Разработка и развитие устойчивых экономико-математических методов и моделей для модернизации управления предприятиями
Разработка экономико-математических моделей процессов стратегического управления промышленными предприятиями на основе концепции устойчивости по отношению к временным характеристикам. Общая схема устойчивости и ее применение в математических моделях.
Рубрика | Экономико-математическое моделирование |
Вид | автореферат |
Язык | русский |
Дата добавления | 26.02.2018 |
Размер файла | 197,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В разделе 4.1 с целью оценки перспективности применения тех или иных организационно-экономических методов и моделей выявлены основные этапы развития прикладной статистики (табл.2).
В многообразии организационно-экономических методов и моделей выделена и развита как самостоятельная область нечисловая статистика. Примерами объектов нечисловой природы являются значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций); упорядочения (ранжировки) экспертами образцов продукции (при оценке её технического уровня и конкурентоспособности)) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов); классификации, т.е. разбиения объектов на группы сходных между собой (кластеры); толерантности, т.е. бинарные отношения, описывающие сходство объектов между собой, например, сходство организационных структур промышленных предприятий; результаты парных сравнений или контроля качества продукции по альтернативному признаку («годен» - «брак»), т.е. последовательности из 0 и 1; множества (обычные или нечеткие), например, перечни рекомендуемых к осуществлению инновационных проектов, составленные экспертами независимо друг от друга; слова, предложения, тексты; вектора, координаты которых - совокупность значений разнотипных признаков, например, результат составления отчета о деятельности промышленного предприятия или анкета эксперта, в которой ответы на часть вопросов носят качественный характер, а на часть - количественный; ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты; и т.д. Интервальные данные тоже можно рассматривать как пример объектов нечисловой природы, а именно, как частный случай нечетких множеств.
В разделе 4.1 рассмотрены основные виды объектов нечисловой природы, установлены связи между ними, построены вероятностные модели порождения нечисловых данных. В разделе 4.2 разработаны статистические методы в пространствах произвольной природы.
В чем принципиальная новизна нечисловой статистики? Для классической статистики характерна операция сложения. При расчете выборочных характеристик распределения (выборочное среднее арифметическое, выборочная дисперсия и др.), в регрессионном анализе и других областях этой научной дисциплины постоянно используются суммы. Математический аппарат - законы больших чисел, Центральная предельная теорема и другие теоремы - нацелены на изучение сумм. В нечисловой же статистике нельзя использовать операцию сложения, поскольку элементы выборки лежат в пространствах, где нет операции сложения. Методы обработки нечисловых данных основаны на принципиально ином математическом аппарате - на применении различных расстояний в пространствах объектов нечисловой природы.
Таблица 2
Этапы развития прикладной статистики
№ |
Этапы |
Характерные черты |
Годы |
|
1 |
Описательная статистика |
Тексты, таблицы, графики. Отдельные расчетные приемы (МНК) |
До 1990 |
|
2 |
Параметрическая статистика |
Модели параметрических семейств распределений - нормальных, гамма и др. Теория оценивания параметров и проверки гипотез |
1900 - 1933 |
|
3 |
Непараметрическая статистика |
Произвольные непрерывные распределения. Непараметрические методы оценивания и проверки гипотез |
1933 - 1979 |
|
4 |
Нечисловая статистика |
Выборка - из элементов произвольных пространств. Использование показателей различия и расстояний |
С 1979 |
Так, средние величины обычно вводят с помощью операций сложения (выборочное среднее арифметическое, математическое ожидание) или упорядочения (выборочная и теоретическая медианы). В пространствах произвольной природы средние значения нельзя определить с помощью таких операций. Теоретические и эмпирические средние приходится вводить как решения экстремальных задач. Теоретическое среднее определяется как решение задачи минимизации математического ожидания (в классическом смысле) расстояния от случайного элемента со значениями в рассматриваемом пространстве до фиксированной точки этого пространства (минимизируется указанная функция от этой точки). Для эмпирического среднего математическое ожидание берется по эмпирическому распределению, т.е. берется сумма расстояний от некоторой точки до элементов выборки и затем минимизируется по этой точке.
Пусть X - пространство нечисловых данных, d(x,y) - расстояние (показатель различия, мера близости) в X. Тогда для выборки эмпирическое среднее определяется как
. (4)
Закон больших чисел состоит в том, что в случае, когда в выборку входят реализации независимых одинаково распределенных случайных элементов, эмпирическое среднее приближается при росте объема выборки к теоретическому среднему
.
Закон больших чисел. Пусть - независимые одинаково распределенные случайные элементы со значениями в пространстве произвольной природы Х с показателем различия d: X2R1. Пусть выполнены некоторые математические условия регулярности. Тогда эмпирические и теоретическое средние непусты и для любого > 0 справедливо предельное соотношение
,
где .
Закон больших чисел получен нами для различных вариантов математических условий регулярности.
Предложены и изучены методы оценивания плотности вероятности в пространствах общего вида с мерой , как непрерывных, так и дискретных. В частности, в задачах диагностики объектов нечисловой природы предложено использовать непараметрические ядерные оценки плотности
,
где К: - ядерная функция, x1, x2, …, xn X, - выборка, по которой оценивается плотность, d(xi , x) - показатель различия (метрика, расстояние, мера близости) между элементом выборки xi и точкой x, в которой оценивается плотность, последовательность hn показателей размытости такова, что hn 0 и nhn при , а - нормирующий множитель, обеспечивающий выполнение условия нормировки (интеграл по всему пространству от непараметрической оценки плотности fn(x) по мере должен равняться 1).
Получен ряд новых результатов, касающихся конкретных видов объектов нечисловой природы. В разделе 4.3 рассмотрены три сюжета:
- характеризация средних величин шкалами измерения;
- теория люсианов;
- сведение теории нечетких множеств к теории случайных множеств.
В рамках теории измерений введено требование устойчивости организационно-экономических выводов относительно допустимых преобразований шкал, в которых измерены исходные данные.
Нами установлено, что из всех средних по Коши допустимыми средними в порядковой шкале являются только члены вариационного ряда (порядковые статистики); в шкале интервалов из всех средних по Колмогорову допустимым является только среднее арифметическое; в шкале отношений из всех средних по Колмогорову допустимыми являются только степенные средние и среднее геометрическое (при справедливости некоторых слабых математических условий регулярности).
Люсианы - это конечные (длины k) последовательности независимых испытаний Бернулли с, вообще говоря, разными вероятностями успеха. Распределение люсиана A задается вектором параметров P = (p1, p2..., pk), где pi - вероятность того, что i-я координата люсиана А равна 1 (и с вероятностью 1 - pi она равна 0), i = 1, 2, ..., k. Нами разработаны методы проверки трех гипотез - согласованности, однородности и независимости, в том числе в асимптотике растущей размерности (при фиксированном числе люсианов и росте их длины k).
Пусть A1, A2, ..., As - независимые (между собой) люсианы с векторами параметров Р1, Р2, ..., Рs соответственно. Гипотезой согласованности люсианов называют гипотезу Р1 = Р2 = ...= Рs.
Пусть A1, A2, ..., Am и B1, B2, ..., Bn - независимые в совокупности люсианы длины k, одинаково распределенные в каждой группе с параметрами Р(А) и Р(В) соответственно. Гипотеза однородности - это гипотеза Р(А) = Р(В).
Пусть (Ai, Bi), i = 1. 2, ..., s - последовательность (фиксированной длины) пар люсианов. Пары предполагаются независимыми между собой. Требуется проверить гипотезу независимости Ai и Bi, т.е. внутри пар. В ранее введенных обозначениях гипотеза независимости - это гипотеза P(Xij(A) = 1, Xij(B) = 1) = P(Xij(A) = 1)P(Xij(B) = 1), где i = 1, ..., s; j = 1, ..., k, проверяемая в предположении Р1(А) = Р2(А) = ... = Рs(А), Р1(B) = Р2(B) = ... = Рs(B).
Теория нечетких множеств тесно связана с теорией случайных множеств. Нечеткие множества естественно рассматривать как «проекции» случайных множеств. Пусть - случайное подмножество конечного множества У. Нечеткое множество В, определенное на У, с функцией принадлежности , называется проекцией А и обозначается Proj A, если при всех . Основной наш результат о сведении теории нечетких множеств к теории случайных множеств таков.
Пусть B1, B2, B3, ..., Bt - некоторые нечеткие подмножества множества У из конечного числа элементов. Рассмотрим результаты последовательного выполнения теоретико-множественных операций
где ° - символ одной из следующих теоретико-множественных операций над нечеткими множествами: пересечение, произведение, объединение, сумма (на разных местах могут стоять разные символы). Тогда существуют случайные подмножества A1, A2, A3, ..., At того же множества У такие, что
и, кроме того, результаты теоретико-множественных операций связаны аналогичными соотношениями
где знак означает, что на рассматриваемом месте стоит символ пересечения случайных множеств, если в определении Bm стоит символ пересечения или символ произведения нечетких множеств, и соответственно символ объединения случайных множеств, если в Bm стоит символ объединения или символ суммы нечетких множеств.
Раздел 4.4 посвящен разработке статистики интервальных данных. В ЭММиМ зачастую приходится рассматривать в качестве элементов выборки не числа, а интервалы («от» и «до»). Это приводит к алгоритмам и выводам, принципиально отличающимся от классических.
Пусть существо реального явления описывается выборкой x1 , x2 , ..., xn . Анализ реальных задач повышения эффективности управления промышленными предприятиями показывает, что исследователю известна отнюдь не выборка x1 , x2 , ..., xn , а величины yj = xj + j , j = 1, 2, ... , n, где - некоторые погрешности наблюдений, измерений, анализов, опытов, исследований. Обозначим . Пусть организационно-экономические выводы основываются на функции , используемой для оценивания параметров и характеристик распределения, проверки гипотез и решения иных задач. Принципиально важная идея такова: исследователь знает только f(y), но не f(x). Очевидно, в алгоритмах расчетов необходимо отразить различие между f(y) и f(x). Одним из двух основных понятий в рассматриваемой области является понятие нотны.
Определение. Величину максимально возможного (по абсолютной величине) отклонения, вызванного погрешностями наблюдений , известного исследователю значения f(y) от истинного значения f(x), т.е.
Nf (x) = sup | f(y) - f(x) | ,
где супремум берется по множеству возможных значений вектора погрешностей , будем называть нотной.
Если функция f имеет частные производные второго порядка, а ограничения на погрешности имеют вид
, (5)
причем мало, то приращение функции f с точностью до бесконечно малых более высокого порядка описывается главным линейным членом, т.е.
Чтобы получить асимптотическое (при ) выражение для нотны, достаточно найти максимум и минимум линейной функции (главного линейного члена) на кубе, заданном неравенствами (5). Следовательно, нотна с точностью до бесконечно малых более высокого порядка имеет вид
Это выражение называют асимптотической нотной. Условие (5) означает, что исходные данные представляются статистику в виде интервалов (отсюда и название этого раздела нечисловой статистики).
В статистике интервальных данных обычно можно доказать, что средний квадрат ошибки равен
(6)
Чтобы установить «рациональный объем выборки», можно воспользоваться идеей «принципа уравнивания погрешностей». Речь идет о том, что вклад погрешностей различной природы в общую погрешность должен быть примерно одинаков. Этот принцип дает возможность выбирать необходимую точность оценивания тех или иных характеристик в тех случаях, когда это зависит от исследователя. В статистике интервальных данных в соответствии с «принципом уравнивания погрешностей» предлагается определять рациональный объем выборки nrat из условия равенства двух величин - метрологической составляющей, связанной с нотной, и статистической составляющей - в среднем квадрате ошибки (6), т.е. из условия
Исследовательскую программу в области статистики интервальных данных можно «в двух словах» сформулировать так: для любого алгоритма анализа данных (алгоритма прикладной статистики) необходимо вычислить нотну и рациональный объем выборки, или иные величины из того же понятийного ряда, возникающие в многомерном случае, при наличии нескольких выборок и при иных обобщениях описываемой здесь простейшей схемы. Затем проследить влияние погрешностей исходных данных на точность оценивания, доверительные интервалы, значения статистик критериев при проверке гипотез, уровни значимости и другие характеристики статистических выводов. Классическая математическая статистика является частью статистики интервальных данных, выделяемой условием = 0.
Разработана общая схема исследования, включающая расчет нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания). Она применена к оцениванию математического ожидания и дисперсии, медианы и коэффициента вариации, параметров гамма-распределения и характеристик аддитивных статистик, при проверке гипотез о параметрах нормального распределения, в т.ч. с помощью критерия Стьюдента, а также гипотезы однородности с помощью критерия Смирнова. Изучено асимптотическое поведение оценок метода моментов и оценок максимального правдоподобия (а также более общих -- оценок минимального контраста), проведено асимптотическое сравнение этих методов в случае интервальных данных, найдены общие условия, при которых, в отличие от классической математической статистики, метод моментов дает более точные оценки, чем метод максимального правдоподобия.
Рассмотрены интервальные данные в основных постановках регрессионного, дискриминантного и кластерного анализов. Изучено влияние погрешностей измерений и наблюдений на свойства алгоритмов регрессионного анализа, разработаны способы расчета нотн и рациональных объемов выборок, введены и исследованы новые понятия многомерных и асимптотических нотн, доказаны соответствующие предельные теоремы. Развиты интервальный дискриминантный анализ и кластер-анализ, рассмотрено влияние интервальности данных на показатель качества классификации. Конкретные исследования в рамках исследовательской программы выполнили Д.Н. Алешин («Экономическое обоснование эффективности инвестиционных проектов на предприятиях на основе применения эконометрического метода интервальной оценки») и Е.А. Гуськова («Разработка организационно-экономических методов повышения эффективности деятельности промышленного предприятия на основе эконометрического подхода»), защитившие под нашим руководством кандидатские диссертации по экономическим наукам.
Анализ динамики развития ЭММиМ позволяет выделить наиболее перспективные подходы. В частности, при вероятностно-статистическом моделировании таковыми оказались модели и методы нечисловой статистики. Примеры их использования при решении задач модернизации процессов управления предприятиями приведены в различных разделах диссертации.
Глава 5 «Устойчивые математические методы и модели в функциональных областях деятельности промышленных предприятий» начинается с обсуждения проблем разработки и развития экспертных технологий информационно-аналитической поддержки процессов принятия решений при управлении промышленными предприятиями (раздел 5.1). Для решения различных задач модернизации процессов управления предприятиями рекомендуем использовать экспертные технологии разработки управленческих решений. Выделены основные стадии проведения экспертного исследования. Предложена классификация экспертных технологий по таким показателям, как число туров (один, несколько, не фиксировано), порядок вовлечения экспертов (одновременно, последовательно), способ учета их мнений (с весами, без весов), организации общения экспертов (без общения, анонимное, заочное, очное с ограничениями или без ограничений). Разработаны новые экспертные технологии, в частности, метод построения итоговой кластеризованной ранжировки на основе одновременного использования методов средних арифметических рангов и медиан рангов, а затем процедуры согласования. Разработаны новые ЭММиМ в непараметрической теории парных сравнений (на основе теории люсианов) и теории случайных толерантностей.
Кластеризованные ранжировки и другие бинарные отношения, используемые в экспертных технологиях, описываются матрицами из 0 и 1. Если А и В - ответы двух экспертов, описываемые с помощью матриц и соответственно, то степень сходства их ответов оценивается с помощью расстояния Кемени
.
Тогда медиана Кемени, т.е. эмпирическое среднее, определяемое по формуле (4), описывает итоговое мнение комиссии экспертов, а закон больших чисел показывает, что это итоговое мнение устойчиво приближается к наиболее адекватному, несмотря на различия в ответах экспертов.
Развитие нечисловой статистики стимулировано потребностями теории и практики экспертных оценок, что отражено в работах неформального коллектива вокруг общемосковского семинара «Экспертные оценки и анализ данных», действующего с 1973 г.
Устойчивое экономико-математическое моделирование с целью оценки, анализа и управления рисками рассмотрено в разделе 5.2. Нами разработаны непараметрические методы доверительного оценивания характеристик риска по эмпирическим данным, а также ряд новых ЭММиМ, в том числе модель выбора технологий на основе экспертных оценок и аддитивно-мультипликативная модель расчета рисков. Последняя основана на декомпозиции задачи оценки и анализа риска, выделении основных групп факторов риска, независимых между собой, так что вероятность успешного выполнения проекта есть
P = P1P2 …Pk ,
где (1- Pi) - риск, порождаемый i-ой группой факторов. Групповые риски оцениваем аддитивно:
Рn = 1 - А1nХ1n - А2nХ2n - ... - АКnХКn, n = 1, 2, …, k,
где Х1n, Х2n,..., ХКn - факторы (переменные), используемые при вычислении оценки риска типа n, А1n, А2n,..., АКn - коэффициенты весомости (важности) этих факторов. Значения факторов Х1n, Х2n,..., ХКn оценивают эксперты для каждого конкретного проекта, в то время как значения коэффициентов весомости А1n, А2n,..., АКn задаются одними и теми же для всех проектов - по результатам специально организованного экспертного опроса.
Раздел 5.3 посвящен применению устойчивых ЭММиМ в инновационном и инвестиционном менеджменте. Выявлена роль социальных, технологических, экологических, экономических, социальных факторов. Разработаны основы неформальной информационной экономики будущего на базе прогнозирования развития информационных технологий и теории принятия решений. Предложены методы нечеткого выбора в рамках эконометрической поддержки контроллинга инноваций.
Разработаны методология и теоретические положения организационно-экономической и сетевой поддержки инновационных проектов в области высоких технологий, в частности, вопросы организационно-экономическое обеспечения, проведения Интернет-аукционов и экспертиз на различных этапах жизненного цикла инноваций.
Проанализирована устойчивость организационно-экономических выводов по отношению к малым отклонениям коэффициентов дисконтирования, в частности, в связи с разработкой подходов к проблеме математического моделирования процессов налогообложения. В инвестиционном анализе при определении NPV, как известно, для приведения величин платежей и поступлений к одному моменту времени используется постоянный дисконт-фактор. В реальности дисконт-фактор не является заранее известной функцией от времени и зависит от динамики как макроэкономических показателей - ставки рефинансирования Центрального банка РФ, индекса инфляции, так и микроэкономических - финансового положения инвестора, кредитной и депозитной ставок конкретного банка и др. Кроме того, размеры и моменты осуществления платежей и поступлений также могут быть известны лишь с некоторой точностью. Следовательно, как функция от неопределенных (размытых) величин такая характеристика инвестиционного проекта, как NPV, сама является неопределенной. Нами проведено исследование чистой текущей стоимости NPV на устойчивость (чувствительность) к малым отклонениям значений дисконт-функции. Для этого надо найти максимально возможное отклонение NPV при допустимых отклонениях значений дисконт-функции. В качестве примера рассмотрим инвестиционный проект, описываемый финансовым потоком из четырех элементов:
NPV = a(0) + a(1)С(1) + a(2)С(2) + a(3)С(3).
Здесь a(0), a(1), a(2), a(3) - финансовый поток инвестиционного проекта, С(1), С(2), С(3) - дисконт-факторы, соответствующие операции приведения элементов финансового потока (за первый, второй и третий периоды соответственно) к сопоставимым ценам на начало проекта.
В качестве примера изучим устойчивость (чувствительность) NPV для следующих значений: a(0)=-10, a(1)=3, a(2)=4, a(3)=5, С(1)=0,89, С(2)=0,80, С(3)=0,71. Пусть максимально возможные отклонения С(1), С(2), С(3) равны +0,05. Тогда максимум значений NPV равен
NPVmax = -10+30,94+40.85+50,76 = -10+2,82+3,40+3,80 = 0,02,
в то время как минимум значений NPV есть
NPVmin = -10+30,84+40.75+50,66 = -10 +2,52 +3,00+3,30 = -1,18.
Для NPV получаем интервал от (-1,18) до (+0,02). Не удается сделать однозначного заключения - будет проект убыточным или выгодным. Для принятия решения необходимо привлечение экспертов.
Разработка статистических методов и моделей управления качеством - предмет раздела 5.4. Выполнены исследования по обоснованию планов статистического приемочного контроля по альтернативному признаку при минимизации суммарных затрат, по статистическому контролю бесформенной (жидкой, газообразной, порошкообразной, сыпучей, тестообразной и т.п.) продукции. Получены выражения для приемочного и браковочного уровней дефектности при большом объеме выборки, решены задачи синтеза планов контроля по заданным значениям указанных характеристик, а также предела среднего выходного уровня дефектности. На основе теории люсианов разработаны модели и методы статистического контроля по двум альтернативным признакам в асимптотике растущей размерности. В качестве примера укажем предлагаемые нами правила синтеза одноступенчатого плана (n, c) по заданным значениям приемочного и браковочного уровней дефектности:
,
В том же разделе рассмотрены некоторые экологические аспекты управления. Речь идет о статистическом контроле при экологическом мониторинге и контроле экологических требований, применении экспертных методов в экологическом страховании и обеспечении химической безопасности.
В разделе 5.5 рассмотрены модели управления материальными ресурсами промышленного предприятия. Для модели Вильсона управления запасами впервые строго поставлена и решена задача оптимизации в постановке естественной общности, выявлен ряд неклассических эффектов.
Найден оптимальный размер партии в модели Вильсона. Пусть - интенсивность спроса, s - плата за хранение единицы товара в течение единицы времени, g - плата за доставку одной партии, T - интервал (горизонт) планирования. По «формуле квадратного корня»
Найдем неотрицательное целое число n такое, что
Наименьшее из f(Q1) и f(Q2) - минимальные средние издержки, а то из Q1 и Q2, на котором достигается минимум - оптимальный размер партии, где
.
Установлено, что формула квадратного корня, как правило, не дает оптимальный план, а только асимптотически оптимальный.
Согласно принципу уравнивания погрешностей:
Изучение устойчивости позволило получить практически полезные выводы. Так, для кальцинированной соды на Реутовской химбазе Московской области вызванное отклонениями параметров модели максимальное относительное увеличение суммарных затрат не превосходило 26% (колебания по кварталам от 22,5% до 25,95%). Фактические издержки составляли от 260% до 349% от оптимального уровня. внедрение модели Вильсона в практику управления запасами на Реутовской химбазе дает возможность снизить издержки по доставке и хранению кальцинированной соды в 2,1 раза. При этом установлено, что различие численных значений параметров g и s, рассчитанных по методикам ЦЭМИ и НИИ МТС, лежит в пределах точности расчетов, заданной наблюдаемыми колебаниями спроса.
Разработана двухуровневая модель управления материальными ресурсами промышленного предприятия для случая нестационарного спроса, найдены оптимальные значения управляющих параметров, установлена их устойчивость относительно изменения горизонта (интервала) планирования. В этой модели размеры заявок Xj независимы и одинаково распределены, ф(Т) - число заявок за время Т. Нами найдены оптимальные уровни (при ):
,
где h - издержки от дефицита единицы товара в течение единицы времени.
В модели планирования оптимальных размеров поставок и начального запаса нами установлены асимптотические свойства модели и проведена декомпозиция задачи оптимизации, что позволило получить ее решение.
В заключении кратко сформулированы основные результаты диссертационной работы.
В приложениях приведены: справочные материалы, информация и документы о внедрении результатов диссертации.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ
1. Разработана общая схема устойчивости, позволяющая проводить разработку и развитие ЭММиМ на основе единого методологического подхода к изучению устойчивости выводов по отношению к допустимым отклонениям исходных данных и предпосылок. Основное внимание уделено моделированию процессов управления предприятиями. Выделены и изучены частные постановки проблем устойчивости, в том числе устойчивости по отношению к изменению данных, их объемов и распределений, к временным характеристикам. Обоснована необходимость разработки непараметрических статистических методов и методов анализа нечисловых данных. Предложен принцип уравнивания погрешностей.
2. На основе концепции устойчивости по отношению к временным характеристикам получена характеризация моделей с дисконтированием, обосновано применение асимптотически оптимальных планов для экономико-математических моделей процессов стратегического управления предприятиями (моменту начала реализации проекта, горизонту планирования).
3. Разработан ряд непараметрических (устойчивых к изменению распределения результатов наблюдений) статистических методов для решения конкретных задач управления промышленными предприятиями. Рассмотрены задачи оценивания характеристик распределений данных, прогнозирования, сегментации рынка (проверки однородности независимых выборок) и др. Найдены условия применимости критериев Стьюдента и Вилкоксона, обосновано использование состоятельных критериев проверки однородности.
4. Разработаны статистические методы описания данных, оценивания, проверки гипотез для результатов наблюдений, лежащих в пространствах общей природы. В частности, введены определения эмпирических и теоретических средних, получены законы больших чисел, установлено асимптотическое поведение решений экстремальных статистических задач, предложены и изучены непараметрические оценки плотности распределения вероятности, найдено асимптотическое распределение статистик интегрального типа. Важную роль в нечисловой статистике играют задачи оптимизации и результаты общей топологии. Статистика в пространствах произвольной природы основывается на систематическом использовании расстояний или мер близости (мер различия) между объектами нечисловой природы.
5. Развиты математические методы моделирования и анализа конкретных типов объектов нечисловой природы. Установлены связи между различными видами объектов нечисловой природы, построены соответствующие вероятностные модели порождения нечисловых данных. Дана характеризация средних величин с помощью шкал измерения, указан способ сведения нечетких множеств к случайным, развиты методы проверки гипотез (согласованности, однородности, независимости) для бинарных данных (люсианов) в асимптотике растущей размерности, разработана асимптотическая статистика интервальных данных на основе введенных в работе понятий нотны и рационального объема выборки.
6. Разработаны устойчивые ЭММиМ для решения ряда задач модернизации управления предприятиями, в частности, при использовании технологий экспертных оценок, в инновационном и инвестиционном менеджменте, при управлении качеством, материальными ресурсами предприятия; построена аддитивно-мультипликативная модель оценки рисков.
7. Полученные в диссертационной работе результаты, выводы и рекомендации, теоретические основы и методология развивают и дополняют возможности разработчиков ЭММиМ, предназначенных для модернизации управления предприятиями, в направлении изучения устойчивости таких методов и моделей по отношению к допустимым отклонениям исходных данных и предпосылок. Они могут быть рекомендованы для использования при проектировании и модернизации технологий управления, систем информационно-аналитической поддержки процессов принятия решений. Разработанные в диссертации методы и алгоритмы (прежде всего непараметрические статистические методы и методы анализа нечисловой информации, в том числе экспертных оценок, ориентированные на использование в функциональных областях производственно-хозяйственной деятельности предприятий) целесообразно включать в состав программного обеспечения систем автоматизированного управления предприятиями различных отраслей.
Основное содержание диссертации отражено в следующих опубликованных работах
Монографии, учебники, учебные пособия
1. Орлов А.И. Организационно-экономическое моделирование: Часть 1: Нечисловая статистика. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2009. - 542 с.
2. Колобов А.А., Омельченко И.Н., Орлов А.И. Менеджмент высоких технологий. Интегрированные производственно-корпоративные структуры: организация, экономика, управление, проектирование, эффективность, устойчивость. - М.: Экзамен, 2008. - 621 с.
3. Орлов А.И. Оптимальные методы в экономике и управлении. Учебное пособие. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. - 41 с.
4. Орлов А.И. Теория принятия решений. - М.: Экзамен, 2006. - 576 с.
5. Проектирование интегрированных производственно-корпоративных структур: эффективность, организация, управление / С.Н.Анисимов, А.А.Колобов, И.Н.Омельченко, А.И.Орлов, А.М. Иванилова, С.В. Краснов. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. - 728 с.
6. Орлов А.И. Прикладная статистика. - М.: Экзамен, 2006. - 672 с.
7. Орлов А.И. Принятие решений. Теория и методы разработки управленческих решений. - М.: ИКЦ «МарТ»; Ростов н/Д: ИЦ «МарТ», 2005. - 496 с.
8. Орлов А.И., Федосеев В.Н. Менеджмент в техносфере. - М.: ИЦ «Академия», 2003. - 384 с.
9. Системы экологического управления / С.А.Боголюбов, А.Ф. Завальнюк, А.И.Орлов и др. - М.: «Европейский центр по качеству», 2002. - 224 с.
10. Орлов А.И. Эконометрика. - М.: Экзамен, 2002. - 576 с.
11. Управление качеством окружающей среды. 1 том / С.А.Боголюбов, А.Ф. Завальнюк, А.И.Орлов и др. - М., 2000. - 283 с.
12. Математическое моделирование процессов налогообложения (подходы к проблеме) / Иванова Нат. Ю., Кастосов М.А., Орлов А.И. и др. Под ред. Нат. Ю. Ивановой и А.И. Орлова. - М.: ЦЭО Минобразования РФ, 1997. - 232 с.
Статьи в рецензируемых научных журналах списка ВАК по экономике
13. Федосеев В.Н., Орлов А.И. Состояние рыночной мотивации труда в России. // Российское предпринимательство. - 2000. - №6. - С.10-19.
14. Орлов А.И., Федосеев В.Н. Проблемы управления экологической безопасностью // Менеджмент в России и за рубежом. - 2000. - №6. - С.78-86.
15. Орлов А.И. Экологическое страхование // Российское предпринимательство. - 2000. - №11. - С.104-108. -№12. - С.52-55.
16. Орлов А.И. Статистический контроль качества продукции // Российское предпринимательство. - 2001. - №2. - С.17-24.
17. Орлов А.И. Высокие статистические технологии и эконометрика в контроллинге // Российское предпринимательство. - 2001. - № 5. - С.91-93.
18. Орлов А.И. Нечисловая экономика и управление инвестиционным процессом // Российское предпринимательство. - 2001. - № 12. - С.103-108.
19. Орлов А.И. Эконометрическая поддержка контроллинга. - Контроллинг. 2002. №1. С.42-53.
20. Орлов А.И., Гуськова Е.А. Информационные системы управления предприятием в решении задач контроллинга // Контроллинг. 2003. №1. С.52-59.
21. Орлов А.И., Орлова Л.А. Применение эконометрических методов при решении задач контроллинга // Контроллинг, 2003, No.4(8), с.50-54.
22. Загонова Н.С., Орлов А.И. Эконометрическая поддержка контроллинга инноваций. Нечеткий выбор. // Российское предпринимательство. - 2004. - №4. - С.54-57.
23. Орлов А.И., Орлова Л.А. Эконометрика в обучении контроллеров // Контроллинг. 2004. No.3 (11). С.68-73.
24. Орлов А.И., Орлова Л.А. Интервальная оценка инфляции по независимой информации // Российское предпринимательство. - 2004. - № 10. - С.44-49.
25. Фалько С.Г., Орлов А.И. «Шесть сигм» как подход к совершенствованию бизнеса // Контроллинг. 2004. No.4(12). С.42-46.
26. Орлов А.И. Контроллинг организационно-экономических методов // Контроллинг. 2008. No.4(28). С.42-46.
Статьи в рецензируемых научных журналах списка ВАК
по иным направлениям (машиностроение, управление и др.)
27. Орлов А.И. Экспертные оценки // Заводская лаборатория. - 1996. - Т.62. - №1. - С.54-60.
28. Орлов А.И. Математическое обеспечение сертификации: сравнительный анализ диалоговых систем по статистическому контролю // Заводская лаборатория. - 1996. - Т.62. - №7. - С.46-49.
29. Орлов А.И. Сертификация и статистические методы // Заводская лаборатория. - 1997. - Т.63. - №3. - С. 55-62.
30. Орлов А.И. Современная прикладная статистика // Заводская лаборатория. - 1998. - Т.64. - №3. - С. 52-60.
31. Орлов А.И. Какие гипотезы можно проверять с помощью двухвыборочного критерия Вилкоксона? // Заводская лаборатория. 1999. Т.65. №1. С.51-55.
32. Орлов А.И. Репрезентативная теория измерений и ее применения // Заводская лаборатория. - 1999. - Т.65. - №3. - С. 57-62..
33. Орлов А.И. Статистический контроль по двум альтернативным признакам и метод проверки их независимости по совокупности малых выборок // Заводская лаборатория. - 2000. - Т.66. - №1. - С.58-62.
34. Орлов А.И. Высокие статистические технологии // Заводская лаборатория. - 2003. - Т.69. - №11. - С.55-60.
35. Орлов А.И. «Шесть сигм» - новая система внедрения математических методов исследования // Заводская лаборатория. - 2006. - Т.72. - №5. - С.50-53.
36. Митрохин И.Н., Орлов А.И. Обнаружение разладки с помощью контрольных карт // Заводская лаборатория. - 2007. - Т.73. - №5. - С.74-78.
37. Муравьева В.С., Орлов А.И. Непараметрическое оценивание точки пересечения регрессионных прямых // Заводская лаборатория. - 2008. - Т.74. -No.1. - С.63-68.
38. Горский В.Г., Гриценко А.А., Орлов А.И. Метод согласования кластеризованных ранжировок // Автоматика и телемеханика. - 2000. - №3. - С.179-187.
39. Муравьева В.С., Орлов А.И. Организационно-экономические проблемы прогнозирования на промышленном предприятии // Управление большими системами. - Выпуск 17. - М.: ИПУ РАН, 2007. - С.143-158.
Размещено на Allbest.ru
...Подобные документы
Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.
реферат [91,1 K], добавлен 16.05.2012Теоретические основы экономико-математических методов. Этапы принятия решений. Классификация задач оптимизации. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования.
курсовая работа [2,3 M], добавлен 07.05.2013Теоретические основы экономико-математических задач о смесях. Принципы построения и структура интегрированной системы экономико-математических моделей. Организационно-экономическая характеристика и технико-экономические показатели работы СПК "Родина".
курсовая работа [66,6 K], добавлен 01.04.2011Общая характеристика и классификация экономико-математических методов. Стохастическое моделирование и анализ факторных систем хозяйственной деятельности. Балансовые методы и модели в анализе связей внутризаводских подразделений, в расчетах и цен.
курсовая работа [200,8 K], добавлен 16.06.2014Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.
курсовая работа [1,3 M], добавлен 23.06.2013Особенности формирования и способы решения оптимизационной задачи. Сущность экономико-математической модели транспортной задачи. Характеристика и методика расчета балансовых и игровых экономико-математических моделей. Свойства и признаки сетевых моделей.
практическая работа [322,7 K], добавлен 21.01.2010Сущность и необходимость применения математических моделей в экономике. Характеристика предприятия "Лукойл", определение стоимости компании с помощью модели дисконтированных денежных потоков. Использование математических моделей в управлении предприятием.
дипломная работа [1,7 M], добавлен 25.09.2010Изучение экономических приложений математических дисциплин для решения экономических задач: использование математических моделей в экономике и менеджменте. Примеры моделей линейного и динамического программирования как инструмента моделирования экономики.
курсовая работа [2,0 M], добавлен 21.12.2010Критерии оптимальности в эколого-математических моделях. Использование максимума относительной скорости роста численности популяций. Принцип минимального воздействия в эколого-математических моделях. Модели случайных стационарных процессов.
контрольная работа [193,1 K], добавлен 28.09.2007Открытие и историческое развитие методов математического моделирования, их практическое применение в современной экономике. Использование экономико-математического моделирования на всей уровнях управления по мере внедрения информационных технологий.
контрольная работа [22,4 K], добавлен 10.06.2009Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.
контрольная работа [141,5 K], добавлен 02.02.2013Типовые модели менеджмента: примеры экономико-математических моделей и их практического использования. Процесс интеграции моделей разных типов в более сложные модельные конструкции. Определение оптимального плана производства продуктов каждого вида.
контрольная работа [536,2 K], добавлен 14.01.2015Линейная регрессивная модель. Степенная регрессивная модель. Показательная регрессивная модель. Регрессивная модель равносторонней гиперболы. Преимущества математического подхода. Применение экономико-математических методов и моделей.
курсовая работа [31,6 K], добавлен 05.06.2007Характеристика основных принципов создания математических моделей гидрологических процессов. Описание процессов дивергенции, трансформации и конвергенции. Ознакомление с базовыми компонентами гидрологической модели. Сущность имитационного моделирования.
презентация [60,6 K], добавлен 16.10.2014Методика и основные этапы построения математических моделей, их сущность и особенности, порядок разработки. Составление математических моделей для системы "ЭМУ-Д". Алгоритм расчета переходных процессов в системе и оформление результатов программы.
реферат [198,6 K], добавлен 22.04.2009Методы разработки экономико-математических моделей управления развитием предприятия. Разработка модели организационной структуры и системы управления развитием предприятия на примере ООО "Метра". Оптимизация использования фонда развития предприятия.
курсовая работа [76,7 K], добавлен 11.09.2008Основы составления, решения и анализа экономико-математических задач. Состояние, решение, анализ экономико-математических задач по моделированию структуры посевов кормовых культур при заданных объемах животноводческой продукции. Методические рекомендации.
методичка [55,1 K], добавлен 12.01.2009Содержание и построение экономико-математических методов. Роль оптимальных методов в планировании и управлении производством. Экономико-математические модели оптимальной загрузки производственных мощностей. Отраслевое прогнозирование и регулирование.
контрольная работа [62,1 K], добавлен 30.08.2010Моделирование. Детерминизм. Задачи детерминированного факторного анализа. Способы измерения влияния факторов в детерминированном анализе. Расчёт детерминированных экономико-математических моделей и методов факторного анализа на примере РУП "ГЗЛиН".
курсовая работа [246,7 K], добавлен 12.05.2008Предмет экономико-математического моделирования, цель разработки экономико-математических методов. Для условной экономики, состоящей из трех отраслей, за отчетный период известны межотраслевые потоки и вектор конечного использования продукции.
контрольная работа [71,0 K], добавлен 14.09.2006