Устройства геодезического измерения

Измерение горизонтальных и вертикальных углов, расстояний и превышений. Влияние кривизны Земли и рефракции на измеряемое превышение. Тригонометрическое, гидростатическое и барометрическое нивелирование. Вычисление отметок реперов разомкнутого хода.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 18.06.2013
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Превышение на каждой установке нивелира, называемой станцией, вычисляют по формуле (4.49), а превышение между точками A и B будет равно:

hAB = h = a - b . (4.53)

Отметка точки B получится по формуле:

HB = HA + h. (4.54)

При последовательном нивелировании получается нивелирный ход.

1.4.1.1 Влияние кривизны земли и рефракции на измеряемое превышение

Рассмотрим схему геометрического нивелирования из середины с большей строгостью (рис.4.32). Уровенные поверхности не являются плоскими, они сферические, поэтому рейки, установленные в точках А и В перпендикулярно уровенным поверхностям, будут непараллельны между собой. Визирная ось трубы нивелира, установленного между точками А и В, горизонтальна. Она пересекла бы рейки в точках С и D, если бы световой луч распространялся в атмосфере строго прямолинейно. Однако в реальной атмосфере луч света идет по некоторой кривой, которая называется рефракционной кривой. Под влиянием рефракции предмет виден несколько выше своего действительного положения.

Рис.4.32

В результате рефракции визирный луч будет занимать положение C'JD', и отсчеты по рейкам будут равны отрезкам:

a = C'A и b = D'B.

Для вывода формулы превышения понадобится еще линия MJN, изображающая уровенную поверхность точки J нивелира; она пересекает рейки в точках M и N.

Превышение точки В относительно точки А будет равно разности отрезков МА и NB:

h = MA - NB. (4.55)

Далее из рис.5.5 следует

MA = AC - MC и NB = BD - DN.

Отрезки MC и DN выражают влияние кривизны Земли на высоту точек; оно зависит от расстояния S и радиуса кривизны R. Согласно формуле (1.5) найдем отрезки MC и DN:

MC = p1 = S21 / 2*R,

DN = S22 / 2*R;

здесь S1 - расстояние от нивелира до точки А;

S2 - расстояние от нивелира до точки В.

Отрезки AC и BD также выразим через их части:

AC = AC' + C'C и BD = BD'+ D'D,

где AC'- отсчет по задней рейке, AC' = a;

BD'- отсчет по передней рейке, BD'= b.

Отрезки C'C и D'D выражают влияние рефракции. Рефракционную кривую принимают за дугу окружности радиуса R1. Установлено, что вблизи земной поверхности радиус рефракционной кривой колеблется от шести до семи земных радиусов. Отношение R/R1 называется коэффициентом вертикальной рефракции и обозначается буквой k; следовательно, R1 = R/k. Значения k лежат в пределах 0.14 - 0.16.

Для отрезков C'C и D'D получаем следующие выражения:

C'C = r1 = S21 / 2* R1, D'D = r2 = S22 / 2*R1.

Подставив вместо R1 выражение R/k, окончательно получим:

r1 = (S21 / 2*R) * k= p1 * k,

r2 = (S22 / 2*R) * k = p2 * k.

Вернемся к формуле (4.55) и подставим в нее последовательно

h = (AC - MC) - (BD - DN),

h = (AC' + C'C - MC) - (BD' + D'D - DN),

h = (a + p1*k - p1) - (b + p2 *k - p2),

h = (a - b) - [p1*(1 - k) - p2* (1 - k)].

Обозначим через f совместное влияние кривизны Земли и рефракции на отсчет по рейке:

f1 = p1*(1 - k), f2 = p2*(1 - k), (4.56)

тогда

h = (a - b) - (f1 - f2). (4.57)

Далее

f1 - f2 = (1 - k)*(p1 - p2),

f1 - f2 = [(1 - k) / 2*R] * (S21 - S22). (4.58)

Если S1 = S2, то f1- f2 = 0 и h = a - b.

Вывод: при нивелировании строго из середины влияние кривизны Земли и рефракции почти полностью исключается. Это - первое теоретическое обоснование нивелирования из середины. Влияние рефракции может быть исключено не полностью, так как условия прохождения луча до задней и передней реек могут отличаться. Инструкция дает строгий допуск на неравенство расстояний до задней и передней реек: для нивелирования IV класса этот допуск равен 5 м, а для нивелирования I класса - 0,5 м.

1.4.1.2 Нивелиры: их устройство, поверки, исследования

Согласно ГОСТ 10528 - 76 в нашей стране выпускаются нивелиры трех типов: высокоточные с ошибкой измерения превышения не более 0.5 мм на 1 км хода, точные с ошибкой измерения превышения 3 мм на 1 км хода и технические с ошибкой измерения превышений 10 мм на 1 км хода.

Нивелиры всех типов могут выпускаться либо с уровнем при трубе, либо с компенсатором наклона визирной линии трубы. При наличии компенсатора в шифре нивелира добавляется буква К, например, Н-3К. У нивелиров Н-3 и Н-10 допускается наличие горизонтального лимба; в этом случае в шифре нивелира добавляется буква Л, например, Н-10Л.

Нивелир с уровнем при трубе изображен на рис.4.33.

Зрительная труба и уровень при ней являются важнейшими частями нивелира.

Элевационный винт служит для приведения визирной линии трубы в горизонтальное положение. С его помощью поднимают или опускают окулярный конец трубы; при этом пузырек уровня перемещается и когда он будет точно в нуль-пункте, визирная линия должна устанавливаться горизонтально.

Рис.4.33 1 - зрительная труба; 2 -цилиндрический уровень при трубе; 3 - элевационный винт; 4 -установочный круглый уровень (на рисунке не показан); 5,6 - закрепительный и микрометренный винты азимутального вращения; 7 -ось; 8 -подставка с тремя подъемными винтами.

Цилиндрический уровень обычно контактный; изображение контактов пузырька передается системой призм в поле зрения трубы, что очень удобно, так как наблюдатель видит сразу и рейку, и уровень.

Для нивелира с уровнем при трубе выполняются три поверки.

1. Ось цилиндрического уровня и визирная линия трубы должны быть параллельны и лежать в параллельных вертикальных плоскостях - это условие называется главным условием нивелира с уровнем при трубе. Первая часть главного условия проверяется двойным нивелированием вперед. На местности забивают два колышка на расстоянии около 50 м один от другого. Нивелир устанавливают над точкой А так, чтобы окуляр трубы находился на одной вертикальной линии с точкой (рис.4.34-а). От колышка до центра окуляра измеряют высоту инструмента i1. Затем рейку ставят в точку В, наводят на нее трубу нивелира, приводят пузырек уровня в нуль-пункт и берут отсчет по рейке b1. Затем нивелир и рейку меняют местами, измеряют высоту инструмента i2, приводят пузырек уровня в нуль-пункт и берут отсчет по рейке b2 (рис.4.34б).

Пусть главное условие нивелира не выполняется, и при положении пузырька уровня в нульпункте визирная линия не горизонтальна, а составляет с осью уровня некоторый угол i. Тогда вместо правильного отсчета b0 1 получается ошибочный - b1. Ошибку отсчета обозначим x, и превышение точки В относительно точки А будет равно:

h = i1 - (b1 + x).

При положении нивелира в точке В превышение точки А относительно точки В:

Рис.4.34

h' = i2 - (b2 + x).

Но h = - h', поэтому

i1 - (b1 + x) = - [i2 - (b2 + x)].

Отсюда получаем:

x = 0.5*(i1 + i2) - 0.5*(b1 + b2). (4.59)

Если x получается больше 4 мм, необходимо выполнить юстировку уровня, т.е. устранить угол i. Для этого элевационным винтом наклоняют трубу нивелира до тех пор, пока отсчет по рейке не будет равен правильному отсчету:

b02 = b2 + x,

при этом пузырек уровня уйдет из нуль-пункта. Исправительными винтами уровня приводят пузырек в нуль-пункт и повторяют поверку заново. Полная программа поверки главного условия включает еще проверку параллельности вертикальных плоскостей, проведенных через визирную линию трубы и ось уровня; порядок этой проверки изложен в [15] на стр.62.

При нивелировании строго из середины ошибка отсчета по рейке из-за невыполнения главного условия нивелира не влияет на величину измеряемого превышения (рис.4.35)

Рис.4.35

2. Ось круглого установочного уровня должна быть параллельна оси вращения нивелира. Приводят пузырек круглого уровня в нуль-пункт, затем поворачивают нивелир по азимуту на 180o. Если пузырек отклонился от нуль-пункта, то на половину отклонения его перемещают с помощью подъемных винтов и на половину - исправительными винтами круглого уровня.

Существует и другой, более надежный способ поверки круглого уровня: сначала тщательно устанавливают ось вращения нивелира в отвесное положение с помощью элевационного винта и цилиндрического уровня при трубе, затем исправительными винтами круглого уровня приводят его пузырек в нуль-пункт.

3. Горизонтальная нить сетки нитей должна быть перпендикулярна оси вращения нивелира, т.е. быть горизонтальной. Рейку ставят в 30 - 40 м от нивелира и закрепляют ее, чтобы она не качалась. Затем берут отсчеты по рейке при трех положениях ее изображения: в центре поля зрения, слева от центра и справа. Если отсчеты отличаются один от другого более, чем на 1 мм, то сетку нитей нужно развернуть.

Предполагая, что сетки нитей строго перпендикулярны, можно проверить вертикальность вертикальной нити. Для этого в 20 м от нивелира подвешивают отвес, наводят на него трубу и проверяют совпадение вертикальной нити сетки с нитью отвеса.

Важнейшими характеристиками нивелира, определяющими точность измерения превышений, являются увеличение зрительной трубы и цена деления цилиндрического уровня при трубе. По этим характеристикам определяет пригодность нивелира для выполнения работ заданной точности. Чтобы получить численные значения увеличения трубы и цены деления уровня, выполняют соответствующие исследования нивелира.

1.4.1.3 Нивелирные рейки

Изготовление реек регламентирует ГОСТ 11158-76. Типы реек по ГОСТу соответствуют типам нивелиров. Рейка нивелирная РН-05 односторонняя, штриховая с инварной полосой применяется для измерения превышений с точностью 0.5 мм на 1 км хода. Рейка нивелирная РН-3 деревянная, двухсторонняя, шашечная применяется для измерения превышений с точностью 3 мм на 1 км хода. Рейка нивелирная РН-10 деревянная, двухсторонняя, шашечная применяется для измерения превышений с точностью 10 мм на 1 км хода (рис.4.36). Длина реек бывает различной: 1200, 1500, 3000 и 4000 мм. У складных реек в шифр добавляется буква С, например, РН-10С.

Рис.4.36

Шашечные рейки изготовляются из высушенной первосортной ели; допускается изготовление реек из пластмасс, металлов и сплавов, если при этом выполняются требования ГОСТа на массу рейки, на температуру ее использования и т.п. . Перед покраской рейку пропитывают водоотталкивающим составом и грунтуют; деления в виде шашечек наносят черной краской на одну сторону рейки и красной краской на другую. Дециметровые деления подписывают.

На нижнюю часть рейки крепится металлическая пластина, называемая пяткой рейки. На черной стороне пятки соответствует нулевое деление рейки; на красной - отсчет, больший 4000 мм; поэтому отсчеты по красной и черной сторонам рейки не могут быть одинаковыми. Разность пяток для данной рейки является постоянной величиной, что позволяет контролировать правильность отсчетов. В литературе разность пяток называют также разностью нулей рейки.

Для установки рейки в отвесное положение на ней имеется круглый уровень или отвес.

На штриховых односторонних рейках деления наносят на инварную ленточную полосу, которая натягивается вдоль деревянного бруска при помощи специального устройства. Деления в виде штрихов наносят через 5 мм.

Для определения пригодности нивелирных реек к работе выполняют их исследования.

Поверхность рейки должна быть плоской. Уклонение от плоскости по ГОСТу допускается 3 мм для РН-05, 6 мм для РН-3 и 10 мм для РН-10. Вдоль рейки натягивают нитку и просвет между ниткой и рейкой измеряют в самом широком месте.

Случайная ошибка в положении дециметровых и метровых делений не должна превышать 0.15 мм для штриховых инварных реек и 0.5 мм для деревянных шашечных реек. Это исследование выполняют с помощью контрольной линейки.

Определение разности пяток или разности нулей рейки. Это исследование выполняют путем взятия отсчетов по черной и красной сторонам рейки, стоящей на одной и той же точке.

Поверка круглого уровня рейки выполняется либо по отвесу, либо по вертикальной нити сетки нитей нивелира. Отвес укрепляют прямо на рейку и устанавливают ее отвесно, при этом пузырек уровня должен находиться в нуль-пункте. В противном случае исправительными винтами уровня пузырек приводят в нуль-пункт.

Источники ошибок при геометрическом нивелировании.

Ошибка установки визирной линии трубы в горизонтальное положение по уровню; при t = 25" она достигает 3" - 4". Для расстояния 100 м это приводит к ошибке отсчета по рейке 2 мм.

Ошибка отсчета из-за ограниченной разрешающей способности трубы нивелира; при увеличении V = 25x эта ошибка достигает 1.2 мм на 100 м расстояния.

Нарушение главного условия нивелира; при нивелировании строго из середины эта ошибка исключается.

Наклон рейки. Для уменьшения влияния наклона рейки ее рекомендуется слегка покачивать вперед-назад около вертикального положения; при отсчетах меньше 1000 мм рейку качать нельзя. При покачивании рейки отсчеты по ней изменяются; наименьший отсчет является правильным.

Ошибка нанесения делений на рейке.

Общая ошибка отсчета по шашечной рейке нивелиром Н-3 оценивается в 4 мм на 100 м расстояния.

1.4.1.4 Вычисление отметок реперов разомкнутого хода технического нивелирования

По точности измерения превышений различают нивелирование 1, 2, 3, 4 классов и техническое. При техническом нивелировании предельная ошибка измерения превышения на 1 км хода не должна превышать 50 мм; это соответствует средней квадратической ошибке 20 мм на 1 км хода. Для нивелирования 1, 2, 3 и 4 классов средняя квадратическая ошибка измерения превышения на 1 км хода равна 0.8 мм, 2.0 мм, 5 мм и 10 мм соответственно.

Ходы технического нивелирования прокладывают между реперами с известными отметками (реперами нивелирования 1, 2, 3, 4 классов); допустимая длина хода зависит от его формы. Так, длина разомкнутого (рис.4.37-а) или замкнутого (рис.4.37-б) хода может достигать 16 км; длина висячего хода (рис.4.37-в) не должна превышать 8 км. В разомкнутом и замкнутом ходах нивелирование выполняют один раз, в висячем ходе - два раза: в прямом и обратном направлениях. При проектировании ходов следует выбирать наиболее удобные для нивелирования пути: дороги, просеки в лесу, берега рек, участки с небольшим уклоном и твердым грунтом.

Рис.4.37

Часть хода между двумя соседними реперами, закрепленными на местности, называется секцией. Длину секции определяют суммированием расстояний от нивелира до реек, которые можно измерять по нитяному дальномеру или шагами. Превышения по секции получают как суммы превышений на станциях секции.

Обозначим в разомкнутом нивелирном ходе:

n - количество секций (количество измеренных превышений),

hi - превышение по i-той секции,

li - длина i-той секции,

L - длина хода (L = li),

ki - количество станций в i-той секции,

K - количество станций в ходе (K = ki),

HA - отметка исходного репера в начале хода,

HB - отметка исходного репера в конце хода.

Количество реперов с неизвестными отметками равно (n-1), т.е. в ходе имеется одно избыточное измерение, которое порождает одно геометрическое условие, и, следовательно, вычисление отметок необходимо выполнять методом уравнивания.

Запишем формулы для последовательного вычисления отметок реперов хода:

H1 = HA + h1,

H2 = H1 + h2,

. . . . . . .,

Hn-1 = Hn-2+ hn-1,

HB = Hn-1+ hn.

Сложим эти уравнения и получим:

(H1 + H2 + ... + Hn-1) + HB = HA + (H1 + H2 + ... + Hn-1) + h

или

HB = HA + h,

откуда

h = HB - HA. (4.60)

Формула (4.60) представляет собой математическую запись условия, существующего в разомкнутом нивелирном ходе: сумма превышений по секциям должна быть равна разности отметок конечного и начального исходных реперов. Сумму превышений, подсчитанную по формуле (4.60), называют теоретической суммой.

Сумма измеренных превышений в общем случае не равна теоретической сумме; их разность называется невязкой хода и обозначается fh:

fh = h - hизм . (4.61)

Невязка нивелирного хода характеризует нарушение условия (4.60) вследствие ошибок измерений. Значение допустимой невязки по Инструкции [14] равно:

(4.62)

или

(4.63)

При fh < fhдоп вычисляют поправки в измеренные превышения по формулам:

(4.64)

или

(4.65)

при этом нужно, чтобы выполнялся контроль:

Vhi = - fh . (4.66)

По исправленным превышениям hiиспр = hi + Vhi вычисляют отметки реперов хода. Заключительным контролем правильности вычислений является получение в конце хода отметки конечного исходного репера.

1.4.2 Понятие о тригонометрическом нивелировании

Тригонометрическое нивелирование называют также геодезическим или нивелированием наклонным лучом. Оно выполняется теодолитом; для определения превышения между двумя точками нужно измерить угол наклона и расстояние. В точке А устанавливают теодолит, в точке В - рейку или веху известной высоты V. Измеряют угол наклона зрительной трубы теодолита при наведении ее на верх вехи или рейки (рис.4.38). Длину отрезка LK можно представить как сумму отрезков LC и CK с одной стороны и как сумму отрезков LB и BK с другой. Отрезок LC найдем из ДJLC: LC = S*tg н , остальные отрезки обозначены на рисунке.

Рис.4.38

Тогда

LC + CK = LB + BK и S * tg(н) + i = V + h.

Отсюда выразим превышение h

h = S * tg(н) + i - V. (4.67)

Выведем формулу превышения из тригонометрического нивелирования с учетом кривизны Земли и рефракции. Вследствие рефракции луч от верхнего конца вехи идет по кривой, а визирная линия трубы будет направлена по касательной к этой кривой в точке J. Визирная линия трубы пересечет продолжение вехи в точке L1, а не L. Проведем уровенные поверхности в точках A, B, J (рис.4.39).

Проведем касательную к уровенной поверхности в точке J и обозначим: высоту прибора - i, высоту вехи - V, горизонтальное проложение линии AB - S.

Превышение точки B относительно A выражается отрезком BK. Отрезок L1K на рис.4.39 можно выразить через его части двумя путями:

L1K = L1E + EF + FK,

L1K = L1L + LB + BK.

Рис.4.39

Отрезок L1E найдем из Д JL1E. Этот треугольник можно считать прямоугольным, так как угол L1EJ очень мало отличается от прямого, всего лишь на величину центрального угла е =(S / R)*r. Этот угол при S = 1 км не превосходит 0.5'.

Итак,

L1E = JE * tg(н),

но поскольку

JE = S, то L1E = S * tg(н).

Отрезок EF выражает влияние кривизны Земли:

EF = p = S2 / 2*R;

отрезок FK равен высоте прибора FK = i; отрезок L1L выражает влияние рефракции:

L1L = r * (S2 / 2*R) * k = p * k;

отрезок LB равен высоте вехи V.

Таким образом,

S * tg(н) + p + i = r + V + h,

откуда

h = S * tg(н) + (i - V) + (p - r),

или

h = S * tg(н) + (i - V) + f. (4.68)

При измерении расстояния с помощью нитяного дальномера формула превышения несколько изменяется; так как S = (Cl + c)* Cos2(н), то

h = 0.5*(Cl + c)*Sin(2*н) + i - V + f = h'+ i - V + f,

Величину h'= 0.5*(Cl + c)*Sin(2*н) называют тахеометрическим превышением.

При S = 100 м величиной f можно пренебречь, так как

f = 0.66 мм . S2 ,

где S - расстояние (в сотнях метров).

Ошибка измерения превышения из тригонометрического нивелирования оценивается величиной от 2 см до 10 см на 100 м расстояния.

При последовательном измерении превышений получается высотный ход; в высотном ходе углы наклона измеряют дважды: в прямом и обратном направлениях.

1.4.3 Понятие о гидростатическом нивелиривании

Гидростатическое нивелирование выполняют с помощью сообщающихся сосудов, заполненных одной жидкостью. Жидкость устанавливается в обоих сосудах на одном уровне, на одной отметке. Пусть высота столба жидкости в первом сосуде будет c1, а во втором c2 (рис.4.40); тогда превышение точки В относительно точки А будет равно:

h = c1 - c2. (4.69)

Рис.4.40

Точность гидростатического нивелирования зависит от расстояния между сосудами, типа жидкости, диапазона измерения превышения, конструкции отсчетного устроства и других условий. Она может быть очень высокой; средняя квадратическая ошибка измерения превышения лучшими гидростатическими нивелирами достигает 5 - 10 мкм; диапазон измерения превышений при этом невелик - всего около 1 см. При расстоянии между сосудами до 500 м можно измерить превышение с ошибкой около 10 мм.

1.4.4 Понятие о барометрическом нивелировании

Барометрическое нивелирование основано на зависимости атмосферного давления от высоты точки над уровнем моря. Известно, что с увеличением высоты на 10 м давление падает примерно на 1 мм ртутного столба.

Приближенное значение превышения между точками 1 и 2 можно вычислить по формуле:

h = H2 - H1 = ДH * (P1 - P2), (4.70)

где P1 и P2 - давление в первой и во второй точках;

ДH - барометрическая ступень; значения ДH выбирают из специальных таблиц.

Более точные формулы барометрического нивелирования получают, учитывая закономерности распределения плотности и температуры воздуха по высоте. Приведем полную формулу Лапласа:

h = K0*(1 + б *tm)*(1 + 0.378.em/Pm)* (1 + в*Cos2цfm)*(1 + 2/R*Hm) *lg(P1/P2).

В этой формуле:

P1, P2 - давление воздуха на высоте H1 и H2 соответственно,

Pm - среднее значение давления,

Hm - среднее значение высоты,

tm, em - среднее значение температуры и влажности воздуха,

fm - среднее значение широты,

б - температурный коэффициент объемного расширения воздуха, равный 0.003665 град.-1

в - коэффициент, равный 0.00265,

K0 - коэффициент, равный 18400 при некоторых стандартных значениях давления воздуха и силы тяжести.

Известны и так называемые сокращенные барометрические формулы, в которых значения некоторых параметров состояния атмосферы приняты фиксированными; так в формуле М.В. Певцова:

h = N*(1 + б*tm) *lg(P1/P2),

где N = 18470, принято: em = 9 мм рт.ст., fm = 55o, Hm = 250 м, Pm = 740 мм рт.ст.

Точность барометрического нивелирования невысока; средняя квадратическая ошибка измерения превышения колеблется от 0.3 м в равнинных районах до 2 м и более в горных. Основные области применения барометрического нивелирования - геология и геофизика.

Cписок использованной литературы

Учебники

1. Маслов А.В., Гордеев А.В., Батраков Ю.Г. Геодезия.- М.:Недра, 1993.

2. Дьяков Б.Н. Геодезия. Общий курс: Учеб. пособие для вузов. - Новосибирск: Изд-во Новосиб ун-та, 1993.- 171 С.

3. Борщ-Компониец В.И. Геодезия. Маркшейдерское дело: Учеб. для вузов. - М.: Недра, 1989. - 512 с.: ил.

4. Букринский В.А., Орлов Г.В., Самошкин Е.И. и др. Основы геодезии и маркшейдерского дела. Учеб. для иностр. студ. - М.:Недра, 1989. - 382 с.: ил.

5. Поклад Г.Г. Геодезия: Учеб. для вузов. - М.: Недра, 1988. - 304 с.: ил.

6. Селиханович В.Г. Геодезия: Учебник для вузов, Ч.II. - М.: Недра, 1981. - 544 с.

7. Данилов В.В., Хренов Л.С., Кожевников Н.П. и др. Геодезия. Изд. 2-е, перераб. - М.: Недра, 1976. - 488 с.: ил.

8. Гиршберг М.А. Геодезия. Ч.1. - М,: Недра, 1967. - 384 с.

9. Практикумы

10. Неумывакин Ю.К., Смирнов А.С. Практикум по геодезии: Учебное пособие.- М.: Картгеоцентр - Геодезиздат, 1995.- 315 с.: ил.

11. Визгин А.А., Коугия В.А., Хренов Л.С. Практикум по инженерной геодезии: Учеб. пособ. для вузов. - М.: Недра, 1989. - 285 с.

12. Баканова В.В., Карклин Я.Я., Павлов Г.К. и др. Практикум по геодезии: Учеб. пособ. для вузов. Изд. 2-е, перераб. и доп. - М.: Недра, 1983. - 456 с.: ил.

13. Хейфец Б.С., Данилевич Б.Б. Практикум по инженерной геодезии. Изд. 2-е, перераб. и доп. - М.: Недра, 1979. - 332 с.: ил.

14. Селиханович В.Г., Козлов В.П., Логинова Г.П. Практикум по геодезии. - М.: Недра, 1978. - 382 с.

Нормативно-справочная литература

1. Инструкция по топографической съемке в масштабах 1:5000, 1:2000, 1:1000 и 1:500 / Главное управление геодезии и картографии при СМ СССР. - М.: Недра, 1982. - 160 с.

2. Инструкция по нивелированию I, II, III, IY классов / управление геодезии и картографии при СМ СССР. - М.: Недра, 1990. - 167 с.: ил.

3. Условные знаки для топографических планов масштабов 1:5000, 1:2000, 1:1000 и 1:500 / Главное управление геодезии и картографии при СМ СССР. - М.: Недра, 1989. - 286 с.: ил.

4. Сборник инструкций по производству поверок геодезических приборов / Главное управление геодезии и картографии при СМ СССР.- М.: Недра, 1988. - 77 с.: ил.

5. Инструкция о построении государственной геодезической сети СССР/ Главное управление геодезии и картографии при СМ СССР.- М.: Недра, 1966. - 342 с.

Дополнительная литература

1. Проблемы цифрового картографирования территории России. Обзорная информация/ Госгисцентр. - М.: ЦНИИГАиК. - 1996. - 48 с.

2. Проект: Федеральная целевая программа Российской Федерации "Перевод геодезического обеспечения России на спутниковые методы", М., 1996.

3. Ащеулов В.А. Применение спутниковых навигационных систем в геодезии: Уч. пособие. - Новосибирск: НИИГАиК, 1993. - 82 с.

4. Шеховцов Г.А. Оценка точности положения геодезических пунктов. - Москва.: Недра, 1992. - 255 с.: ил.

5. Маслов А.В., Юнусов А.Г.6 Горохов Г.И. Геодезические работы при землеустройстве: Учебн. пособие для ВУЗов. - 2-е изд.,перераб. и доп.- М.: Недра, 1990.- 215 с.

6. Топографо-геодезические термины. Справочник / Б.С. Кузьмин, Ф.Я. Герасимов, В.М. Молоканов и др. - М.:Недра,1989.- 261 с.

7. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗов. - 13-е изд., исправленное. - М.: Наука, Гл. ред. физ.-мат. лит., 1986. - 544 с.

8. Лысов Г.Ф. Поверки и исследования теодолитов и нивелиров в полевых условиях. - М.: Недра, 1978. - 97 С.

9. Справочник геодезиста. - М.: Недра, 1985, 1975, 1966.

10. Коськов Б.И. Справочное руководство по съемке городов. 2-е изд., перераб. и доп. - М.: Недра, 1974. - 408 С.

Размещено на Allbest.ru

...

Подобные документы

  • Обработка результатов нивелирования: вычисление превышений, постраничный контроль, уравнивание разомкнутого нивелирного хода, вычисление отметок связующих точек. Расчет элементов железнодорожной кривой, вставка в пикетаж. Построение поперечного профиля.

    контрольная работа [23,8 K], добавлен 06.03.2016

  • История развития теодолита, его классификация, основные параметры и размеры. Принципиальная схема устройства теодолита. Горизонтальный круг, отсчетные устройства, зрительные трубы, уровни. Измерение и погрешности горизонтальных и вертикальных углов.

    курсовая работа [1,7 M], добавлен 30.04.2014

  • Ознакомление с геодезическими приборами. Конструктивные особенности теодолита 4Т30, нивелира 3Н-5Л и электронного тахеометра 3Та5. Геометрическое, тригонометрическое, гидростатическое, барометрическое нивелирование. Автоматизация тахеометрической съемки.

    отчет по практике [3,2 M], добавлен 16.02.2011

  • Виды и принципы действия тахеометра - геодезического инструмента для измерения расстояний, горизонтальных и вертикальных углов. Применение электронных тахеометров для производства тахеометрической съемки. Обработка результатов измерений, производители.

    презентация [291,2 K], добавлен 05.03.2015

  • Устройство, поверка и юстировка нивелира и теодолита. Измерение превышений, горизонтальных и вертикальных углов, азимутов линий. Инженерно-геодезические задачи. Нивелирование местности по квадратам; разбивка основных осей здания. Расчет границ котлована.

    практическая работа [563,7 K], добавлен 06.01.2014

  • Описание принципа тригонометрического (геодезического) нивелирования. Характеристики места нуля. Использование зависимости между атмосферным давлением и высотой точек местности. Изучение областей применения приборов барометрического нивелирования.

    презентация [45,9 K], добавлен 22.08.2015

  • Характеристика назначения, устройства и особенностей применения теодолита - наиболее распространенного угломерного инструмента, получившего широкое применение при лесных съемках. Измерения горизонтальных проекций углов, вертикальных углов и расстояний.

    презентация [446,1 K], добавлен 19.02.2011

  • Закрепление точек теодолитного хода. Геометрическое и тригонометрическое нивелирование. Вычисление координат точек замкнутого теодолитного хода. Перенесение осей запроектированного здания на местность, линии с заданным уклоном, отметок чистого пола.

    отчет по практике [1,3 M], добавлен 20.07.2012

  • Съемка участка местности между пунктами полигонометрии. Обработка журнала теодолитно-высотного хода и тахеометрической съемки. Вычисление значений горизонтальных углов, углов наклона, координат пунктов теодолитно-высотного хода. Уравнивание превышений.

    контрольная работа [37,1 K], добавлен 25.02.2012

  • Создание геодезического обоснования и разбивка опор мостового перехода. Уравнивание превышений и вычисление отметок станций опорной сети. Оценка точности измерений отметок узловых точек. Проектирование осевой линии мостового перехода в программе CREDO.

    курсовая работа [80,2 K], добавлен 05.04.2013

  • Вычисление дирекционных углов сторон, прямоугольных координат и длины разомкнутого теодолитного хода. Построение и оформление плана теодолитной съемки. Журнал нивелирования железнодорожной трассы. Расчет пикетажного положения главных точек кривой.

    контрольная работа [3,2 M], добавлен 13.12.2012

  • Исследование работ, выполняемых нивелиром. Геометрическое, барометрическое и гидростатическое нивелирование. Построение плоскостей. Проектирование и разбивка горизонтальной площадки. Камеральная обработка результатов нивелирования строительной площадки.

    курсовая работа [646,4 K], добавлен 23.12.2014

  • Теодолит - прибор для измерения горизонтальных и вертикальных углов. Особенности проведения теодолитной съемки, конструкция теодолитов и подготовка их к работе. Съемка ситуации местности. Теодолитный ход. Создание рабочего геодезического обоснования.

    презентация [716,1 K], добавлен 19.04.2017

  • Уравнивание разомкнутого нивелирного хода. Вычисление отметок связующих и промежуточных точек. Расчет элементов круговой кривой. Определение элементов переходной кривой, пикетажного положения главных точек кривой. Составление продольного профиля трассы.

    курсовая работа [28,3 K], добавлен 02.03.2016

  • Камеральная обработка полевых измерений. Вычисление допустимой угловой невязки. Обработка журнала тахеометрической съемки. Вычисление высотных отметок точек, суммы приращенных координат, дирекционных углов сторон хода и пунктов теодолитного хода.

    контрольная работа [98,3 K], добавлен 05.05.2015

  • Сущность угловых геодезических измерений. Обзор и применение оптико-механических и электронных технических теодолитов для выполнения геодезической съемки. Принципы измерения горизонтальных и вертикальных углов, особенности обеспечения высокой их точности.

    курсовая работа [241,6 K], добавлен 18.01.2013

  • Техника геодезических измерений и построений. Правила работы с геодезическими приборами. Прохождение теодолитного хода. Расчеты горизонта инструмента и абсолютных отметок на пикетах и промежуточных расстояниях. Вычисление координат точек полигона.

    отчет по практике [37,2 K], добавлен 19.06.2015

  • Геодезические приборы для измерения горизонтальных и вертикальных углов. Изучение основных частей, деталей и осей теодолита. Выполнение необходимых геометрических условий. Устройство цилиндрического уровня. Принципы отсчетного устройства теодолита Т30.

    лабораторная работа [749,4 K], добавлен 10.07.2011

  • Вычисление дирекционных углов линий и координатных точек. Расчет границ участка и построение топографического плана. Геометрическое нивелирование трассы дороги. Определение румба по истинному азимуту. Особенности прокладки и измерения теодолитных ходов.

    контрольная работа [517,0 K], добавлен 14.02.2014

  • Характеристика работы с теодолитом 2Т30, 2Т5К и нивелиром Н3, определение погрешности измерений, порядок поверки, влиятельные факторы. Проектирование и рекнацировка, измерение вертикальных и горизонтальных углов, оценка точности полученных результатов.

    отчет по практике [31,2 K], добавлен 17.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.