Factors of successful protection from pressure on business
Concept and economic essence of property rights. Justification and development of the business protection model against possible damage to business activities caused by the influence various external and internal market factors and economic conditions.
Рубрика | Экономико-математическое моделирование |
Вид | дипломная работа |
Язык | английский |
Дата добавления | 11.08.2020 |
Размер файла | 5,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
anova(logit_1, test="Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: target_light_extended
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 355 488.55
## macro_okved_code_group 8 20.5329 347 468.02 0.0084974 **
## spark_stock_ticket 1 0.4270 346 467.59 0.5134728
## category_by_size_missing 3 13.3925 343 454.20 0.0038603 **
## administrative_position 1 1.6401 342 452.56 0.2003081
## administrative_connections 1 0.5145 341 452.05 0.4731845
## in_political_party 1 0.0945 340 451.95 0.7585476
## in_association_or_sro 1 4.9590 339 446.99 0.0259545 *
## case_publications 1 11.3855 338 435.61 0.0007402 ***
## criminal_prosecution 1 0.0735 337 435.53 0.7862407
## capture 1 5.5168 336 430.02 0.0188342 *
## corruption 1 0.1114 335 429.91 0.7385734
## barriers 1 0.1073 334 429.80 0.7431859
## have_court_case 1 1.9298 333 427.87 0.1647800
## is_guilty 1 0.3340 332 427.54 0.5633164
## reviewed_by_bac 1 1.5678 331 425.97 0.2105283
## cop_stage 2 4.2938 329 421.67 0.1168429
## to_ombudsman 1 2.5916 328 419.08 0.1074337
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
By hand:
light_extended_vars <-c(
c(
# "federal_districts",
#"largest_fed_districts",
#"macro_okved_code",
"macro_okved_code_group",
#"spark_web_site",
#"spark_stock_ticket",
#"category_by_size_missing",
"category_by_size_melse",
# "category_by_size_2_cat",
#"administrative_position",
#"administrative_connections",
#"in_political_party",
"in_association_or_sro",
"case_publications",
#"criminal_prosecution",
"capture", "corruption", "barriers",
#"have_court_case",
#"is_guilty",
# "reviewed_by_bac",
# "supported_by_bac_public_council",
# "max_bac_stage",
"cop_stage",
#"reaction_not_passed_by_applicant",
#"reaction_consultation",
#"reaction_target_letters_control",
#"reaction_not_passed_by_bac",
"to_ombudsman",
"target_light_extended")
)
light_extended_data <-dataset[light_extended_vars]
light_extended_data =light_extended_data[!is.na(light_extended_data$target_light_extended),]
light_extended_data =light_extended_data[!is.na(light_extended_data$category_by_size_melse),]
light_extended_data$macro_okved_code_group <-factor(light_extended_data$macro_okved_code_group)
light_extended_data$category_by_size_melse <-factor(light_extended_data$category_by_size_melse)
light_extended_data$cop_stage <-factor(light_extended_data$cop_stage)
logit_1<-glm(target_light_extended~., family = binomial,data = light_extended_data)
summary(logit_1)
##
## Call:
## glm(formula = target_light_extended ~ ., family = binomial, data = light_extended_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.9343 -1.0775 0.5488 0.9847 1.8389
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 1.44809 0.52909 2.737
## macro_okved_code_groupFinancial_insurance -0.61208 0.67255 -0.910
## macro_okved_code_groupmanufacturing 0.37316 0.40262 0.927
## macro_okved_code_groupother_categories 0.44716 0.42851 1.044
## macro_okved_code_groupreal_estate 1.72276 0.51806 3.325
## macro_okved_code_grouprural 0.92011 0.58612 1.570
## macro_okved_code_groupScience 1.41442 0.50626 2.794
## macro_okved_code_groupTrading 0.35883 0.40714 0.881
## macro_okved_code_groupTransportation 0.03762 0.62455 0.060
## category_by_size_melseMicro -0.85986 0.26166 -3.286
## in_association_or_sro 0.55634 0.26328 2.113
## case_publications -1.05904 0.33757 -3.137
## capture -0.73300 0.27856 -2.631
## corruption 0.11972 0.44487 0.269
## barriers -0.13623 0.39479 -0.345
## cop_stageInformation_collection 0.02222 0.37063 0.060
## cop_stageResolution -0.65624 0.30175 -2.175
## to_ombudsman 0.66487 0.38949 1.707
## Pr(>|z|)
## (Intercept) 0.006202 **
## macro_okved_code_groupFinancial_insurance 0.362774
## macro_okved_code_groupmanufacturing 0.354007
## macro_okved_code_groupother_categories 0.296708
## macro_okved_code_groupreal_estate 0.000883 ***
## macro_okved_code_grouprural 0.116455
## macro_okved_code_groupScience 0.005209 **
## macro_okved_code_groupTrading 0.378133
## macro_okved_code_groupTransportation 0.951962
## category_by_size_melseMicro 0.001016 **
## in_association_or_sro 0.034595 *
## case_publications 0.001705 **
## capture 0.008504 **
## corruption 0.787840
## barriers 0.730032
## cop_stageInformation_collection 0.952200
## cop_stageResolution 0.029644 *
## to_ombudsman 0.087815 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 488.55 on 355 degrees of freedom
## Residual deviance: 427.53 on 338 degrees of freedom
## AIC: 463.53
##
## Number of Fisher Scoring iterations: 3
car::vif(logit_1)
## GVIF Df GVIF^(1/(2*Df))
## macro_okved_code_group 1.583574 8 1.029147
## category_by_size_melse 1.161981 1 1.077952
## in_association_or_sro 1.168010 1 1.080745
## case_publications 1.141557 1 1.068437
## capture 1.187126 1 1.089553
## corruption 1.060162 1 1.029642
## barriers 1.271040 1 1.127404
## cop_stage 1.289682 2 1.065665
## to_ombudsman 1.341861 1 1.158387
anova(logit_1, test="Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: target_light_extended
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 355 488.55
## macro_okved_code_group 8 20.5329 347 468.02 0.0084974 **
## category_by_size_melse 1 11.8728 346 456.15 0.0005696 ***
## in_association_or_sro 1 3.8046 345 452.34 0.0511127 .
## case_publications 1 11.2745 344 441.07 0.0007858 ***
## capture 1 5.5747 343 435.49 0.0182222 *
## corruption 1 0.1216 342 435.37 0.7272802
## barriers 1 0.0022 341 435.37 0.9622779
## cop_stage 2 4.8525 339 430.52 0.0883666 .
## to_ombudsman 1 2.9903 338 427.53 0.0837670 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
By AIC maximization
light_extended_vars <-c(
c(
#"spark_web_site",
"spark_stock_ticket",
#"category_by_size_missing",
"category_by_size_melse",
# "category_by_size_2_cat",
"administrative_position",
#"administrative_connections",
"in_political_party",
"in_association_or_sro",
"case_publications",
"criminal_prosecution",
"capture", "corruption", "barriers",
"have_court_case",
"is_guilty",
"reviewed_by_bac",
#"supported_by_bac_public_council",
# "max_bac_stage",
"cop_stage",
#"reaction_not_passed_by_applicant",
#"reaction_consultation",
#"reaction_target_letters_control",
#"reaction_not_passed_by_bac",
"to_ombudsman",
"macro_okved_code_group",
"target_light_extended")
)
light_extended_data <-dataset[light_extended_vars]
light_extended_data =light_extended_data[!is.na(light_extended_data$target_light_extended),]
light_extended_data =light_extended_data[!is.na(light_extended_data$category_by_size_melse),]
light_extended_data$macro_okved_code_group <-factor(light_extended_data$macro_okved_code_group)
light_extended_data$category_by_size_melse <-factor(light_extended_data$category_by_size_melse)
light_extended_data$cop_stage <-factor(light_extended_data$cop_stage)
logit_1<-glm(target_light_extended~., family = binomial,data = light_extended_data)
summary(logit_1)
##
## Call:
## glm(formula = target_light_extended ~ ., family = binomial, data = light_extended_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.9990 -1.0525 0.5197 0.9515 1.9745
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 1.47803 0.74685 1.979
## spark_stock_ticket -1.24487 0.72366 -1.720
## category_by_size_melseMicro -0.94148 0.27384 -3.438
## administrative_position 0.64925 0.48025 1.352
## in_political_party -0.16522 0.42844 -0.386
## in_association_or_sro 0.62368 0.26972 2.312
## case_publications -1.09858 0.34717 -3.164
## criminal_prosecution -0.10080 0.42957 -0.235
## capture -0.78202 0.34583 -2.261
## corruption 0.18104 0.48196 0.376
## barriers -0.16747 0.53344 -0.314
## have_court_case 0.49645 0.35803 1.387
## is_guilty -0.22654 0.36763 -0.616
## reviewed_by_bac -0.03864 0.53243 -0.073
## cop_stageInformation_collection -0.03723 0.53661 -0.069
## cop_stageResolution -0.74449 0.49039 -1.518
## to_ombudsman 0.61925 0.40265 1.538
## macro_okved_code_groupFinancial_insurance -0.80264 0.70915 -1.132
## macro_okved_code_groupmanufacturing 0.39367 0.42099 0.935
## macro_okved_code_groupother_categories 0.48973 0.44058 1.112
## macro_okved_code_groupreal_estate 1.75574 0.52894 3.319
## macro_okved_code_grouprural 0.79448 0.59320 1.339
## macro_okved_code_groupScience 1.42457 0.51721 2.754
## macro_okved_code_groupTrading 0.39943 0.42124 0.948
## macro_okved_code_groupTransportation 0.16712 0.63903 0.262
## Pr(>|z|)
## (Intercept) 0.047812 *
## spark_stock_ticket 0.085391 .
## category_by_size_melseMicro 0.000586 ***
## administrative_position 0.176402
## in_political_party 0.699776
## in_association_or_sro 0.020760 *
## case_publications 0.001554 **
## criminal_prosecution 0.814476
## capture 0.023742 *
## corruption 0.707186
## barriers 0.753562
## have_court_case 0.165563
## is_guilty 0.537751
## reviewed_by_bac 0.942139
## cop_stageInformation_collection 0.944688
## cop_stageResolution 0.128973
## to_ombudsman 0.124066
## macro_okved_code_groupFinancial_insurance 0.257708
## macro_okved_code_groupmanufacturing 0.349740
## macro_okved_code_groupother_categories 0.266331
## macro_okved_code_groupreal_estate 0.000902 ***
## macro_okved_code_grouprural 0.180471
## macro_okved_code_groupScience 0.005881 **
## macro_okved_code_groupTrading 0.343022
## macro_okved_code_groupTransportation 0.793687
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 488.55 on 355 degrees of freedom
## Residual deviance: 419.99 on 331 degrees of freedom
## AIC: 469.99
##
## Number of Fisher Scoring iterations: 4
logit_2<-stepAIC(logit_1)
## Start: AIC=469.99
## target_light_extended ~ spark_stock_ticket + category_by_size_melse +
## administrative_position + in_political_party + in_association_or_sro +
## case_publications + criminal_prosecution + capture + corruption +
## barriers + have_court_case + is_guilty + reviewed_by_bac +
## cop_stage + to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - reviewed_by_bac 1 419.99 467.99
## - criminal_prosecution 1 420.04 468.04
## - barriers 1 420.09 468.09
## - corruption 1 420.13 468.13
## - in_political_party 1 420.14 468.14
## - is_guilty 1 420.37 468.37
## - administrative_position 1 421.86 469.86
## - have_court_case 1 421.94 469.94
## <none> 419.99 469.99
## - to_ombudsman 1 422.41 470.41
## - spark_stock_ticket 1 422.99 470.99
## - cop_stage 2 425.73 471.73
## - capture 1 425.26 473.26
## - in_association_or_sro 1 425.44 473.44
## - macro_okved_code_group 8 443.07 477.07
## - case_publications 1 430.75 478.75
## - category_by_size_melse 1 432.32 480.32
##
## Step: AIC=467.99
## target_light_extended ~ spark_stock_ticket + category_by_size_melse +
## administrative_position + in_political_party + in_association_or_sro +
## case_publications + criminal_prosecution + capture + corruption +
## barriers + have_court_case + is_guilty + cop_stage + to_ombudsman +
## macro_okved_code_group
##
## Df Deviance AIC
## - criminal_prosecution 1 420.06 466.06
## - barriers 1 420.10 466.10
## - corruption 1 420.13 466.13
## - in_political_party 1 420.14 466.14
## - is_guilty 1 420.39 466.39
## - administrative_position 1 421.87 467.87
## - have_court_case 1 421.96 467.96
## <none> 419.99 467.99
## - to_ombudsman 1 422.41 468.41
## - spark_stock_ticket 1 423.04 469.04
## - capture 1 425.44 471.44
## - in_association_or_sro 1 425.48 471.48
## - cop_stage 2 427.54 471.54
## - macro_okved_code_group 8 443.18 475.18
## - case_publications 1 430.80 476.80
## - category_by_size_melse 1 432.33 478.33
##
## Step: AIC=466.06
## target_light_extended ~ spark_stock_ticket + category_by_size_melse +
## administrative_position + in_political_party + in_association_or_sro +
## case_publications + capture + corruption + barriers + have_court_case +
## is_guilty + cop_stage + to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - barriers 1 420.10 464.10
## - in_political_party 1 420.20 464.20
## - corruption 1 420.29 464.29
## - is_guilty 1 420.47 464.47
## - administrative_position 1 421.90 465.90
## <none> 420.06 466.06
## - have_court_case 1 422.09 466.09
## - to_ombudsman 1 422.74 466.74
## - spark_stock_ticket 1 423.08 467.08
## - in_association_or_sro 1 425.49 469.49
## - cop_stage 2 427.59 469.59
## - capture 1 426.91 470.91
## - macro_okved_code_group 8 444.21 474.21
## - case_publications 1 431.16 475.16
## - category_by_size_melse 1 432.36 476.36
##
## Step: AIC=464.1
## target_light_extended ~ spark_stock_ticket + category_by_size_melse +
## administrative_position + in_political_party + in_association_or_sro +
## case_publications + capture + corruption + have_court_case +
## is_guilty + cop_stage + to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - in_political_party 1 420.24 462.24
## - corruption 1 420.35 462.35
## - is_guilty 1 420.54 462.54
## - administrative_position 1 421.95 463.95
## <none> 420.10 464.10
## - have_court_case 1 422.21 464.21
## - to_ombudsman 1 422.90 464.90
## - spark_stock_ticket 1 423.10 465.10
## - in_association_or_sro 1 425.57 467.57
## - cop_stage 2 427.62 467.62
## - capture 1 427.03 469.03
## - macro_okved_code_group 8 444.21 472.21
## - case_publications 1 431.17 473.17
## - category_by_size_melse 1 432.38 474.38
##
## Step: AIC=462.24
## target_light_extended ~ spark_stock_ticket + category_by_size_melse +
## administrative_position + in_association_or_sro + case_publications +
## capture + corruption + have_court_case + is_guilty + cop_stage +
## to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - corruption 1 420.47 460.47
## - is_guilty 1 420.71 460.71
## - administrative_position 1 422.21 462.21
## <none> 420.24 462.24
## - have_court_case 1 422.38 462.38
## - to_ombudsman 1 422.95 462.95
## - spark_stock_ticket 1 423.19 463.19
## - in_association_or_sro 1 425.64 465.64
## - cop_stage 2 427.77 465.77
## - capture 1 427.18 467.18
## - macro_okved_code_group 8 444.24 470.24
## - case_publications 1 431.44 471.44
## - category_by_size_melse 1 432.42 472.42
##
## Step: AIC=460.47
## target_light_extended ~ spark_stock_ticket + category_by_size_melse +
## administrative_position + in_association_or_sro + case_publications +
## capture + have_court_case + is_guilty + cop_stage + to_ombudsman +
## macro_okved_code_group
##
## Df Deviance AIC
## - is_guilty 1 420.92 458.92
## <none> 420.47 460.47
## - administrative_position 1 422.50 460.50
## - have_court_case 1 422.52 460.52
## - to_ombudsman 1 423.25 461.25
## - spark_stock_ticket 1 423.30 461.30
## - in_association_or_sro 1 425.85 463.85
## - cop_stage 2 428.01 464.01
## - capture 1 427.22 465.22
## - macro_okved_code_group 8 444.45 468.45
## - case_publications 1 432.11 470.11
## - category_by_size_melse 1 432.75 470.75
##
## Step: AIC=458.92
## target_light_extended ~ spark_stock_ticket + category_by_size_melse +
## administrative_position + in_association_or_sro + case_publications +
## capture + have_court_case + cop_stage + to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## - have_court_case 1 422.81 458.81
## <none> 420.92 458.92
## - administrative_position 1 423.11 459.11
## - to_ombudsman 1 423.60 459.60
## - spark_stock_ticket 1 423.94 459.94
## - in_association_or_sro 1 426.35 462.35
## - cop_stage 2 428.40 462.40
## - capture 1 427.88 463.88
## - macro_okved_code_group 8 445.17 467.17
## - case_publications 1 432.48 468.48
## - category_by_size_melse 1 432.97 468.97
##
## Step: AIC=458.81
## target_light_extended ~ spark_stock_ticket + category_by_size_melse +
## administrative_position + in_association_or_sro + case_publications +
## capture + cop_stage + to_ombudsman + macro_okved_code_group
##
## Df Deviance AIC
## <none> 422.81 458.81
## - administrative_position 1 424.91 458.91
## - to_ombudsman 1 425.40 459.40
## - spark_stock_ticket 1 425.77 459.77
## - in_association_or_sro 1 428.16 462.16
## - cop_stage 2 430.50 462.50
## - capture 1 429.33 463.33
## - macro_okved_code_group 8 446.88 466.88
## - category_by_size_melse 1 434.09 468.09
## - case_publications 1 434.36 468.36
summary(logit_2)
##
## Call:
## glm(formula = target_light_extended ~ spark_stock_ticket + category_by_size_melse +
## administrative_position + in_association_or_sro + case_publications +
## capture + cop_stage + to_ombudsman + macro_okved_code_group,
## family = binomial, data = light_extended_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.9357 -1.0622 0.5301 0.9755 1.8390
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 1.434658 0.526480 2.725
## spark_stock_ticket -1.224267 0.717167 -1.707
## category_by_size_melseMicro -0.889028 0.269579 -3.298
## administrative_position 0.549510 0.385022 1.427
## in_association_or_sro 0.612282 0.267207 2.291
## case_publications -1.112793 0.339810 -3.275
## capture -0.692848 0.273825 -2.530
## cop_stageInformation_collection 0.007352 0.372513 0.020
## cop_stageResolution -0.712629 0.307007 -2.321
## to_ombudsman 0.585337 0.367975 1.591
## macro_okved_code_groupFinancial_insurance -0.683462 0.689718 -0.991
## macro_okved_code_groupmanufacturing 0.485564 0.409709 1.185
## macro_okved_code_groupother_categories 0.516540 0.434271 1.189
## macro_okved_code_groupreal_estate 1.765532 0.523123 3.375
## macro_okved_code_grouprural 0.936868 0.584816 1.602
## macro_okved_code_groupScience 1.485117 0.510388 2.910
## macro_okved_code_groupTrading 0.410991 0.410179 1.002
## macro_okved_code_groupTransportation 0.213553 0.633143 0.337
## Pr(>|z|)
## (Intercept) 0.006430 **
## spark_stock_ticket 0.087805 .
## category_by_size_melseMicro 0.000974 ***
## administrative_position 0.153517
## in_association_or_sro 0.021940 *
## case_publications 0.001058 **
## capture 0.011398 *
## cop_stageInformation_collection 0.984255
## cop_stageResolution 0.020275 *
## to_ombudsman 0.111678
## macro_okved_code_groupFinancial_insurance 0.321720
## macro_okved_code_groupmanufacturing 0.235960
## macro_okved_code_groupother_categories 0.234266
## macro_okved_code_groupreal_estate 0.000738 ***
## macro_okved_code_grouprural 0.109158
## macro_okved_code_groupScience 0.003617 **
## macro_okved_code_groupTrading 0.316353
## macro_okved_code_groupTransportation 0.735898
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 488.55 on 355 degrees of freedom
## Residual deviance: 422.81 on 338 degrees of freedom
## AIC: 458.81
##
## Number of Fisher Scoring iterations: 4
car::vif(logit_2)
## GVIF Df GVIF^(1/(2*Df))
## spark_stock_ticket 1.126721 1 1.061471
## category_by_size_melse 1.213062 1 1.101391
## administrative_position 1.074237 1 1.036454
## in_association_or_sro 1.183608 1 1.087937
## case_publications 1.147771 1 1.071341
## capture 1.135363 1 1.065534
## cop_stage 1.314410 2 1.070737
## to_ombudsman 1.193214 1 1.092344
## macro_okved_code_group 1.620715 8 1.030639
anova(logit_2, test="Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: target_light_extended
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 355 488.55
## spark_stock_ticket 1 0.4978 354 488.06 0.4804672
## category_by_size_melse 1 11.1542 353 476.90 0.0008384 ***
## administrative_position 1 1.6206 352 475.28 0.2030147
## in_association_or_sro 1 3.6751 351 471.61 0.0552321 .
## case_publications 1 11.4231 350 460.18 0.0007254 ***
## capture 1 4.4979 349 455.69 0.0339364 *
## cop_stage 2 4.6977 347 450.99 0.0954788 .
## to_ombudsman 1 4.1090 346 446.88 0.0426553 *
## macro_okved_code_group 8 24.0669 338 422.81 0.0022334 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TARGET 4 - TARGET STRONG EXTENDED Baseline
strong_extended_vars <-c(
c(
#"federal_districts",
#"largest_fed_districts",
#"macro_okved_code",
"macro_okved_code_group",
#"spark_web_site",
"spark_stock_ticket",
"category_by_size_missing",
#"category_by_size_melse",
#"category_by_size_2_cat",
"administrative_position",
"administrative_connections",
"in_political_party",
"in_association_or_sro",
"case_publications",
"criminal_prosecution",
"capture",
"corruption",
"barriers",
"have_court_case",
"is_guilty",
# "reviewed_by_bac",
# "supported_by_bac_public_council",
# "max_bac_stage",
# "cop_stage",
"reaction_not_passed_by_applicant",
"reaction_consultation",
"reaction_target_letters_control",
# "reaction_not_passed_by_bac",
"to_ombudsman",
"target_strong_extended")
)
strong_extended_data <-dataset[strong_extended_vars]
strong_extended_data =strong_extended_data[!is.na(strong_extended_data$target_strong_extended),]
strong_extended_data =strong_extended_data[!is.na(strong_extended_data$category_by_size_missing),]
strong_extended_data$macro_okved_code_group <-factor(strong_extended_data$macro_okved_code_group)
strong_extended_data$category_by_size_missing <-factor(strong_extended_data$category_by_size_missing)
logit_1<-glm(target_strong_extended~., family = binomial,data = strong_extended_data)
summary(logit_1)
##
## Call:
## glm(formula = target_strong_extended ~ ., family = binomial,
## data = strong_extended_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5179 -0.7133 -0.5049 -0.1931 2.4325
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -0.25129 0.85921 -0.292
## macro_okved_code_groupFinancial_insurance 0.04822 0.85316 0.057
## macro_okved_code_groupmanufacturing 0.86318 0.49094 1.758
## macro_okved_code_groupother_categories -0.24455 0.57118 -0.428
## macro_okved_code_groupreal_estate 1.12305 0.54285 2.069
## macro_okved_code_grouprural 0.29233 0.69294 0.422
## macro_okved_code_groupScience 1.42021 0.50540 2.810
## macro_okved_code_groupTrading -0.03397 0.52445 -0.065
## macro_okved_code_groupTransportation -1.37261 1.17756 -1.166
## spark_stock_ticket -1.19797 0.88498 -1.354
## category_by_size_missingMedium -0.01702 0.68677 -0.025
## category_by_size_missingMicro -0.75481 0.54976 -1.373
## category_by_size_missingSmall -0.90844 0.60008 -1.514
## administrative_position 0.21246 0.53336 0.398
## administrative_connections -0.23835 0.34537 -0.690
## in_political_party 0.17642 0.45989 0.384
## in_association_or_sro 0.69565 0.30427 2.286
## case_publications -0.64669 0.37281 -1.735
## criminal_prosecution -0.41563 0.52751 -0.788
## capture -0.87882 0.43134 -2.037
## corruption -0.16717 0.59570 -0.281
## barriers 0.41658 0.60697 0.686
## have_court_case 0.02304 0.42099 0.055
## is_guilty -0.14760 0.43214 -0.342
## reaction_not_passed_by_applicant -0.58742 0.50631 -1.160
## reaction_consultation 2.64920 0.81557 3.248
## reaction_target_letters_control 0.68750 0.38723 1.775
## to_ombudsman -0.01794 0.45386 -0.040
## Pr(>|z|)
## (Intercept) 0.76993
## macro_okved_code_groupFinancial_insurance 0.95493
## macro_okved_code_groupmanufacturing 0.07871 .
## macro_okved_code_groupother_categories 0.66855
## macro_okved_code_groupreal_estate 0.03856 *
## macro_okved_code_grouprural 0.67312
## macro_okved_code_groupScience 0.00495 **
## macro_okved_code_groupTrading 0.94835
## macro_okved_code_groupTransportation 0.24376
## spark_stock_ticket 0.17584
## category_by_size_missingMedium 0.98023
## category_by_size_missingMicro 0.16975
## category_by_size_missingSmall 0.13006
## administrative_position 0.69038
## administrative_connections 0.49012
## in_political_party 0.70127
## in_association_or_sro 0.02224 *
## case_publications 0.08280 .
## criminal_prosecution 0.43075
## capture 0.04161 *
## corruption 0.77899
## barriers 0.49251
## have_court_case 0.95635
## is_guilty 0.73268
## reaction_not_passed_by_applicant 0.24597
## reaction_consultation 0.00116 **
## reaction_target_letters_control 0.07583 .
## to_ombudsman 0.96847
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 395.93 on 355 degrees of freedom
## Residual deviance: 338.42 on 328 degrees of freedom
## AIC: 394.42
##
## Number of Fisher Scoring iterations: 5
car::vif(logit_1)
## GVIF Df GVIF^(1/(2*Df))
## macro_okved_code_group 2.656922 8 1.062977
## spark_stock_ticket 1.327025 1 1.151966
## category_by_size_missing 2.157560 3 1.136738
## administrative_position 1.808570 1 1.344831
## administrative_connections 1.518568 1 1.232302
## in_political_party 1.569965 1 1.252982
## in_association_or_sro 1.252150 1 1.118995
## case_publications 1.249895 1 1.117987
## criminal_prosecution 3.316870 1 1.821228
## capture 1.836192 1 1.355062
## corruption 1.319348 1 1.148629
## barriers 2.775154 1 1.665879
## have_court_case 2.435723 1 1.560680
## is_guilty 2.378458 1 1.542225
## reaction_not_passed_by_applicant 1.080046 1 1.039253
## reaction_consultation 1.286877 1 1.134406
## reaction_target_letters_control 1.274127 1 1.128772
## to_ombudsman 1.426453 1 1.194342
anova(logit_1, test="Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: target_strong_extended
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 355 395.93
## macro_okved_code_group 8 20.5731 347 375.35 0.008372
## spark_stock_ticket 1 0.0003 346 375.35 0.986495
## category_by_size_missing 3 5.6251 343 369.73 0.131342
## administrative_position 1 0.2227 342 369.51 0.637015
## administrative_connections 1 0.3773 341 369.13 0.539066
## in_political_party 1 0.0847 340 369.04 0.771090
## in_association_or_sro 1 3.5315 339 365.51 0.060213
## case_publications 1 4.3352 338 361.18 0.037331
## criminal_prosecution 1 0.4775 337 360.70 0.489572
## capture 1 4.5831 336 356.12 0.032289
## corruption 1 0.0934 335 356.02 0.759937
## barriers 1 1.1267 334 354.90 0.288479
## have_court_case 1 0.0759 333 354.82 0.782884
## is_guilty 1 0.1509 332 354.67 0.697687
## reaction_not_passed_by_applicant 1 3.0560 331 351.61 0.080439
## reaction_consultation 1 9.9838 330 341.63 0.001579
## reaction_target_letters_control 1 3.2054 329 338.43 0.073394
## to_ombudsman 1 0.0016 328 338.42 0.968456
##
## NULL
## macro_okved_code_group **
## spark_stock_ticket
## category_by_size_missing
## administrative_position
## administrative_connections
## in_political_party
## in_association_or_sro .
## case_publications *
## criminal_prosecution
## capture *
## corruption
## barriers
## have_court_case
## is_guilty
## reaction_not_passed_by_applicant .
## reaction_consultation **
## reaction_target_letters_control .
## to_ombudsman
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Подобные документы
Характеристика программной среды Business Studio 3.6. Демонстрационная база на примере покупки и доставки офисной мебели. Содержание, временная и логическая очередность операций бизнес-процесса компании "Аккорд" г. Ростов-на-Дону; области моделирования.
курсовая работа [1,3 M], добавлен 01.06.2014Процесс интеграции технических и программных средств во все аспекты деятельности предприятия. Группа контроллинга и ее задачи. Операционно-ориентированный расчет себестоимости продукта (услуги). Определение времени выполнения и стоимости процесса.
реферат [547,5 K], добавлен 14.09.2010Модель оценки долгосрочных активов (Capital Asset Pricing Model, САРМ). Оценка доходности и риска на основе исторических данных. Выбор оптимального портфеля из рискованных активов. Риск и неопределенность денежных потоков. Расчет бета-коэффициента.
презентация [104,1 K], добавлен 30.07.2013Mathematical model of the grinding grating bending process under the action of a meat product load parabolically decreasing along the radius. Determination of the deflection of a knife blade under the action of a parabolic load of the food medium.
статья [1,3 M], добавлен 20.10.2022Mission, aims and potential of company. Analysis of the opportunities and threats of international business. Description of the factors that characterize the business opportunities in Finland. The business plan of the penetration to market of Finland.
курсовая работа [128,3 K], добавлен 04.06.2013Definition and stages of business cycles, their causes and the characteristic of kinds. Types and a continuity of business cycles. Kondratyev's wave. A role of cycles in stabilization of a policy of the state. Great depression as an economic crisis.
реферат [130,5 K], добавлен 20.03.2011Business plans are an important test of clarity of thinking and clarity of the business. Reasons for writing a business plan. Market trends and the market niche for product. Business concept, market analysis. Company organization, financial plan.
реферат [59,4 K], добавлен 15.09.2012Support of business entities on the part of specialized agencies of the state on world markets. Interconnection of economic diplomacy of Ukraine in international cooperation with influence on the results of foreign economic activity of the country.
статья [30,1 K], добавлен 19.09.2017Impact of globalization on the way organizations conduct their businesses overseas, in the light of increased outsourcing. The strategies adopted by General Electric. Offshore Outsourcing Business Models. Factors for affect the success of the outsourcing.
реферат [32,3 K], добавлен 13.10.2011Technical and economic characteristics of medical institutions. Development of an automation project. Justification of the methods of calculating cost-effectiveness. General information about health and organization safety. Providing electrical safety.
дипломная работа [3,7 M], добавлен 14.05.2014Business as a combination of types of activities: production, distribution and sale, obtaining economic profit. Basic types and functions of banks. The principle of equilibrium prices and financial management. The use of accounting in the organization.
контрольная работа [17,8 K], добавлен 31.01.2011Prospects for reformation of economic and legal mechanisms of subsoil use in Ukraine. Application of cyclically oriented forecasting: modern approaches to business management. Preconditions and perspectives of Ukrainian energy market development.
статья [770,0 K], добавлен 26.05.2015The concept of economic growth and development. Growth factors: extensive, intensive, the growth of the educational and professional level of personnel, improve the management of production. The factors of production: labor, capital and technology.
презентация [2,3 M], добавлен 21.07.2013Entrepreneurial risk: the origins and essence. The classification of business risk. Economic characteristic of entrepreneurial risks an example of joint-stock company "Kazakhtelecom". The basic ways of the risks reduction. Methods for reducing the risks.
курсовая работа [374,8 K], добавлен 07.05.2013The essence, structure, оbjectives and functions of business plan. The process’s essence of the bank’s business plan realization. Sequential decision and early implementation stages of projects. Widely spread mistakes and ways for their improvement.
курсовая работа [67,0 K], добавлен 18.12.2011Description situation of the drugs in the world. Factors and tendencies of development of drugs business. Analysis kinds of drugs, their stages of manufacture and territory of sale. Interrelation of drugs business with other global problems of mankind.
курсовая работа [38,9 K], добавлен 13.09.2010Executive summary. Progect objectives. Keys to success. Progect opportunity. The analysis. Market segmentation. Competitors and competitive advantages. Target market segment strategy. Market trends and growth. The proposition. The business model.
бизнес-план [2,0 M], добавлен 20.09.2008Financial position of the "BTA Bank", prospects, business strategy, management plans and objectives. Forward-looking statements, risks, uncertainties and other factors that may cause actual results of operations; strategy and business environment.
презентация [510,7 K], добавлен 17.02.2013Directions of activity of enterprise. The organizational structure of the management. Valuation of fixed and current assets. Analysis of the structure of costs and business income. Proposals to improve the financial and economic situation of the company.
курсовая работа [1,3 M], добавлен 29.10.2014Software as a Service, a form of cloud computing service model of software users. SaaS subscription model: key features, market drivers and constraints. Impact of SaaS subscription services business in the economy and society in Russia and abroad.
дипломная работа [483,8 K], добавлен 23.10.2016