Разработка и развитие устойчивых экономико-математических методов и моделей для модернизации управления предприятиями
Разработка экономико-математических моделей процессов стратегического управления промышленными предприятиями на основе концепции устойчивости по отношению к временным характеристикам. Общая схема устойчивости и ее применение в математических моделях.
Рубрика | Экономико-математическое моделирование |
Вид | автореферат |
Язык | русский |
Дата добавления | 26.02.2018 |
Размер файла | 197,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
На правах рукописи
УДК 658.51
разработка и развитие устойчивых экономико-математических методов и моделей для модернизации управления предприятиями
08.00.13 - Математические и инструментальные методы в экономике
АВТОРЕФЕРАТ
диссертации на соискание ученой степени доктора экономических наук
Орлов Александр Иванович
Москва - 2009
Работа выполнена в Московском государственном техническом университете им. Н.Э. Баумана
Официальные оппоненты: доктор экономических наук, профессор
Лагоша Борис Александрович
доктор экономических наук, профессор
Мищенко Александр Владимирович
доктор экономических наук, профессор
Чараев Георгий Георгиевич
Ведущая организация: Институт системного анализа РАН
Защита состоится 13 октября 2009 г. в ____ часов на заседании Диссертационного совета Д 212.142.06 при Московском государственном технологическом университете «Станкин» по адресу: 127994, Москва, Вадковский пер., д.1.
Ваш отзыв на автореферат в 1 экз., заверенный печатью, просим высылать по указанному адресу.
С диссертацией можно ознакомиться в библиотеке МГТУ «Станкин».
Автореферат разослан «___» ____________ 2009 г.
Учёный секретарь
Диссертационного Совета Д 212.142.06
к.э.н., доц. Еленева Ю.А.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы исследования. Справиться с вызовами современности наша страна может, лишь выйдя на инновационный путь развития. Для повышения эффективности процессов управления промышленными предприятиями, для обеспечения технологической независимости нашей страны необходимо применять экономико-математические методы и модели, основанные на адекватных теоретических подходах. В частности, необходимо учитывать, что исходные данные известны лишь с некоторой степенью точности, а самим методам и моделям присущи методические погрешности.
Процессы управления промышленными предприятиями реализуются в реальных ситуациях с достаточно высоким уровнем неопределенности. Велика роль нечисловой информации как на «входе», так и на «выходе» процесса принятия управленческого решения. Неопределенность и нечисловая природа управленческой информации должны быть отражены при анализе устойчивости экономико-математических методов и моделей.
Для обоснованного практического применения математические модели процессов управления промышленными предприятиями и основанных на них экономико-математических методов должна быть изучена их устойчивость по отношению к допустимым отклонениям исходных данных и предпосылок моделей. В результате удается оценить точность предлагаемого управленческого решения, выбрать из многих моделей наиболее адекватную, установить необходимую точность нахождения параметров и т.п.
Назрела необходимость в проведении исследований, нацеленных на разработку и развитие устойчивых математических методов и моделей, предназначенных для рационализации и оптимизации управления экономикой производственно-хозяйственной деятельности промышленных предприятий. (Понятие устойчивости конкретизируется в соответствии с решаемой организационно-экономической задачей.) Одним из таких исследований и является настоящая диссертационная работа. В ней получены научно обоснованные экономические решения в области разработки устойчивых экономико-математических методов и моделей, внедрение которых вносит значительный вклад в развитие экономики страны.
Степень изученности и разработанности проблемы. В публикациях отечественных и зарубежных авторов имеются теоретические и методологические разработки по существенным аспектам решаемой в диссертации проблемы. Теория устойчивости решений дифференциальных уравнений развивается с XIX в. (А.М. Ляпунов, Р. Курант, Л.С. Понтрягин, А.Н. Тихонов). В рамках теории систем проблему устойчивости рассматривали С.В. Емельянов, М. Месарович, Я. Такахара. Проблему устойчивости математических теорем относительно изменения их условий изучал С. Улам. Изучение свойств, не меняющихся при малых деформациях, т.е. устойчивых в терминологии настоящего исследования, ведут В.И. Арнольд, Г. Брёкер, В. Гийемин, М. Голубицкий, Л. Ландер (в рамках теории катастроф). В соответствии с концепцией «мягких» и «жестких» моделей В.И. Арнольда переход к случаю «общего положения» позволяет нам получать более сильные с математической точки зрения результаты.
Вероятностно-статистическое моделирование неопределенностей экономических явлений и процессов и разработку соответствующих методов анализа данных проводим в традициях отечественной вероятностно-статистической научной школы (А.Н. Колмогоров, Н.В. Смирнов, Б.В. Гнеденко, Л.Н. Большев, В.В. Налимов). Используем асимптотические методы математической статистики (А.А.Боровков, И.А. Ибрагимов, Ю.В. Прохоров, Р.З. Хасьминский). Важные результаты получены в области непараметрической статистики, нацеленной на получение выводов, устойчивых к изменению функций распределения результатов наблюдений (А.Н. Колмогоров, Н.В. Смирнов, Ю.Н. Тюрин, В.Н. Тутубалин, М. Холлендер, Д.А. Вулф). Устойчивостью процедур, характеризаций и разложений занимались В.М. Золотарев, М.Дж. Кендалл, А. Стьюарт, А.М. Каган, Ю.В. Линник, С.Р. Рао, И.В. Островский). Робастным статистическим методам посвящены работы Г.В. Тьюки, С.А. Смоляка, Б.П. Титаренко, П.Хьюбера, Ф.Хампеля.
Объектам нечисловой природы посвящена теория измерений (П. Суппес, Дж. Зинес, С.С. Стивенс, И. Пфанцагль, Ю.Н. Толстова), теория нечеткости (Л.А. Заде), интервальная математика и статистика (А.П. Вощинин, Ю.И. Шокин), статистика бинарных отношений и парных сравнений (Дж. Кемени, Дж. Снелл, Г. Дэвид), статистический контроль по альтернативному признаку (Ю.К. Беляев, Я.П. Лумельский).
Экономико-математическое моделирование опирается на методологию кибернетики (Н. Винер, Н.Н. Моисеев, В.М. Глушков, Ст. Бир, А.И. Берг). Большое влияние на автора оказали работы таких исследователей в области экономико-математических методов, как Л.В. Канторович, В.Л. Макаров, Г.Б. Клейнер, К.А. Багриновский, Е.Г. Гольштейн, В.Н. Лившиц, А.М. Рубинов, С.А. Смоляк. Отметим работы по управлению запасами Р.Г. Вильсона, Ф. Харриса, Дж. Букана, Э. Кенигсберга, Е.В. Булинской, Ф. Хэнсменна, Дж. Хедли, Т. Уайтина, Ю.И. Рыжикова.
Большой вклад в решение проблем управления организационными системами внесли Д.А. Новиков, В.Н. Бурков, В.Г. Горский, А.А. Дорофеюк, Б.Г. Литвак, О.И. Тёскин. Наиболее важны для нас исследования по проблемам управления экономикой производственно-хозяйственной деятельности промышленных предприятий В.Д. Калачанова, А.П. Ковалева, Б.А. Лагоши.
Мы работаем в русле научной школы МГТУ им. Н.Э. Баумана по экономике и организации производства (А.А. Колобов, И.Н. Омельченко, С.Г. Фалько и др.). Важны для нас исследования, выполненные в Российской академии наук (прежде всего в Центральном экономико-математическом институте, Институте проблем управления и Институте системного анализа), в Московском государственном университете им. М.В. Ломоносова и других вузах и научно-исследовательских организациях. Невозможно перечислить здесь сотни отечественных и зарубежных ученых и специалистов, которые получили важные результаты в рассматриваемой области. Ссылки на работы многих из них приведены в тексте диссертации.
Цель и задачи исследования. Целью диссертационного исследования является развитие теоретических основ и разработка методологии обоснования, выбора и создания новых математических методов и моделей, направленных на модернизацию управления предприятиями на основе изучения их устойчивости по отношению к допустимым отклонениям исходных данных и предпосылок моделей.
Для достижения поставленной в работе цели необходимо решить следующие задачи:
1. Развить методологию разработки математических методов и моделей процессов управления предприятиями, разработать общий подход к изучению устойчивости (общую схему устойчивости) таких моделей и методов и выделить частные постановки проблем устойчивости, в том числе устойчивость к изменению данных, их объемов и распределений, по отношению к временным характеристикам. Обосновать моделирование с помощью нечисловых объектов как подход к построению устойчивых методов и моделей.
2. На основе методологии устойчивости разработать непараметрические (устойчивые к изменению распределения) статистические методы для решения конкретных задач управления промышленными предприятиями - для оценки характеристик, прогнозирования, сегментации рынка и др.
3. Для разработки экономико-математических моделей нечисловых объектов установить связи между различными видами объектов нечисловой природы, построить вероятностные модели их порождения. На основе расстояний (показателей различия, мер близости) и задач оптимизации развить статистическую теорию в пространствах общей природы. Разработать методы моделирования конкретных нечисловых объектов.
4. Как самостоятельное направление нечисловой статистики разработать асимптотическую статистику интервальных данных на основе понятий нотны и рационального объема выборки, развить интервальные аналоги основных областей прикладной статистики.
5. На основе концепции устойчивости по отношению к временным характеристикам (моменту начала реализации проекта, горизонту планирования) провести экономико-математическое моделирование процессов стратегического управления промышленными предприятиями: обосновать применение асимптотически оптимальных планов, дать характеризацию моделей с дисконтированием.
6. На основе методологии устойчивости разработать устойчивые экономико-математические методы и модели процессов управления в функциональных областях производственно-хозяйственной деятельности предприятий и организаций, в которых существенны неопределенности, допускающие экономико-математическое моделирование, в частности, при использовании экспертных методов, в инновационном и инвестиционном менеджменте, при управлении качеством промышленной продукции, при выявлении предпочтений потребителей, при управления материальными ресурсами предприятия.
Объект и предмет исследования. Объектом исследования являются процессы управления производственно-хозяйственной деятельностью предприятий и организаций.
Предметом исследования являются вопросы разработки адекватных экономико-математических методов и моделей, предназначенных для модернизации (совершенствования, рационализации, оптимизации) процессов управления производственно-хозяйственной деятельностью предприятий и организаций.
Теоретическая и методологическая основа исследования. Теоретическую основу диссертации составили фундаментальные отечественные и зарубежные работы в области экономики и организации производства, достижения отечественной вероятностно-статистической школы, научных школ в области теории управления и экономико-математических методов. Для решения поставленных в диссертации задач использовались методы прикладной статистики, теории измерений, нечетких множеств, экономико-математического моделирования, теории оптимизации, экспертных оценок, статистики бинарных отношений, теории принятия решений, контроллинга, экономики предприятия, управления инновациями и инвестициями, менеджмента высоких технологий, стратегического планирования развития предприятий и других направлений. Достоверность и обоснованность полученных результатов базируется на использовании системного подхода, теоретических доказательствах и результатах статистического моделирования, опыте практического использования.
Научная новизна заключается в развитии положений теории устойчивости и разработке на их основе подхода к обоснованию, выбору и созданию экономико-математических методов и моделей, предназначенных для модернизации управления предприятиями, в разработке и развитии на основе указанного подхода математического аппарата анализа экономических систем, прежде всего непараметрической и нечисловой статистики, а также в разработке и исследовании устойчивых математических методов и моделей в ряде функциональных областей деятельности предприятий и организаций.
Основные результаты исследования, обладающие научной новизной, состоят в следующем:
1. На основе предложенных теоретических положений обоснована методология разработки и развития математических методов и моделей процессов управления промышленными предприятиями с использованием общего подхода к изучению устойчивости выводов по отношению к допустимым отклонениям исходных данных и предпосылок модели, разработаны отличающиеся от известных подходов общая схема устойчивости и принцип уравнивания погрешностей, выделены частные постановки проблем устойчивости, в том числе по отношению к изменению данных, их объемов и распределений, к временным характеристикам, обоснована необходимость разработки непараметрических статистических методов и методов анализа нечисловых данных, позволяющие ставить и решать конкретные задачи устойчивости (п.1.2 паспорта специальности 08.00.13 ВАК).
2. Для экономико-математических моделей процессов стратегического управления промышленными предприятиями на основе концепции устойчивости по отношению к временным характеристикам (моменту начала реализации проекта, горизонту планирования) получена новая характеризация моделей с дисконтированием, обосновано применение асимптотически оптимальных планов в условиях, отличающихся от известных, что позволяет проводить обоснованное построение и выбор экономико-математических методов и моделей при решении конкретных задач (п.1.4 паспорта специальности 08.00.13 ВАК).
3. Разработаны новые непараметрические (устойчивые к изменению распределения) статистические методы для решения конкретных задач управления промышленными предприятиями - для оценивания характеристик распределений данных, прогнозирования, сегментации рынка (проверки однородности независимых выборок) и др., найдены отличающиеся от известных условия применимости критериев Стьюдента и Вилкоксона, позволяющие проводить статистический анализ данных с произвольными функциями распределения (п.1.1 паспорта специальности 08.00.13 ВАК).
4. Развита статистическая теория в пространствах общей природы. В частности, предложены отличающиеся от известных способы введения эмпирических и теоретических средних, получены законы больших чисел для случайных элементов общей природы, установлено асимптотическое поведение решений экстремальных статистических задач, предложены и изучены непараметрические оценки плотности распределения вероятности, найдено асимптотическое распределение статистик интегрального типа. Статистика в пространствах произвольной природы основывается на систематическом использовании расстояний или мер близости (мер различия) между объектами нечисловой природы, что позволяет анализировать данные, являющиеся элементами нелинейных пространств (п.1.1 паспорта специальности 08.00.13 ВАК).
5. Развиты статистические методы моделирования и анализа конкретных типов объектов нечисловой природы. Установлены связи между различными видами объектов нечисловой природы, построены соответствующие вероятностные модели порождения нечисловых данных. Дана характеризация средних величин с помощью шкал измерения, указан способ сведения нечетких множеств к случайным, развиты методы проверки гипотез (согласованности, однородности, независимости) для бинарных данных (люсианов) в асимптотике растущей размерности, разработана асимптотическая статистика интервальных данных на основе понятий нотны и рационального объема выборки. Полученные научные результаты позволяют разрабатывать и обоснованно выбирать методы и модели анализа нечисловых данных конкретных типов в постановках, отличающихся от известных (п.1.1 паспорта специальности 08.00.13 ВАК).
6. Разработаны новые устойчивые экономико-математические методы и модели для решения ряда задач управления в функциональных областях производственно-хозяйственной деятельности предприятий и организаций, в частности, при использовании экспертных методов, в инновационном и инвестиционном менеджменте, при управлении качеством промышленной продукции, материальными ресурсами предприятия, рисками, позволяющие модернизировать процессы управления предприятиями с целью их совершенствования (п.1.4 паспорта специальности 08.00.13 ВАК).
Практическая ценность. Полученные в диссертационной работе результаты, выводы и рекомендации, теоретические основы и методология развивают и дополняют возможности разработчиков экономико-математических методов и моделей, предназначенных для модернизации процессов управления предприятиями, в направлении изучения устойчивости таких методов и моделей по отношению к допустимым отклонениям исходных данных и предпосылок моделей.
Результаты выполненных автором исследований и предложенные подходы могут быть использованы при проектировании и разработке технологий управления, систем информационно-аналитической поддержки процессов принятия решений при управлении конкретными предприятиями и интегрированными производственно-корпоративными системами.
Разработанные в диссертации методы и алгоритмы (прежде всего непараметрические статистические методы и методы анализа нечисловой информации, в том числе экспертных оценок, а также ориентированные на использование в функциональных областях производственно-хозяйственной деятельности предприятий) целесообразно включать в состав программного обеспечения систем автоматизированного управления предприятиями различных отраслей, а также использовать в учебном процессе, в частности, при обучении по направлению подготовки «Организация и управление наукоемкими производствами».
Апробация и реализация результатов исследований. Вошедшие в настоящую диссертацию работы доложены более чем на 50 научных конференциях, начиная с 1996 г., в том числе на международных научно-практических конференциях «Управление большими системами» (1997), «Предприятия России в транзитивной экономике» (2002), «Хозяйствующий субъект: новое экономическое состояние и развитие» (2003), «Теория активных систем» (2001, 2003, 2005, 2007), «Инновационное развитие экономики: теория и практика» (2005), «Управление инновациями» (2006, 2007, 2008), «Контролiнг у бiзнесi: теорiя i практика» (Киев, 2008), «Математическая теория систем» (2009), XII международной научно-практической конференция «Управление организацией: диагностика, стратегия, эффективность» (2004), Второй (2003), Третьей (2006) и Четвертой (2009) международных конференциях по проблемам управления, Вторых и Третьих Друкеровских чтениях «Проблема человеческого капитала: теория и современная практика» и «Неформальные институты в современной экономике России» (2007), на Второй (1996), Третьей (1998, Первая международная) и Четвертой (2000, Вторая международная) всероссийских конференциях «Теория и практика экологического страхования», на всероссийских научных, научно-практических и научно-технических конференциях «Современный менеджмент в условиях становления рыночной экономики в России» (1998 г.), «Экономическая теория, прикладная экономика и хозяйственная практика: проблемы эффективного взаимодействия» (2006), Седьмом (2006), Восьмом (2007), Девятом (2008) и Десятом (2009) всероссийских симпозиумах «Стратегическое планирование и развитие предприятий» и др.
Проведена апробация полученных в диссертации научных результатов при решении конкретных задач повышения эффективности управления предприятиями. Практические положения диссертации реализованы на Московском заводе счетно-аналитических машин им. В.Д. Калмыкова, в ЗАО «Стинс Коман», НП «Объединение контроллеров», Лаборатории экономико-математических методов в контроллинге НУК ИБМ МГТУ им. Н.Э. Баумана. Основные результаты исследования внедрены в учебный процесс МГТУ им. Н.Э. Баумана. На основе проведенных исследований разработана двухсеместровая учебная дисциплина «Организационно-экономическое моделирование» и соответствующий раздел ГОС по направлению подготовки 220700 (Организация и управление наукоемкими производствами), изданы учебники «Прикладная статистика», «Эконометрика», «Теория принятия решений» и др. Реализация результатов диссертационной работы подтверждена соответствующими актами внедрения.
Результаты исследования изложены в 12 монографиях, учебниках и учебных пособиях, 14 статьях в рецензируемых научных журналах списка ВАК по экономике, 13 статьях в рецензируемых научных журналах списка ВАК по иным направлениям (машиностроение, управление), указанных в автореферате. По теме диссертации опубликовано 93 печатные работы общим объемом 378,6 п.л., в том числе 285, 3 п.л. написано лично соискателем. Вошедшие в настоящую диссертацию результаты широко представлены в Интернете (личный сайт автора «Высокие статистические технологии» http://orlovs.pp.ru/ в 2008 г. собрал 112930 посетителей из 90 стран).
Объем и структура работы. Диссертация содержит 349 страниц основного текста, 7 рисунков и 25 таблиц, состоит из введения, пяти глав, заключения, библиографического списка из 538 наименований, приложений.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы диссертации, цель и задачи исследования, сформулированы объект и предмет исследования. Отражены степень изученности и обоснованности проблемы, теоретическая и методологическая основа исследования, научная новизна и практическая ценность значимость полученных результатов, их апробация и реализация.
В главе 1 «Анализ современного состояния теории и практики применения математических методов и моделей процессов управления экономической составляющей производственно-хозяйственной деятельности промышленных предприятий» проанализирована динамика развития народного хозяйства РФ. Основные макроэкономические показатели РФ - валовой внутренний продукт, объемы промышленного производства и инвестиций в основные фонды - уменьшились к 1998 г. (в сопоставимых ценах) до 55,7%, 45,3% и 21% от уровня 1990 г. После чего начался экономический рост, и к началу 2009 г. эти показатели достигли 104,2%, 81,7% и 63,9% соответственно от уровня 1990 г. Резко возрос физический и моральный износ основных фондов. Предстоит их кардинально обновить, причем в условиях развертывающегося экономического кризиса. Для решения возникающих при этом проблем повышения эффективности процессов управления промышленными предприятиями (а именно, прогнозирования, стратегического планирования, управления инновациями и инвестициями и др.) с использованием адекватных экономико-математических методов и моделей (ЭММиМ) необходима разработка теоретических основ и методологии ЭММиМ.
В основу диссертации положена идея необходимости изучения и использования устойчивости ЭММиМ по отношению к допустимым отклонениям исходных данных и предпосылок как важного свойства таких моделей и методов. Польза полученных общих результатов демонстрируется на примерах, относящихся к процессам управления предприятиями. Поэтому в разделе 1.2 рассмотрена базовая организационно-экономическая модель промышленного предприятия, на основе анализа литературных данных и практики определен спектр процессов управления, в которых существенны неопределенности, допускающие экономико-математическое моделирование. Отмечено, что прогнозирование, планирование, управление рисками пронизывают практически все управленческие процессы. В диссертации проведена разработка ряда ЭММиМ для таких функциональных областях управленческой деятельности предприятия, как контроллинг; управление инновациями; управление инвестициями; менеджмент качества; экологический менеджмент; маркетинговые исследования; управление материальными ресурсами.
Рассмотрению различных классификаций ЭММиМ управления производственными системами посвящен раздел 1.3. Важна для дальнейшего классификация областей прикладной статистики как части ЭММиМ (табл.1).
При разработке, изучении и применении ЭММиМ необходимо учитывать органически присущие им неопределенности в исходных данных и предпосылках моделей. В настоящее время для описания неопределенностей используют три теоретических подхода - чаще всего вероятностно-статистический, а также основанные на теории нечеткости и интервальной математике. Все три применяются в настоящей диссертации.
Таблица 1.
Области прикладной статистики
№ |
Вид статистических данных |
Область прикладной статистики |
|
1 |
Числа |
Статистика (случайных) величин |
|
2 |
Конечномерные вектора |
Многомерный статистический анализ |
|
3 |
Функции |
Статистика случайных процессов и временных рядов |
|
4 |
Объекты нечисловой природы |
Статистика нечисловых данных (статистика объектов нечисловой природы) |
Неустранимость неопределенности влечет за собой необходимость изучения устойчивости выводов (и управленческих решений), полученных на основе ЭММиМ, относительно допустимых отклонений исходных данных и предпосылок модели. Диссертантом разработана общая схема устойчивости, частными случаями которой являются многие распространенные постановки задач изучения математических моделей социально-экономических явлений и процессов.
Применение ЭММиМ при разработке инструментария модернизации процессов управления предприятиями обычно предполагает последовательное осуществление трех этапов исследования. Первый - от исходной практической проблемы до теоретической математической задачи. Второй - внутриматематическое изучение и решение этой задачи. Третий - переход от математических выводов к практической проблеме. Считаем целесообразным выделять четверки проблем:
ЗАДАЧА - МОДЕЛЬ - МЕТОД - УСЛОВИЯ ПРИМЕНИМОСТИ.
Обсудим каждую из только что выделенных составляющих.
Задача, как правило, порождена потребностями той или иной прикладной области. Разрабатывается одна из возможных математических формализаций реальной ситуации. Например, при изучении предпочтений потребителей возникает вопрос: различаются ли мнения двух групп потребителей. При математической формализации мнения потребителей в каждой группе обычно моделируются как независимые случайные выборки, т.е. как совокупности независимых одинаково распределенных случайных величин, а вопрос маркетологов переформулируется в рамках этой модели как вопрос о проверке той или иной статистической гипотезы однородности. Речь может идти об однородности характеристик, например, о проверке равенства математических ожиданий, или о полной (абсолютной однородности), т.е. о совпадении функций распределения, соответствующих двух совокупностям.
Модель может быть порождена также обобщением потребностей (задач) ряда прикладных областей. Приведенный выше пример иллюстрирует эту ситуацию: к необходимости проверки гипотезы однородности приходят и специалисты по качеству при сравнении двух партий продукции, и организаторы производства при сопоставлении результатов обработки деталей двумя способами, и т.д. Таким образом, одна и та же математическая модель может применяться для решения разных по своей прикладной сущности задач.
Метод, используемый в рамках определенной математической модели - это уже во многом, если не в основном, дело математиков. В эконометрических моделях речь идет, например, о методе оценивания, о методе проверки гипотезы, о методе доказательства той или иной теоремы, и т.д. В первых двух случаях алгоритмы разрабатываются и исследуются математиками, но используются прикладниками, в то время как метод доказательства касается лишь самих математиков.
Не все модели и методы непосредственно связаны с математикой. В организационно-экономических исследованиях широко используются графические модели описания спроса и предложения, равновесных цен. Предпочтения потребителей могут быть выявлены различными методами - выборочным опросом потребителей, путем наблюдения за их поведением, с помощью различных экспертных процедур. Ясно, что для решения той или иной задачи в рамках одной и той же принятой исследователем модели может быть предложено много методов.
Наконец, рассмотрим последний элемент четверки - условия применимости. При использовании математической модели он - полностью внутриматематический. С точки зрения математика замена условия (кусочной) дифференцируемости некоторой функции на условие ее непрерывности может представляться существенным научным достижением, в то время как экономист или менеджер оценить это достижение не смогут. Для них, как и во времена Ньютона и Лейбница, непрерывные функции мало отличаются от (кусочно) дифференцируемых. Точнее, они одинаково хорошо (или одинаково плохо) могут быть использованы для описания и решения реальных проблем.
Взаимоотношения моделей и методов заслуживают обсуждения. В процессе познания не всегда метод следует за математической моделью. Метод может быть разработан на основе эвристических соображений, словесной модели. Свойства метода можно изучать лишь в рамках той или иной модели. В рамках одной математической модели метод может быть оптимальным, в рамках другой - несостоятельным. Проблема состоит в создании или выборе модели, адекватной изучаемому явлению или процессу.
С точки зрения практической деятельности модели и методы нужны не сами по себе, а как инструменты разработки управленческих решений, которые могут описываться как выводы, заключения, планы мероприятий. Рассмотрим цепочку:
экономический математический модель устойчивость
ДАННЫЕ - МЕТОД (их обработки) - ВЫВОДЫ.
Как обосновать адекватность выводов? Один из критериев - устойчивость метода обработки данных. Устойчивость можно изучать лишь в рамках определенной модели.
В современных условиях эффективное функционирование предприятий и организаций возможно лишь при адекватном использовании различных форм и методов организационно-экономического обеспечения их деятельности. Все большее распространение приобретает концепция контроллинга. Согласно одному из определений контроллинг - это система информационно-аналитической поддержки процесса принятия решений при управлении организацией (предприятием, корпорацией). Общеизвестна роль экономико-математических и, в частности, статистических методов в деле обеспечения эффективного функционирования предприятий и организаций. ЭММиМ играют важную роль в контроллинге.
В разделе 1.6 на основе анализа, проведенного в предыдущих разделах главы 1, поставлена цель и определены шесть основных задач исследования (приведены выше во вводном разделе автореферата).
Глава 2 «Общая схема устойчивости и ее применения в математических моделях социально-экономических явлений и процессов» посвящена общей схеме устойчивости выводов и примерам ее применения в конкретных постановках изучения устойчивости ЭММиМ.
Определение 1. Общей схемой устойчивости называется кортеж {A, B, f, d, E}, где:
A - множество, интерпретируемое как пространство исходных данных;
B - множество, называемое пространством решений (выводов);
f - способ получения решения (на основе метода или модели), т.е. однозначное отображение ;
d - показатель устойчивости, т.е. неотрицательная функция, определенная на подмножествах У множества B и такая, что из вытекает ;
- совокупность допустимых отклонений, т.е. система подмножеств множества A такая, что каждому элементу множества исходных данных и каждому значению параметра из некоторого множества параметров соответствует подмножество ) множества исходных данных. Оно называется множеством допустимых отклонений в точке х при значении параметра, равном .
Часто показатель устойчивости d(Y) определяется с помощью метрики, псевдометрики или показателя различия (меры близости) как диаметр множества У, т.е. Т.е. в пространстве решений с помощью показателя устойчивости вокруг образа исходных данных сформирована система окрестностей. В пространстве исходных данных подобная система - это Е, т.е. совокупность допустимых отклонений, - окрестность радиуса вокруг точки х.
Определение 2. Показателем устойчивости в точке х при значении параметра, равном , называется число
- диаметр образа множества допустимых колебаний при рассматриваемом в качестве модели отображении.
Определение 3. Абсолютным показателем устойчивости в точке х называется число
.
В теории измерений окрестностью исходных данных являются все те вектора, что получаются из исходного путем преобразования координат с помощью допустимого преобразования шкалы, которое берется из соответствующей группы допустимых преобразований. В статистике интервальных данных под окрестностью исходных данных естественно понимать - при описании выборки - куб с ребрами и центром в исходном векторе. В обоих случаях максимальное сужение не означает сужение к точке.
Определение 4. Абсолютным показателем устойчивости на пространстве исходных данных А по мере называется число
.
Определение 5. Максимальным абсолютным показателем устойчивости называется
.
Определение 6. Модель f называется абсолютно -устойчивой, если , где - максимальный абсолютный показатель устойчивости.
Пример. Если показатель устойчивости формируется с помощью метрики , совокупность допустимых отклонений E - это совокупность всех окрестностей всех точек пространства исходных данных A, то 0 - устойчивость модели f эквивалентна непрерывности модели f на множестве A.
Типовая проблема в общей схеме устойчивости - проверка - устойчивости данной модели f относительно данной системы допустимых отклонений E.
Проблема А (характеризации устойчивых моделей). Даны пространство исходных данных A, пространство решений B, показатель устойчивости d, совокупность допустимых отклонений E и неотрицательное число . Описать достаточно широкий класс - устойчивых моделей f. Или: найти все - устойчивые модели среди моделей, обладающих данными свойствами, т.е. входящих в данное множество моделей.
Проблема Б (характеризации систем допустимых отклонений). Даны пространство исходных данных A, пространство решений B, показатель устойчивости d, модель f и неотрицательное число . Описать достаточно широкий класс систем допустимых отклонений E, относительно которых модель f является --устойчивой. Или: найти все такие системы допустимых отклонений E среди совокупностей допустимых отклонений, обладающих данными свойствами, т.е. входящих в данное множество совокупностей допустимых отклонений.
Пример. Определение устойчивости по Ляпунову решения нормальной автономной системы дифференциальных уравнений с начальными условиями .
Здесь пространство исходных данных A - конечномерное евклидово пространство, множество допустимых отклонений - окрестность радиуса точки , пространство решений B - множество функций на луче с метрикой
.
Модель f - отображение, переводящее начальные условия х в решение системы дифференциальных уравнений с этими начальными условиями .
В терминах общей схемы устойчивости положение равновесия а называется устойчивым по Ляпунову, если .
Для формулировки определения асимптотической устойчивости по Ляпунову надо ввести в пространстве решений B псевдометрику
.
Положение равновесия а называется асимптотически устойчивым, если для некоторого , где показатель устойчивости рассчитан с использованием псевдометрики .
В настоящем исследовании рассмотрен ряд конкретных постановок проблем устойчивости в математических методах и моделях, используемых при модернизации процессов управления предприятиями:
1) Устойчивость по отношению к изменению данных (статистика интервальных и нечетких данных);
2) Устойчивость к изменению объема данных (объема выборки) - асимптотическая статистика;
3) Устойчивость к изменению распределения данных (непараметрическая и робастная статистика);
4) Устойчивость по отношению к временным характеристикам (моменту начала реализации проекта, горизонту планирования);
5) Борьба с неопределенностью путем изменения вида данных, т.е. путем перехода к нечисловым данным (статистика нечисловых данных).
6) Устойчивость по отношению к допустимым преобразованиям шкал измерения.
7) Устойчивость характеристик инвестиционных проектов к изменению коэффициента дисконтирования с течением времени;
8) Устойчивость к изменению коэффициентов и объемов партий в моделях управления запасами, оценка достигаемой точности расчетов…
Принцип уравнивания погрешностей (погрешности различной природы вносят одинаковый вклад в общую погрешность) позволяет установить:
- рациональный объем выборки в статистике интервальных данных;
- число градаций в анкетах для опроса потребителей;
- необходимую точность оценивания параметров в моделях управления запасами.
Рекомендуем обрабатывать данные несколькими способами (методами), на основе различных моделей. Выводы, общие для всех способов, скорее всего отражают реальность (являются объективными). Выводы, меняющиеся от метода к методу, от модели к модели, субъективны, зависят от исследователя, выбравшего тот или иной метод анализа данных. Здесь речь идет об устойчивости выводов по отношению к выбору метода (модели).
Раздел 2.3 посвящен вопросам целеполагания, выбора экономико-математической модели и характеризации моделей с дисконтированием.
При разработке управленческих решений с целью совместного учета и соизмерении различных факторов, частичного снятия неопределенности широко используются рейтинги. Термин «рейтинг» происходит от английского «to rate» (оценивать) и «rating» (оценка, оценивание). Оценка - это число, градация качественного признака (удовл,, хор., отл.), реже - упорядочение (ранжировка) или математический объект иной природы. Методологический анализ опирается на выделение трех вариантов постановок задач:
1. Непосредственная оценка.
2. Оценка с использованием обучающих выборок
3. Оценка на основе системы показателей с весовыми коэффициентами.
При непосредственной оценке на вопрос о том, каким средним пользоваться для усреднения чисел, ответ дает теория измерений. Усреднение других видов ответов экспертов проводится с помощью эмпирических средних в соответствующих пространствах, в частности, усреднение бинарных отношений - с помощью медианы Кемени.
Для оценки с использованием обучающих выборок применяют линейный дискриминантный анализ Р. Фишера, непараметрический дискриминантный анализ на основе использования непараметрических оценок плотностей в пространствах произвольной природы, а также иные методы распознавания образов с учителем, в том числе нейросетевые.
При оценке на основе системы показателей с весовыми коэффициентами основные составляющие процедур - показатели (факторы), индексы и границы. Для построения системы показателей, обычно иерархической (единичные показатели - групповые - обобщенный) применяют экспертные методы и методы выделения информативного подмножества признаков. Способы усреднения при переходе от единичных показателей к групповым и от групповых к обобщенному выбирают на основе тех же принципов, что и при непосредственной оценке. Веса задают либо непосредственно, либо косвенно - с помощью парных сравнений или обучающих выборок (экспертно-статистический метод).
Важный частный случай - бинарные рейтинги, когда рейтинговая оценка принимает два значения, объект оценки относится к одному из двух классов. Следовательно, теория бинарных рейтингов - часть дискриминантного анализа. Классы предполагаются заданными - плотностями вероятностей или обучающими выборками.
Результаты обработки реальных данных с помощью некоторого алгоритма диагностики в случае двух классов описываются долями: правильной диагностики в первом классе (она приближается к вероятности правильной классификации ); правильной диагностики во втором классе (как оценки вероятности ). Для сравнения рейтингов (алгоритмов диагностики) предлагаем использовать (эмпирическую) прогностическую силу , где . Здесь - функция стандартного нормального распределения вероятностей с математическим ожиданием 0 и дисперсией 1, а - обратная ей функция. Нами доказано, что при росте объемов выборок распределение является асимптотически нормальным. Это позволяет указывать доверительные границы для теоретической прогностической силы , где .
Как проверить обоснованность использования прогностической силы? Возьмем два значения порога K1 и K2. Тогда теоретические прогностические силы должны совпадать: . Нами разработан метод проверки этого равенства как статистической гипотезы.
Перейдем к организационно-экономическому моделированию процессов стратегического управления промышленными предприятиями.
При разработке стратегии развития промышленного предприятия одна из основных проблем - целеполагание. Поскольку естественных целей обычно несколько, то при построении формализованных ЭММиМ приходим к задачам многокритериальной оптимизации. Поскольку одновременно по нескольким критериям оптимизировать невозможно, то для адекватного применения ЭММиМ необходимо тем или иным образом перейти к однокритериальной постановке (либо, выделив множество оптимальных по Парето альтернатив, применить экспертные технологии выбора). Для сведения к однокритериальной постановке могут быть применены методы построения единого (интегрального) критерия (рейтинга), рассмотренные выше. При выборе вида единого критерия целесообразно использовать полученную нами характеризацию моделей с дисконтированием.
Пусть динамику развития рассматриваемой экономической системы можно описать последовательностью , где переменные xj, j = 1, 2, ..., m, лежат в некотором пространстве Х, возможно, достаточно сложной природы. Надо отметить также, что положение экономической системы в следующий момент не может быть произвольным, оно связано с положением в предыдущий момент. Проще всего принять, что существует некоторое множество К такое, что . Результат экономической деятельности за j-й период описывается величиной . Зависимость не только от начального и конечного положения, но и от номера периода объясняется тем, что через номер периода осуществляется связь с общей (внешней) экономической ситуацией. Желая максимизировать суммарные результаты экономической деятельности, приходим к постановке стандартной задачи динамического программирования:
. (1)
При обычных математических предположениях максимум достигается.
Часто применяются модели, приводящие к частному случаю задачи (1):
. (2)
Это - модели с дисконтированием (- дисконт-фактор). Естественно выяснить, какими «внутренними» свойствами выделяются задачи типа (2) из всех задач типа (1).
Представляет интерес изучение и сравнение между собой планов возможного экономического поведения на k шагов и . Естественно сравнение проводить с помощью описывающих результаты экономической деятельности функций, участвующих в задачах (1) и (2): план Х1 лучше плана Х2 при реализации с момента i, если
(3)
Будем писать Х1R(i)Х2, если выполнено неравенство (3), где R(i) - бинарное отношение на множестве планов, задающее упорядочение планов отношением «лучше при реализации с момента i».
Ясно, что упорядоченность планов на k шагов, определяемая с помощью бинарного отношения R(i), может зависеть от i, т.е. «хорошесть» плана зависит от того, с какого момента i он начинает осуществляться. С точки зрения реальной экономики это вполне понятно. Например, планы действий, вполне рациональные для периода стабильного развития, нецелесообразно применять в период гиперинфляции. И наоборот, приемлемые в период гиперинфляции операции, не принесут эффекта в стабильной обстановке.
Однако, как легко видеть, в моделях с дисконтированием (2) все упорядочения R(i) совпадают, i = 1,2, …, m-k. Оказывается - это и есть основной результат раздела 2.3 - верно и обратное: если упорядочения совпадают, то мы имеем дело с задачей (2) - с задачей с дисконтированием, причем достаточно совпадения только при k = 1,2. Сформулируем более подробно предположения об устойчивости упорядочения планов.
(I). Пусть . Верно одно из двух: либо для всех , либо для всех .
(II). Пусть . Верно одно из двух: либо для всех , либо для всех .
Нами установлено, что из условий устойчивости упорядоченности планов (I) и (II) следует существование констант и , таких, что . Поскольку прибавление константы не меняет точки, в которой функция достигает максимума, то последнее соотношение означает, что условия устойчивости упорядоченности планов (I) и (II) характеризуют (другими словами, однозначно выделяют) модели с дисконтированием среди всех моделей динамического программирования. Другими словами, устойчивость хозяйственных решений во времени эквивалентна использованию моделей с дисконтированием; применяя модели с дисконтированием, предполагаем, что экономическая среда стабильна; если прогнозируем существенное изменение взаимоотношений хозяйствующих субъектов, то вынуждены отказаться от использования моделей типа (2).
Раздел 2.4 посвящен проблеме горизонта планирования. Только задав интервал времени, можно на основе ЭММиМ принять оптимальные решения и рассчитать ожидаемую прибыль. Проблема «горизонта планирования» состоит в том, что оптимальное поведение зависит от того, на какое время вперед планируют, а выбор этого горизонта зачастую не имеет рационального обоснования. Однако от него зависят принимаемые решения и соответствующие этим решениям экономические результаты. Например, при коротком периоде планирования целесообразны лишь инвестиции (капиталовложения) в оборотные фонды предприятия, и лишь при достаточно длительном периоде - в основные фонды. Однозначный выбор горизонта планирования обычно не может быть обоснован, это - нечисловая экономическая величина. Предлагаем справиться с противоречием путем использования асимптотически оптимальных планов.
Рассмотрим модель (2) с , т.е. модель без дисконтирования
При каждом m существует оптимальный план , при котором достигает максимума оптимизируемая функция. Поскольку выбор горизонта планирования, как правило, нельзя рационально обосновать, хотелось бы построить план действий, близкий к оптимальному плану при различных горизонтах планирования. Это значит, что целью является построение бесконечной последовательности такой, что ее начальный отрезок длины m, т.е. , дает примерно такое же значение оптимизируемого функционала, как и значение для оптимального плана . Бесконечную последовательность с указанным свойством назовем асимптотически оптимальным планом.
Выясним, можно ли использовать для построения асимптотически оптимального плана непосредственно оптимальный план. Зафиксируем k и рассмотрим последовательность , m = 1, 2, ... . Примеры показывают, что, во-первых, элементы в этой последовательности будут меняться; во-вторых, они могут не иметь пределов. Следовательно, оптимальные планы могут вести себя крайне нерегулярно, а потому в таких случаях их нельзя использовать для построения асимптотически оптимальных планов.
Нами установлено существование асимптотически оптимальных планов: можно указать такие бесконечные последовательности , что
Решение проблемы горизонта планирования таково - надо использовать асимптотически оптимальные планы, не зависящие от горизонта планирования. Оптимальная траектория движения состоит из трех участков - начального, конечного и основного, а основной участок - это движение по магистрали (аналогия с типовым движением автотранспорта).
В главе 3 «Непараметрические статистические методы для решения конкретных задач управления промышленными предприятиями» разрабатываются непараметрические статистические методы для решения конкретных задач управления промышленными предприятиями.
Развитие и применение непараметрической статистики обсуждается в разделе 3.1. Показано, что распределения реальных данных практически никогда не входят в какое-либо конкретное параметрическое семейство. Реальные распределения всегда отличаются от тех, которые включены в параметрические семейства. Отличия могут быть большими или меньшими, но они всегда есть. Каково влияние этих отличий на свойства процедур анализа данных? Иногда исчезает при росте объемов данных, как для доверительного оценивания математического ожидания, иногда является заметным (как при оценивании высших моментов), иногда делает процедуру полностью необоснованной (как для отбраковки выбросов). Следовательно, надо либо использовать непараметрические процедуры, либо изучать устойчивость основанных на параметрических моделях процедур по отношению к отклонениям распределений результатов наблюдений от предпосылок модели, т.е. изучать робастность статистических процедур (от robust (англ.) - крепкий, грубый).
Непараметрические статистические методы прогнозирования - предмет раздела 3.2.
Одна из основных функций менеджмента - прогнозирование и на его основе - планирование (А. Файоль). Организационно-экономические методы прогнозирования разделим на статистические, экспертные и комбинированные, среди последних выделим сценарные. Разработан ряд новых статистических методов прогнозирования, а также сценарных прогнозов. Поскольку при решении задач повышения эффективности управления предприятиями обычно нет оснований принимать гипотезу нормальности распределения исходных данных, то рассматриваем непараметрические постановки.
В непараметрическом методе наименьших квадратов модель такова:
xi = a (ti - ) + b+ f(ti) + Ei, i = 1,2,…,n,
Здесь три составляющие:
a (ti -)+ b - трендовая;
f(t) - периодическая (период известен: год, неделя, сутки);
Ei - случайная (с неизвестным распределением).
Случайные погрешности независимы и одинаково распределены с математическим ожиданием 0 и дисперсией, неизвестной исследователю.
Пусть моменты наблюдений удовлетворяют условиям:
,
Тогда оценки метода наименьших квадратов являются несмещенными и состоятельными. Нами решена непараметрическая задача восстановления зависимости, которая описывается суммой линейного тренда и сезонной составляющей. Разработаны методы точечного и доверительного оценивания сезонной компоненты и построения интервального прогноза.
Построены доверительные интервалы для точки встречи двух линейных регрессионных зависимостей, описывающих динамику организационно-экономических показателей двух промышленных предприятий (рис.1). Сценарные методы применялись прежде всего для прогнозирования динамики внешней среды предприятия.
Рис.1. Динамика показателей технического уровня двух предприятий (1,2), восстановленные зависимости (1*, 2*) и доверительное оценивание момента встречи.
Непараметрические методы обнаружения эффекта рассмотрены в разделе 3.3. Построена система моделей и методов проверки однородности. Она может быть использована, в частности, при сегментации рынка в маркетинге. Найдены области применимости критериев Стьюдента и Вилкоксона. Для проверки равенства математических ожиданий обосновано применение критерия Крамера-Уэлча, а для проверки совпадения функций распределения - критериев Смирнова и Лемана-Розенблатта. Изучены расхождения между реальными и номинальными уровнями значимости.
Гипотеза однородности связанных выборок (хj, уj), j = 1,2,…,n, в общем случае - это гипотеза симметрии относительно 0 функции распределения разностей Zj = хj - уj. Разработан критерий типа омега-квадрат со статистикой
Здесь Hn(x) - эмпирическая функция распределения, построенная по выборке Zj, j = 1,2,…,n.
В главе 4 «Разработка методов статистики объектов нечисловой природы» систематически развивается указанная область прикладной статистики, предлагаются и изучаются статистические методы анализа нечисловых данных.
...Подобные документы
Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.
реферат [91,1 K], добавлен 16.05.2012Теоретические основы экономико-математических методов. Этапы принятия решений. Классификация задач оптимизации. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования.
курсовая работа [2,3 M], добавлен 07.05.2013Теоретические основы экономико-математических задач о смесях. Принципы построения и структура интегрированной системы экономико-математических моделей. Организационно-экономическая характеристика и технико-экономические показатели работы СПК "Родина".
курсовая работа [66,6 K], добавлен 01.04.2011Общая характеристика и классификация экономико-математических методов. Стохастическое моделирование и анализ факторных систем хозяйственной деятельности. Балансовые методы и модели в анализе связей внутризаводских подразделений, в расчетах и цен.
курсовая работа [200,8 K], добавлен 16.06.2014Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.
курсовая работа [1,3 M], добавлен 23.06.2013Особенности формирования и способы решения оптимизационной задачи. Сущность экономико-математической модели транспортной задачи. Характеристика и методика расчета балансовых и игровых экономико-математических моделей. Свойства и признаки сетевых моделей.
практическая работа [322,7 K], добавлен 21.01.2010Сущность и необходимость применения математических моделей в экономике. Характеристика предприятия "Лукойл", определение стоимости компании с помощью модели дисконтированных денежных потоков. Использование математических моделей в управлении предприятием.
дипломная работа [1,7 M], добавлен 25.09.2010Изучение экономических приложений математических дисциплин для решения экономических задач: использование математических моделей в экономике и менеджменте. Примеры моделей линейного и динамического программирования как инструмента моделирования экономики.
курсовая работа [2,0 M], добавлен 21.12.2010Критерии оптимальности в эколого-математических моделях. Использование максимума относительной скорости роста численности популяций. Принцип минимального воздействия в эколого-математических моделях. Модели случайных стационарных процессов.
контрольная работа [193,1 K], добавлен 28.09.2007Открытие и историческое развитие методов математического моделирования, их практическое применение в современной экономике. Использование экономико-математического моделирования на всей уровнях управления по мере внедрения информационных технологий.
контрольная работа [22,4 K], добавлен 10.06.2009Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.
контрольная работа [141,5 K], добавлен 02.02.2013Типовые модели менеджмента: примеры экономико-математических моделей и их практического использования. Процесс интеграции моделей разных типов в более сложные модельные конструкции. Определение оптимального плана производства продуктов каждого вида.
контрольная работа [536,2 K], добавлен 14.01.2015Линейная регрессивная модель. Степенная регрессивная модель. Показательная регрессивная модель. Регрессивная модель равносторонней гиперболы. Преимущества математического подхода. Применение экономико-математических методов и моделей.
курсовая работа [31,6 K], добавлен 05.06.2007Характеристика основных принципов создания математических моделей гидрологических процессов. Описание процессов дивергенции, трансформации и конвергенции. Ознакомление с базовыми компонентами гидрологической модели. Сущность имитационного моделирования.
презентация [60,6 K], добавлен 16.10.2014Методика и основные этапы построения математических моделей, их сущность и особенности, порядок разработки. Составление математических моделей для системы "ЭМУ-Д". Алгоритм расчета переходных процессов в системе и оформление результатов программы.
реферат [198,6 K], добавлен 22.04.2009Методы разработки экономико-математических моделей управления развитием предприятия. Разработка модели организационной структуры и системы управления развитием предприятия на примере ООО "Метра". Оптимизация использования фонда развития предприятия.
курсовая работа [76,7 K], добавлен 11.09.2008Основы составления, решения и анализа экономико-математических задач. Состояние, решение, анализ экономико-математических задач по моделированию структуры посевов кормовых культур при заданных объемах животноводческой продукции. Методические рекомендации.
методичка [55,1 K], добавлен 12.01.2009Содержание и построение экономико-математических методов. Роль оптимальных методов в планировании и управлении производством. Экономико-математические модели оптимальной загрузки производственных мощностей. Отраслевое прогнозирование и регулирование.
контрольная работа [62,1 K], добавлен 30.08.2010Моделирование. Детерминизм. Задачи детерминированного факторного анализа. Способы измерения влияния факторов в детерминированном анализе. Расчёт детерминированных экономико-математических моделей и методов факторного анализа на примере РУП "ГЗЛиН".
курсовая работа [246,7 K], добавлен 12.05.2008Предмет экономико-математического моделирования, цель разработки экономико-математических методов. Для условной экономики, состоящей из трех отраслей, за отчетный период известны межотраслевые потоки и вектор конечного использования продукции.
контрольная работа [71,0 K], добавлен 14.09.2006