания процессов. Основные принципы системного подхода к анализу проблем и основные понятия о системах. Декомпозиция, анализ подпроблем и их решение, выявление альтернатив и выбор оптимальных решений.

    контрольная работа [47,5 K], добавлен 04.08.2010

  • Математическое моделирование как теоретико-экспериментальный метод позновательно-созидательной деятельности, особенности его практического применения. Основные понятия и принципы моделирования. Классификация экономико-математических методов и моделей.

    курсовая работа [794,7 K], добавлен 13.09.2011

  • Понятие системы управления, ее назначение и целевые функции. Суть параметрического метода исследования на основе научного аппарата системного анализа. Проведение исследования системы управления на предприятии "Атлант", выявление динамики объема продаж.

    курсовая работа [367,1 K], добавлен 09.06.2010

  • Использование различных ресурсов для производства изделия с применением математических методов и построением функциональной зависимости. Математическая идеализация процентного изменения спроса. Составление модели межотраслевого баланса разных отраслей.

    контрольная работа [195,4 K], добавлен 19.08.2009

  • Структурные единицы научного направления, элементы исследований. Способы и приемы анализа априорной информации, получение научных результатов с использованием метода проб и ошибок, основные типы задач, топологические уравнения, приближенные модели.

    контрольная работа [77,3 K], добавлен 15.11.2010

  • Разработка модели авторегрессии скользящего среднего, которая описывает и объясняет динамику объема грузов, перевозимых основными видами транспорта. Применение этой модели для прогнозирования развития всей грузовой транспортной системы Украины.

    статья [514,3 K], добавлен 30.06.2012

  • Регламентация основ разработки сложных систем. Классификация структурных методологий и их примеры. Основные этапы подхода Мартина. Методологии структурного анализа Йодана/Де Марко и Гейна-Сарсона. Сравнительный анализ SADT-моделей и потоковых моделей.

    реферат [81,5 K], добавлен 05.10.2012

  • Построение математических моделей по определению плана выпуска изделий, обеспечивающего максимальную прибыль, с помощью графического и симплексного метода. Построение моделей по решению транспортных задач при применении метода минимальной стоимости.

    задача [169,2 K], добавлен 06.01.2012

  • Суть математического моделирования процессов и теории оптимизации. Метод дихотомии и золотого сечения. Поиск точки min методом правильного симплекса. Графическое решение задачи линейного программирования, моделирование и оптимизация трёхмерного объекта.

    курсовая работа [1,8 M], добавлен 15.01.2010

  • Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.

    контрольная работа [141,5 K], добавлен 02.02.2013

  • Сбор первичной научной информации, ее фиксация и хранение. Основные формы представления результатов исследовательской деятельности. Структура доклада, рецензии, научного отчета и реферата. Прожиточный минимум и сферы его использования. Анализ результатов.

    отчет по практике [36,4 K], добавлен 03.05.2013

  • Основы структурного системного анализа, принципы и вопросы создания функциональных моделей по методологии IDEF0: истоки структурного моделирования, границы системы, точка зрения модели, синтаксис графических диаграмм. Функциональные блоки, дуги.

    учебное пособие [514,6 K], добавлен 17.06.2011

  • Разработка теории динамического программирования, сетевого планирования и управления изготовлением продукта. Составляющие части теории игр в задачах моделирования экономических процессов. Элементы практического применения теории массового обслуживания.

    практическая работа [102,3 K], добавлен 08.01.2011

  • Математическое моделирование как метод оптимизации процессов. Расчет сушилок, баланс влаги. Моделирование процесса радиационно-конвективной сушки. Уравнение переноса массы. Период условно-постоянной скорости. Градиент влагосодержания и температуры.

    реферат [2,7 M], добавлен 26.12.2013

  • Исторический обзор теории финансового инвестирования. Применение методологического аппарата нелинейной динамики к моделированию и анализу процессов, протекающих на рынках ценных бумаг. Исследование фрактальных свойств американского фондового рынка.

    дипломная работа [2,3 M], добавлен 04.02.2011

  • Создание математической модели для оперативного мониторинга продажи услуг в Региональном филиале ОАО "Сибирьтелеком"-"Томсктелеком". Преимущества, стоимость и основные перспективы развития услуг ISDN. Математическое моделирование dial-up подключений.

    дипломная работа [2,8 M], добавлен 20.09.2010

  • Общая характеристика и классификация экономико-математических методов. Стохастическое моделирование и анализ факторных систем хозяйственной деятельности. Балансовые методы и модели в анализе связей внутризаводских подразделений, в расчетах и цен.

    курсовая работа [200,8 K], добавлен 16.06.2014

  • Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.

    реферат [91,1 K], добавлен 16.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.