Построение модели линейной множественной регрессии для моделирования численности населения Белгородской области

Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.

Рубрика Экономико-математическое моделирование
Предмет Экономико-математическое моделирование
Вид статья
Язык русский
Прислал(а) incognito
Дата добавления 23.01.2019
Размер файла 155,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Построение модели множественной линейной регрессии по заданным параметрам. Оценка качества модели по коэффициентам детерминации и множественной корреляции. Определение значимости уравнения регрессии на основе F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа [914,4 K], добавлен 01.12.2013

  • Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.

    курсовая работа [3,4 M], добавлен 10.02.2014

  • Построение уравнения множественной регрессии в линейной форме с полным набором факторов, отбор информативных факторов. Проверка значимости уравнения регрессии по критерию Фишера и статистической значимости параметров регрессии по критерию Стьюдента.

    лабораторная работа [217,9 K], добавлен 17.10.2009

  • Понятие модели множественной регрессии. Сущность метода наименьших квадратов, который используется для определения параметров уравнения множественной линейной регрессии. Оценка качества подгонки регрессионного уравнения к данным. Коэффициент детерминации.

    курсовая работа [449,1 K], добавлен 22.01.2015

  • Расчет параметров A и B уравнения линейной регрессии. Оценка полученной точности аппроксимации. Построение однофакторной регрессии. Дисперсия математического ожидания прогнозируемой величины. Тестирование ошибок уравнения множественной регрессии.

    контрольная работа [63,3 K], добавлен 19.04.2013

  • Построение доверительного интервала для коэффициента регрессии. Определение ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности изменения материалоемкости продукции. Построение линейного уравнения множественной регрессии.

    контрольная работа [250,5 K], добавлен 11.04.2015

  • Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа [108,5 K], добавлен 28.03.2018

  • Оценка распределения переменной Х1. Моделирование взаимосвязи между переменными У и Х1 с помощью линейной функции и методом множественной линейной регрессии. Сравнение качества построенных моделей. Составление точечного прогноза по заданным значениям.

    курсовая работа [418,3 K], добавлен 24.06.2015

  • Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа [243,1 K], добавлен 17.01.2016

  • Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.

    контрольная работа [248,4 K], добавлен 26.12.2010

  • Факторы, формирующие цену квартир в строящихся домах в Санкт-Петербурге. Составление матрицы парных коэффициентов корреляции исходных переменных. Тестирование ошибок уравнения множественной регрессии на гетероскедастичность. Тест Гельфельда-Квандта.

    контрольная работа [1,2 M], добавлен 14.05.2015

  • Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.

    задача [142,0 K], добавлен 20.03.2010

  • Методика расчета линейной регрессии и корреляции, оценка их значимости. Порядок построения нелинейных регрессионных моделей в MS Exсel. Оценка надежности результатов множественной регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа [3,6 M], добавлен 29.05.2010

  • Анализ влияния основных социально-экономических показателей на результативный признак. Особенности классической линейной модели множественной регрессии, ее анализ на наличие или отсутствие гетероскедастичности в регрессионных остатках и их автокорреляции.

    лабораторная работа [573,8 K], добавлен 17.02.2014

  • Основные параметры уравнения регрессии, оценка их параметров и значимость. Интервальная оценка для коэффициента корреляции. Анализ точности определения оценок коэффициентов регрессии. Показатели качества уравнения регрессии, прогнозирование данных.

    контрольная работа [222,5 K], добавлен 08.05.2014

  • Уравнение нелинейной регрессии и вид уравнения множественной регрессии. Преобразованная величина признака-фактора. Преобразование уравнения в линейную форму. Определение индекса корреляции и числа степеней свободы для факторной суммы квадратов.

    контрольная работа [501,2 K], добавлен 27.06.2011

  • Расчет уравнения линейной регрессии. Построение на экран графика и доверительной области уравнения. Разработка программы, генерирующей значения случайных величин, имеющих нормальный закон распределения для определения параметров уравнения регрессии.

    лабораторная работа [18,4 K], добавлен 19.02.2014

  • Использование метода оценки параметров в стандартных масштабах для определения неизвестных параметров линейной модели множественной регрессии. Специфика изучения взаимосвязей по временным рядам. Моделирование взаимосвязей и тенденций в финансовой сфере.

    контрольная работа [326,7 K], добавлен 22.04.2016

  • Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.

    контрольная работа [110,4 K], добавлен 28.07.2012

  • Исследование зависимости часового заработка одного рабочего от общего стажа работы после окончания учебы с помощью построения уравнения парной линейной регрессии. Вычисление описательных статистик. Построение поля корреляции и гипотезы о форме связи.

    контрольная работа [226,6 K], добавлен 11.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.