Моделирование связей между показателями АПК Республики Дагестан с помощью моделей авторегрессии и моделей с распределенным лагом
Улучшение качества, ускорение процесса принятия управленческих решений - фактор успеха и резерв повышения эффективности производства в условиях конкуренции. Анализ исходных данных для построения моделей авторегрессии и с распределенным лагом времени.
Рубрика | Экономико-математическое моделирование |
Вид | статья |
Язык | русский |
Дата добавления | 01.03.2019 |
Размер файла | 52,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.
контрольная работа [71,8 K], добавлен 10.11.2010Поняття лагової змінної; загальна характеристика моделі розподіленого лага, його структура. Інтерпретація коефіцієнтів моделей з розподіленим лагом. Побудова моделі, процедура застосування методу Алмон. Оцінка моделей с лагами в незалежних змінних.
курсовая работа [264,3 K], добавлен 18.12.2014Анализа циклического поведения нелинейных динамических экономических систем. Периоды экономических циклов. Признаки кризиса и катастроф в поведении системы. Результаты моделирования с производственным лагом и сроком службы. Начальный дефицит товара.
лабораторная работа [982,3 K], добавлен 22.12.2012Выявление производственных связей на основе регрессионных моделей. Расчет прогнозных значений показателей, при уровне факторных показателей, на 30% превышающем средние величины исходных данных. Использование коэффициента корреляции рангов Спирмэна.
задача [58,5 K], добавлен 11.07.2010Статистические модели принятия решений. Описание моделей с известным распределением вероятностей состояния среды. Рассмотрение простейшей схемы динамического процесса принятия решений. Проведение расчета вероятности произведенной модификации предприятия.
контрольная работа [383,0 K], добавлен 07.11.2011Модель авторегрессии 1-го порядка. Влияние мешающего параметра. Оценивание параметров регрессии с помощью фильтра Калмана. Последовательность гауссовских случайных величин с нулевым математическим ожиданием. Отклонение от истинного значения параметра.
курсовая работа [216,0 K], добавлен 23.05.2012Геологическое моделирование, его принципы, используемое программное обеспечение и оценка эффективности. Задачи эксплуатации геолого-технологических моделей, информационные аспекты эксплуатации. Конвертирование и загрузка полномасштабных моделей.
реферат [22,6 K], добавлен 03.05.2015Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.
курсовая работа [1,3 M], добавлен 23.06.2013Принципы и методы построения линейных, нелинейных моделей спроса, применение эконометрических моделей на практике. Эконометрическое моделирование спроса на автомобили в РФ, проверка значимости коэффициентов, автокорреляции, наличия гетероскедастичности.
дипломная работа [3,9 M], добавлен 30.01.2016Количественное обоснование управленческих решений по улучшению состояния экономических процессов методом математических моделей. Анализ оптимального решения задачи линейного программирования на чувствительность. Понятие многопараметрической оптимизации.
курсовая работа [4,2 M], добавлен 20.04.2015Изучение и отработка навыков математического моделирования стохастических процессов; исследование реальных моделей и систем с помощью двух типов моделей: аналитических и имитационных. Основные методы анализа: дисперсионный, корреляционный, регрессионный.
курсовая работа [701,2 K], добавлен 19.01.2016Методика и основные этапы построения математических моделей, их сущность и особенности, порядок разработки. Составление математических моделей для системы "ЭМУ-Д". Алгоритм расчета переходных процессов в системе и оформление результатов программы.
реферат [198,6 K], добавлен 22.04.2009Методика и этапы построения экономических моделей с помощью программы Microsoft Excel. Определение оптимальной структуры производства консервного завода на основании имеющихся статистических данных. Нахождение условного экстремума функции в Excel.
контрольная работа [1,4 M], добавлен 01.06.2009Основные принципы и методы построения линейных, нелинейных эконометрических моделей спроса, предложения. Типы взаимосвязей между переменными. Этапы интерпретации уравнения регрессии. Коэффициент (индекс) корреляции. Рассмотрение альтернативных моделей.
контрольная работа [83,1 K], добавлен 14.02.2014Создание комбинированных моделей и методов как современный способ прогнозирования. Модель на основе ARIMA для описания стационарных и нестационарных временных рядов при решении задач кластеризации. Модели авторегрессии AR и применение коррелограмм.
презентация [460,1 K], добавлен 01.05.2015Определение уровня нового расписания для местных доставок в городской Службе доставки почты. Анализ линейных и криволинейных моделей. Получение и описание моделей с высокими показателями R-квадрат (линейная, параболическая, кубическая, экспоненциальная).
практическая работа [178,8 K], добавлен 23.02.2012Особенности и сущность моделей системной динамики. Характеристика контуров с положительной и отрицательной обратной связью. Моделирование S-образного роста. Разработка модели запаздывания и ее построение. Основные разновидности моделей мировой динамики.
реферат [134,7 K], добавлен 22.02.2013Основные методы прогнозирования. Критерии качества прогнозных моделей. Разработка прогнозной модели. Классификация прогнозных моделей. Математическая прогнозная модель. Разработка аналитических моделей. Основные ограничения длины прогнозного периода.
презентация [1,2 M], добавлен 09.07.2015Построение имитационной модели технологического процесса методом Монте-Карло, ее исследование на адекватность. Оценка и прогнозирование выходных характеристик технологического процесса с помощью регрессионных моделей. Разработка карт контроля качества.
курсовая работа [1,2 M], добавлен 28.12.2012Виды финансовых моделей. Методический инструментарий моделирования финансово-хозяйственной деятельности. Использование финансового моделирования в принятии управленческих решений и оценке их эффективности на примере ОАО "Новосибстальконструкция".
дипломная работа [2,3 M], добавлен 17.09.2014